VISJA STROKOVNA SOLA ACADEMIA,
MARIBOR

DIPLOMSKO DELO

INTERAKTIVNI PRIKAZ PRAVILNE VOZNJE
V KROZISCU V ADOBE FLASH CS4

Kandidat: Matej Zavernik
Student $tudija ob delu
Stevilka indeksa: 11190122764
Program: Multimediji
Mentor: Veronika Saje, univ. dipl. inZ. arh.

Mentor v podjetju: Matej Butala

Maribor, februar 2011

IZJAVA O AVTORSTVU DIPLOMSKEGA DELA

Podpisani Matej Zavernik, $t. indeksa 11190122764, sem avtor diplomske naloge z naslovom

INTERAKTIVNI PRIKAZ PRAVILNE VOZNJE
V KROZISCU V ADOBE FLASH C$4,

ki sem jo napisal pod mentorstvom Veronike Saje, univ. dipl. inz. arh.

S svojim podpisom zagotavljam, da:

je predlozena diplomska naloga izklju¢no rezultat mojega dela;

sem poskrbel, da so dela in mnenja drugih avtorjev, ki jih uporabljam v predlozeni
nalogi, navedena oz. citirana skladno s pravili Vi§je strokovne Sole Academia;

se zavedam, da je plagiatorstvo — predstavljanje tujih del oz. misli kot moje lastne —
kaznivo po Zakonu o avtorskih in sorodnih pravicah (UL st. 16/2007 — v nadaljevanju
ZASP), prekriek pa podleze tudi ukrepom VSS Academia, skladno z njenimi pravili;
skladno z 32. ¢lenom ZASP dovoljujem VSS Academia objavo diplomske naloge na

spletnem portalu Sole.

Maribor, februar 2011 Podpis Studenta:

ZAHVALA

Ob zakljucku diplomskega dela se zahvaljujem svoji druzini, prijateljem in dekletu Mateji ter

njeni druzini, da so me podpirali in mi omogocali Studij.
Zahvaljujem se mentorici Veroniki Saje, univ. dipl. inz. arh., ter mentorju v podjetju Mateju
Butali za cas, ki sta mi ga namenila, da sta mi svetovala ter me vodila skozi pisanje diplomske

naloge.

Zahvala velja tudi vsem profesorjem, ki so skozi moje Solanje ustvarjali prijeten prostor za

sprejemanje znanja.

Posebna zahvala gre gospe Silvi PoZlep, inZ. multimedije, ki mi je v 1. in 2. letniku Studija

omogocila opravljanje obvezne delovne prakse, ter

Hvala lektorici Kseniji PeCnik, prof. slov., za slovni¢ni pregled naloge.

POVZETEK

Diplomsko delo opisuje proces ustvarjanja aplikacije Interaktivni prikaz voznje v kroziscu od
ideje do konc¢nega izdelka. V zaletnem delu je prikazan program Adobe Flash, njegova
zgodovina ter opis bistvenih orodij, ki sem jih uporabil. Sledi jedro naloge, kjer sem postavil
temelje za uspeSen potek dela in nadaljeval z razlago delovanja posameznih elementov, ki

sestavljajo kroziS¢e. Zaklju¢ek predstavlja moje mnenje o kon¢nem izdelku ter dosezenem

rezultatu nasploh.

Kljuéne besede:

Adobe Flash, programiranje logike, animacija, interaktivnost, pravilna voznja v kroziscu

ABSTRACT

This diploma thesis describes the process of creating the application Interactive presentation
of correct driving in the roundabout, from the initial idea to the finished product. At the
beginning I describe Adobe Flash, its history and the essential tools I used. What follows is
the core of the thesis, where I lay down the foundation for a successful workflow and proceed
to explain the function of the individual components that make up the roundabout. The

conclusion presents my opinion on the final product and the achieved result in general.

Key words:
Adobe Flash, logic programming, animation, interactivity, roundabout, correct driving in a

roundabout.

UVOD ...cirniiicnnnnniecssssasiesssssssscsssasssssssssssssssssssssssssans 11
1.1 NAMEN, CILJI IN OSNOVNE TRDITVE DIPLOMSKEGA DELA.......ccorviieiriieeniieenieeenieeens 12
L1] GLAVAT CIIJT oottt 12
1.1.2 DOAAIAT CIlJi.......oooeeeeeiiieeieeee et et neeesnae e e 12
1.2 PREDPOSTAVKE IN OMEJITVE...cc.ttitteiteateeniteeteeniteeiteenitesateesteesateeneesieesseesaseeseenane 13
1.3 PREDVIDENE METODE DELA.......cciiittiitteaiteeaiieeeiteesiiteesitee et eesiteesiteesaneeesaneeesaneens 13
1.4 UPORABLIENE KRATICEeetteuuttteeeniiteeeeiitteeeeitteeesaireeeeensneeeessnraeeessnsseeesssmneeeesnnnenes 13
ADOBE FLASH CS4oiiiininnniicnissnnricssssssesssssssssssssssssess 14
2.1 KRATKA ZGODOVINA PROGRAMA FLASH....c..ciiiiiiiiiiiiiiieiieeieeeceee et 15
2.2 ACTIONSCRIPT ...ttt ettt ettt ettt et e st e e et e e bt e e bt e e s bt e e e beeesabeeesabeeesabeeesane 17
23 ORODIA ..ttt ettt et e et e ettt e st e e s a bt e e bt e e s abeeeabbeesabbeeeabeeenabeeas 18
2.4 OBJIEKTIcueteiutieiieeiie ettt ettt ettt ettt ettt e sttt e sbt e et e e sbee s beenat e et e e ebeeeneenaneens 21
2.4.1 Risalni objekt (Drawing 0bJeCt)ccccocvueeeeiiieeiiieiiiieeiie e 21
2.4.2 Graficni simboli (Graphic Symbols)cccccoocivviniiiiiiiiiiniiniiiiieee, 21
2.5 NACINI ANIMACITE..ccuuttiutieueeeieentteeteestteeteeseeeteesateenseessseanseassseeaseesaseenseessseeaseesaseans 23
INTERAKTIVNO KROZISCE ..cueuueuernnernsensenssessesssess 25
3.1 TEMELIL...cuttiiittitteet ettt ettt st ettt ettt e s bt st e sb e e s bee st e e bt enaee 25
3.1.1 Vektorske oblike ali bitne Slike...................ccccoovvvieiiiiiiiiiiiiiiieiie e 25
3.1.2 Dimenzije v SLIKOVATI PIRAN.............cccooooiiiiiiiiiiiiii e 26
3.1.3 Hitrost predvajanja animacije ali Stevilo slik na sekundoc............ 26
3. 1.4 ACHORSCEIDE ...ttt ettt e e naae e aee e naneeennnes 27
3.1.5 Pravila VOZNje V KFOZISCU...........cc.cceeieeiiieeiie e 27
3.2 KROZISCE ...ttt ettt et sttt at e et sat e et e bttt e et e ebee e 28
3201 SKICQ oottt 28
3.2.2 ViIdezZ KFOZISCA ..ot 29
3.2.3 0dVijanje V KFOZISCUcccooeeeieiii e 30
3204 LOGIKQ ... 31
33 AVTOMOBIL...c.uttteiitte ettt ettt e ettt e et e e ettt e s bt e e sateeesabeeeaabeesbbeesbbeesabaeesabaeesabeeesanes 33
3.3.1 NACTtOVAN]E [OQIKE.ooceeieeeeee et 33
3.3.2 Videz QVIOMODILAcc..cooceieiiiieeiieeeee e 34
3.3.3 Razlicne preobleke...................cccoooiiiiiiiiiiiiiiiiiiiieee e 34
334 ARIMACII Q..o 36

3.3.5 Nastanek avtomobilov na vazlicnih krakili..........c...uueeeeeieeeeeeeeeeeeeee e 37

3.3.6 Preverjanje trcenja (Collision Detection)ccccccceuccuieoiiccniennenennane 38
3.3.7 Seznam avtomoDbiloycccociiiiiiiiiiiiiiiee s 39
3.3.8 KOIORE. ... s 40
3.3.9 Poenostavljen prikaz l0QIke.................ccccoovoiiiiiiiiiiieeiiie e 42
3310 INEEFAKCI]A. ...t 44
3311 ZAJEN IDOV ... 45
3.3.12 Dodaten aviomoDbilccooiiiiiiiiiiiiiiiiiii e 46
3.4 PESEC et 47
341 Logika PESCOVIN POLi ..ot 47
3.4.2 Podrobneje 0 pesSCevi lOZIki.................cccoivuiiiiiiiiiiiiiiiiiiiieiieee e 49
3.4.3 HOJA PFOUL CILJU ..ot 51
344 PrefOd ZA PESCO..........cccueeeeieeeiie e 52
3.4.5 Poenostavljen prikaz [0Gike................ccccoiviiiiiiiiiiiiiiiiiiii et 55
3.5 MACKA e 57
3.5 IZIUERANJE.........oeeeeeeeee e 58
3.5.2 Sledenje miSkinemu KQZAICUccc.oovviiieiiiiiiieiiie e 58
3.5.3 TeZava z GIODINOcccoooeiiiiiieieee e 63
354 LOGIKQ ..o 64
3.6 UPORABNISKI VMESNIK ...cutirtiettrteniteteetenteetesitesteetesutesseesesssenseensesmsesseensesseensesnnes 66
3.6.1 MeNi il QUIMBI..........cc..oooiiieiiii et 66
3.6.2 MENJaVA JEZIKA............ooccueeeeiieeiii e e 67
3.6.3 SeSIeVANTE PFOMELA ..ottt 67
3.6.4 Izbira avtomobilove smeri z QUMDI.................ccoccueviiiiiiiiiiiieeiieeie e 67
3.7 ZVOK it 69
3.7 0 ZVOK KFOZISCA ...t 70
372 ZVOK MACKE ...t 72
3.8 OPTIMIZACITA ...ttt ettt ettt sttt st ettt e s et et e et e saneesaneeaneenane 73
3.8 1 POCASNA GPASTKG.........c.oooeeeeeieeeeeee e 73
3.8.2 LOV ZA MFOSCI .o 74
ZAKLIUCEK .ouuucrrnnnirnnscisssnsss 75
LITERATURA IN VIR ..uuciiiiviiiinsnicsnisesssecssnssesssessssssssssessssssssssesssssssssssssssssssssssssess 77
5.1 LITERATURA ..ottt 77
5.2 SPLETNI VIRL...oiiiiiiiiiiiiiiiiiie ittt 77

6 SLOVAR TUJIH BESEDuuiiiiniinninnsnennnensnenssnesssesssnsssssssssssssassssesssssssssssssssssessassss 78

T PRILOGE....tiieninnenennnesnisnensessnessssssnsssessssssesssssssssssssssssasssssssssssssssssssssassssssassans 80

KAZALO SLIK

Slika 1: Adobe F1ash CS4.......ouiiiiiiie et st 14
Slika 2: CasOVNA liNTja (TIELRE)oeeeeeeeeeeeeeeeeeeeeeeee e 18
S1iKa 3: OTOAJA (TOO0LS) c.neveeeeieeeee ettt et e et e et e e e steeesnaeeesaeesnsaeessseeennneeas 18
Slika 4: Napake prevajalnika (Compiler EFrors)ccocueeviriinieiinienenieneenieeeeneeseennens 18
Slika 5: LaStNOStL (PFOPEITIES)...c.ueeeeeeeeeeeiieeiieeieeeiee ettt et ste et e satessaesnteenseessseeseesnseenseennns 19
Slika 6: KNJIZNICA (LIDFAFY) wccuvveeiieiiieiieeiieeie ettt ettt et s e ve et essaesssaenseesssesnsaessneenseenens 19
STIKa 7: BATVA (COLOT) c..uvieeiiieeee ettt ettt e et e et e e et e e ssaeesnsaeeenbaeennneeas 19
Slika 8: OAtenki (SWAICAES)oeeueieiiiieeeeee ettt et 19
STKA 91 AKCIJ@ (ACTIOMS) oottt ettt ettt ettt ettt e e e ssbeesaesnaeenseennns 20
STKA 10: IZPIS (OUIDUL) ..ottt ettt ettt eesabeesbeesssesnsaessseenseennns 20
Slika 11: POTavNava (ALIQI)......ccuueeeeeeeeieeeeie ettt e e et e e e e eaae e e sa e e saaeessbeeesnneeas 20
Slika 12: INfOrmacije ([7f0)c..eevueeiinueiiiiiiiiiieeee ettt 20
Slika 13: Nenavadna casovna linija SImbola BUTtOnc.c.ccceevieeciieniiiiieiieeie e 22
Slika 14: Prikaz pretvorbe vektorja s pomocjo Shape TWeenccceeceeeeeenceeeneenieaneenne, 23
Slika 15: Prikaz animacije CIaSSIC TWEEc..ccueeeueeeeieeiieeieeieeeieeeieeeve e saeeaeesaeesee e 23
Slika 16: Motion Tween animiramo z orodjem Motion Editor..............coceeveveeeceeeeccveeecenennnnn. 24
Slika 17: Poveceva veKtorske ObIIKE.........c.ooviiiiiiiiieiieic et 25
Slika 18: Povecava bitne SIKE.......cccuevuiiiiiiiiiiiiieece e 25
Slika 19: Glavne nastavitve dOKUMENtaoceviiiiiiiiiiiiiieiee e 26
Slika 20: PodrobnejSa skica KIrOZISCa........eeviuiiiiiiiieciieeciie ettt e 28
Slika 21: Oblikovanje KroZiS€a SKOZI €asc..cevueriiriieiiiniiniiiicntccctesece et 29
Slika 22: RAZIICNE DATVE TOZ...c..eeiiriiiiiiiiiiiesieeie ettt sttt st 30
Slika 237 Senca [etala.......cc.eeiiiiiiiiieee et st 30
Slika 24: StatiCen promet je vSaKiC €Nak.........ccccvieiiuiiiiiiiieiiie et 31
Slika 25: Dinamicen promet je vsaki€ drugacencccooeeverniiniinieiiinieneneniecieereseeieeene 31
Slika 26: Kraki KroZiS€a (0,1,2,3)..cc.cciuiiiiiieiiiecieieeeet ettt st 32
Slika 27: Razvoj videza avtomobila............ccciieiiiiiiiiiieiiicieece et 34
Slika 28: Vse preobleke in dodatni VZOTCI.......cccvieeiiieiiieeiie et 35
Slika 29: Razvoj smerokaza skozi €as od leve proti desni........c.cceeeveereeneriieneenieniicneeniennne 35
Slika 30: Drobovje MC-a CarSKin(...........cccueeeuieiiieiiieeieeieeie ettt 35

Slika 31: »Tirnice«, po katerih je animiran avtoccc.eeeueerieeriienieeniienie e seeeieeeae e e 36

Slika 32: Razli¢ne rotacije avtomobila glede na krak nastankacccceevveevvviencieenceeennnnn. 37
Slika 33: Mesta za preverjanje (0,1,2,3) ...coeiriiiiniiieeieceee e 38
Slika 34: Zanka nastajanja in Zivljenjske dobe avtomobila..............cccceviiviiiiniininiiniiice 40
Slika 35: Sistem sestavljene animacije voZnje v Koloni..........ccoeevevciieeiienciienienieeieeieeene 41
Slika 36: Vse kombinacije voZnje v KOOIc..eevviiiiiiiiriie et 42
Slika 37: Poenostavljen graf poteka avtomobilove logike v koloni.........cccceceveeviiriiniincnnene 43
Slika 38: Smeri, ki jih lahko dOlOCIMO aVtU........coouiieiieiiiiiieiecee e 44
Slika 39: Razli¢no dojemanje smeri glede na izvorni krak avtomobilacccceeeeviennnnnn. 44
Slika 40: Kako v Flashu merimo slikovne pike...........ccoveeriieeiiiieniieciie e 45
Slika 41: Kako premik miSke pretvorimo V SIMET........cc.eeeevueriirienieeieneenieneenieeie e sieeeesaeens 46
STKA 42: VIACZ PESCA ...ttt ettt ettt ettt et e ebeesabeenbeessaeensaesnaeenseenens 47
STKA 43: IMICZA POLL c.veeiveeniiieiiieiiie et eeiteeteestteeteesteeebeesseeebeessaeesseessseenseessseesseesssesnseessseenseensns 47
Slika 44: Logika peScevih ciljev za Krak O........cccccooviieiiiiiiiiieeicceceee e 48
Slika 45: Celoten prikaz logike peSCevih CLJEVcceiviiriiiiiiiiiiiiiicceeeceece 50
Slika 46: Kot med peScem 1N CILJ@Mcc.iiiiiiiiiiiieiieie et 51
Slika 47: Kot 1z slike 41 prenesen vV KrOZ.........ccveviieiiieriiiiiieeieeieecee et 51
Slika 48: Prostor, kjer peSci preCkajo CEStISCE....uuiimiiimmiiiiniiieiiieeieeeree e et eaee e vee e 53
Slika 49: Postavitev in poimenovanje prehodov Za PESCe.......cccuvieriieerieeeiiieeeieeeiieeevee e 53
STika 50: PESCEVI IPALT c..eouvieiiiiiiiiiiiieee ettt 54
Slika 51: Kako peSec precka CESISCOuviiiiniiiiiiiieiiecie ettt ettt e 55
Slika 52: Poenostavljen graf poteka peSeve 10giKe........ccoevieriieiiiiniiiiieiiiciece e 56
Slika 53: Videz macke v teKUcooiiiiiiii e 57
Slika 54: MaCKin BIIOZc..ooiiriiiiiiiii et 57
Slika 55: Tipali macki sporo€ita, od kod prihaja nevarnostccceveeveriienienenieneenennne 58
Slika 56: Prikaz enakomernega in neenakomernega 180 ° obrata macke..........ccccoeceevveiennee 59
Slika 57: Tezave pri raCunskem iskanju pravilnega obrata............ccccoeevvieeeieeecieeccieeeieeee, 60

Slika 58: Primer racunanja pravilnega obrata, kjer sta dir in dirNew pozitivna (a in b) ali

NEZALIVIIA (C 111 C) vreiiieiieeiieiie ettt e et et e et estte e bt e steeebeesseeenseessseenseessseenseessseenseesnseenseensseenseas 61
Slika 59: Primer racunanja pravilnega obrata, kjer je dir pozitiven in dirNew negativen 61
Slika 60: Primer racunanja pravilnega obrata, kjer je dir negativen in dirNew pozitiven 61

Slika 61: Poenostavljen graf poteka logike za najdbo ustrezne prilagojene rotacije dirTarget63

Slika 62: Tezava z globino MACKEcccuieriiiiiieiiieiieeie ettt 64
Slika 63: Poenostavljen graf poteka mackine 10giKe...........ccecvvreviiiriieniiniiieiecieeeeeee e 65
Slika 64: MC AboutScreen vsebuje poleg vseh gumbov tudi meni ter prometne znake.......... 66

9

Slika 65: SesStevanja prometa Na KraKu.........cc.ooovieriieiiieiiieiiecie ettt 67

Slika 66: Graficni prikaz izbrane poti — nakljucno, prvi, drugi, tretji in Cetrti izhod............... 68
Slika 67: Adobe AUdition 1.5cooiiiiiiee et e 69
Slika 68: Graf glasnosti glede na $tevilo VOZil..........cccoviiiiiiiiiiiiiiiice e 71
Slika 69: Graf glasnosti glede na Stevilo vozil v obliki krivuljeocoveiiiniininiinice 71
Slika 70: Formula za glasnost..........c.coiiiiiiiiiiiieieeee e 71
Slika 71: Povecan prikaz razlike v kakovosti izrisa — high, medium in low.............c..ccc........ 73
KAZALO TABEL

Tabela 1: Formule za izra¢un peSCevih CIlJEVc.ocviiiiiiiiiiiiiieiiccie e 49
Tabela 2: Prikaz vrednosti funkcij sinus in kosinus glede na razli¢ne smeri v krogu.............. 52
Tabela 3: Formuli za izraCun gladkega premika oziroma obratacccecceevieevieniieneennne 59
Tabela 4: 1Zracun PrimeroV D N C......c.eeeuieiiieriieiieeiiee ettt ettt et e et eteeaeeseaeeseesnaeens 60
Tabela 5: Dokazi za primere s slik 58, 59 1 60cccueeruiiiiiiiiieiieiece e 62
Tabela 6: Seznam vseh zZvokov za MAaCKOcoiiiiiiiiiiiiic e 72
Tabela 7: Datoteke na prilozenem DVD-JU.......ccccooiiiiiiiiiiiiieee e 80

10

1 UVOD

Projekt, o katerem govori ta diplomska naloga, je zazivel kot obvezna naloga pri predmetu
glavni multimedijski programi. Izdelati je bilo treba kratko animacijo v programu Adobe
Flash CS4. Ker se s tem programom dokaj aktivno ukvarjam Ze od srednje Sole naprej, sem tu

videl priloznost, da bi namesto osnovne animacije naredil nekaj zahtevnejSega.

Pri iskanju ideje nisem imel srece, zato sem za nasvet vprasal svoje dekle. Predlagala mi je
prikaz pravilne voznje v kroziscu. Zdelo se mi je, da v obliki animacije takSno krozisc¢e ne bi
bilo zanimivo, saj bi se voznja avtomobilov kaj hitro zacela ponavljati. Da bi bila animacija
zanimiva, bi moral vsak avtomobil voziti in izbirati pot skozi krozi§¢e sam, in to po predpisih.
Hkrati bi se to moralo dogajati vsaki¢ drugace, torej naklju¢no — nekaksen lahkoten priblizek

simulacije voznje avtomobilov v kroziscu. Bolj kot sem o tem razmisljal, bolj navduSen sem

postajal nad zamislijo. Vsekakor se je sliSalo kot izziv, zato sem se lotil ustvarjanja.

Jasno je, da sem dobro poznal osnove programa Flash in njegovega skriptnega jezika
ActionScript (v nadaljevanju AS), ki sem jih osvojil s pomoc¢jo informacij na spletu, toda to
so bile le osnove. Da bi lahko uspesno realiziral zamiSljeno, bi se moral nauciti Se veliko.
Poleg tega pa sem s tem zelel sporociti tudi, da se v danasnjem ¢asu da ogromno nauciti kar
od doma. Za to sem potreboval verodostojen vir informacij, iz katerih sem lahko crpal
potrebno znanje. Najboljsi vir informacij o programu je gotovo priro¢nik, ki ga izda podjetje,
ki je program naredilo. Za Flash ta prirocnik obstaja v spletni obliki, in sicer kot center za
pomog¢, ki je za aktualno doslednost informacij posodobljen iz dneva v dan. Poleg tega pa so
na spletu gradiva za ucenje malodane vsepovsod, le voljo in motivacijo potrebujemo, da jih
najdemo. In ker sem od srednje Sole naprej srecal ogromno ljudi, ki se sami niso bili
pripravljeni nauciti niesar, da bi dosegli kaj ve¢, sem bil Se toliko bolj motiviran ustvariti

nekaj zanimivega. Sledile so ideje, ki so bile osnova za cilje kot so zapisani v nadaljevanju.
Poudariti zelim, da je krozisce, ki sem ga prikazal v svoji diplomski nalogi, posodobljena
razli¢ica krozi$¢a, ki sem ga oddal pri predmetu glavni multimedijski programi. Prav tako

zelim opomniti, da so vse slike in skice v diplomskem delu moje lastno delo.

Za lazje razumevanje diplomske naloge priporocam predhoden ogled izdelka, ki se nahaja na

priloZenem DVD-ju.

11

1.1 Namen, cilji in osnovne trditve diplomskega dela

Namen mojega diplomskega dela je ustvariti aplikacijo s programom Adobe Flash CS4, ki
prikazuje pravilno voznjo avtomobilov v kroziS¢u ter vsebuje osnovno interaktivnost —
uporabnik lahko posredno manipulira s potjo avtomobilov. Gre za celoten postopek izdelave
multimedijskega projekta od naclrtovanja do realizacije, v katerega so vkljuceni
programiranje, grafika in zvok. Za stvarjenje vseh segmentov projekta sem poskrbel
popolnoma sam, prav tako sem projekt tudi sam vodil, kar pomeni, da je moj vpliv prisoten v

celotnem obsegu projekta.

Vnaprej napisani cilji so klju¢na opora, kamor se lahko vrnemo, ko ne vemo vec, kaj smo

zeleli doseci. Zajemati morajo bistvene dele nasega projekta, saj se po njih orientiramo.

1.1.1 Glavni cilji
Gre za cilje, ki sem jih dorekel Se pred razvojem projekta. Ti elementi so pomembni za

osnovno delovanje krozi§¢a in predstavljajo bistvo tega projekta:

ustvariti krozisce s Stirimi kraki, od katerih ima vsak dva vozna pasova,

- ustvariti avtomobile, ki bodo znali pravilno voziti v krozis¢u, se postavljati v kolono
ter paziti na druge avtomobile in peSce — njihov nastanek mora biti do neke mere
nakljucen,

- ustvariti pesce, ki se bodo naklju¢no sprehajali ob cestiscu ter uporabljali prehod za
pesce, s ¢imer bodo ovirali avtomobile — njihov nastanek mora biti prav tako do neke
mere nakljucen,

- vkljuciti moznost avtomobilom dodeliti smer z uporabo miske in/ali tipkovnice,

- ustvariti meni oz. gumbe, ki bodo sluzili spreminjanju dolo¢enih nastavitev krozisca,

- ustvariti v§e¢no grafiko in animacijo ter vkljuciti zvok v aplikacijo,

- optimizirati delovanje aplikacije.

1.1.2 Dodatni cilji
Ti cilji niso bili v mojem izvirnem nacrtu, temve¢ so se mi porajali sproti. Gre za dodatne

elemente, ki ne vplivajo na osnovno delovanje krozisca. Ti cilji so:

- ustvariti macko, ki bo nastala na ukaz uporabnika in bo bezala pred avtomobili,
- vkljuciti moznost vodenja macke z uporabo miske,
- ustvariti letalo, ki bo v naklju¢nih intervalih preletelo kroZisce,

- vkljuciti moZnost spreminjanja jezika aplikacije.

12

1.2 Predpostavke in omejitve

Predvidevam, da s samo uporabo programa Adobe Flash CS4 ne bom imel tezav, saj imam z
njim ze veliko izkuSenj, prav tako pa je literatura na internetu prosto dostopna. Tako se bo
najvecji izziv pokazal v samem oblikovanju aplikacije, oblikovanju algoritmov delovanja
posameznih delov aplikacije ter smiselni uporabi skriptnega jezika AS, ki je za takSen podvig
nuja. Najvecji izziv pa pri¢akujem v upodabljanju celotnega postopka izdelave aplikacije v

besedilo.
1.3 Predvidene metode dela
Za teoreti¢ni del diplomskega dela bom uporabil:

- knjizne vire,
- podatke z interneta in

- lastne izkusnje.

Raziskovalni del moje diplomske naloge pa bo potekal v naslednjih korakih:

nacrt,

- izdelava,

- kon¢ni izdelek,

- analiza celotnega postopka izdelave in

- predstavitev izdelka.

1.4 Uporabljene kratice
AS — ActionScript

DVD - Digital Versatile Disc
FPS — Frames per second’
HZ — Hertz

MC — MovieClip

! Pove, koliko slik se izmenja v eni sekundi.

13

2 ADOBE FLASH CS4

Program Flash podjetja Adobe je namenjen ustvarjanju vsebine za splet. Z njegovo pomocjo
lahko spletnim stranem dodamo animacije, video in interaktivnost. Gre za dandanes izredno
priljubljeno spletno aplikacijo, ki jo glede na meritve, opravljene julija 2010, uporablja 99 %
vseh spletnih deskarjev. Poleg samih spletnih strani se Flash v veliki meri uporablja tudi za

oglasevanje in spletne igre (http://en.wikipedia.org/wiki/Adobe Flash/, dne 15. 12. 2010).

Flash z manipulacijo vektorske in rastrske grafike omogoca animacijo teksta, risb in staticnih
slik. Podpira dvostransko pretakanje zvoka in videa ter komunikacijo z uporabnikom preko
miske, tipkovnice, mikrofona in kamere. Flash vsebuje objektno usmerjen programski jezik

AS.

Vec o programu Adobe Flash se da prebrati na:

http://www.adobe.com/products/flash/, dne 15.12.2010

Bl Fe et View Inset Modity Ted Commends Convol Debug Window Help A R

Player: Flash Player 10

m

Sript: ActionSeript 2.0

Class: &
Profile: Default
AIR Settings |_Edit... |

<+ PROPERTIES

|.e ®© = B B B BB D E T E D B M B D
] ; SW Tl -]
MoveCentroller(a
:3 g Sound(a) @ a0
0‘ 9 Button(a) " .
P‘ Ve omde a R: 255 7]
? g ::we(;me{a) . : & 255 |7 -i
Ho& g nafes 00 [4] - B: 255 7]
T KroZiste27_cs4™ % . Alpha: 100% [#FFFFFF
g é&:enal é. @v s -
7 E I
&,
y PROPERTIES
?, Document
&‘ ITl KroZiste?7_cs4
/ =7 PUBLISH
=
&
q
Z
|
&
]
L
2

FPS: 30.00
i Size: 1024 x 768 px
=5 [+ stage:]
ACTIONS - FRAME

¥
—~

[Actonsript 1.0 & 2.0 & Script Assit @
Cx 1

= [Current Selection

~fa] script: Frame 1

= é Scene 1 183 var pesecTimer:Number = 0;
&l Saript: Frame 1 184 var pesecTimerLimit:Number
A Movecontroler 185 var pesecCount:Number = 0://V:
E 186 var pesecSpeed:Number = 2://V
/5] soundo, <soundo> H 187 var pesecLimitAll:Number = 30://Najved moZnil

-4 Buttons 188 var pesecDivide:Number = 150 / pesecLimitAll nica za pravilno nastavit
¥ Buttons 183 var pesecPlace:Array = [[0, O, 0, 01, [0, O, O, 0], [0, O, O, 0], [0, O, O,
A suttons 130 var pesecPlaceCount:Array = [[0, 0, 0, 0], [0, 0, O, 0], [0, O, O, 0], [0, O
p p— 151 var pesecSensoriNumber = 0;//Exikaz pedcevin pocledew (23 debua) i
-4 Buttons d m »
& sutions ls] seript:1 /54

A Rthens T | | Line 13 of 1067, Col 30

Slika 1: Adobe Flash CS4

Vir: Lasten

14

http://en.wikipedia.org/wiki/Adobe_Flash/
http://www.adobe.com/products/flash/

2.1 Kratka zgodovina programa Flash

Predhodnik programa Flash je bila risalna aplikacija SmartSketch za operacijski sistem
PenPoint OS. Po zacetnem neuspehu na trgu je bil program preveden tudi za operacijska
sistema Windows in Mac. S priljubljenostjo interneta je bil program SmartSketch posodobljen
in izdan kot FutureSplash — vektorsko orodje za spletno animacijo, neposreden konkurent
takratnemu Macromedia Shockwave. Leta 1995 je izSel FutureSplash Animator —
posodobljena razli¢ica programa SmartSketch z izboljSavami pri delu z animacijo. Leto dni
kasneje je FutureSplash pridobilo podjetje Macromedia in na njegovi podlagi izdalo Flash.
Sledi seznam vseh inacic programa Flash do sedaj, in sicer s kratkim opisom sprememb, ki

sem ga povzel po Wikipediji (http://en.wikipedia.org/wiki/Adobe Flash/, dne 15. 12. 2010).

FutureSplash Animator (1996) - prvotna razliica programa Flash s ¢asovno linijo in

osnovnimi orodji za urejanje.

Macromedia Flash 1 (1996) - program FutureSplash Animator s spremenjeno blagovno
znamko.

Macromedia Flash 2 (1997) - izdan s Flash Player 2. Nove moznosti: zbirka objektov.

Macromedia Flash 3 (1998) - izdan s Flash Player 3. Nove moznosti: element MovieClip,

vtiCna integracija jezika JavaScript, prozornost in zunanji samostojni predvajalnik vsebine.

Macromedia Flash 4 (1999) - izdan s Flash Player 4. Nove moznosti: notranje

spremenljivke, polje za vnos teksta, napreden AS in moznost pretoka MP3.

Macromedia Flash 5 (2000) - izdan s Flash Player 5. Nove moznosti: AS 1.0 (zaradi zasnove
na ECMAScript v skladnji zelo podoben jeziku JavaScript), podpora XML, objekti Smartclip
(predhodniki Flashevih komponent), dodano oblikovanje besedila na osnovi HTML za

dinamicen tekst.
Macromedia Flash MX (2002) - izdan s Flash Player 6. Nove moznosti: video kodek

(Sorenson Spark), Unicode, nova razli¢ica komponent za uporabniski vmesnik (v1),

kompresija, viesnik za programiranje aplikacij za risanje vektorjev v AS.

15

http://en.wikipedia.org/wiki/Adobe_Flash/

Macromedia Flash MX 2004 (2003) - izdan s Flash Player 7. Nove moznosti: AS 2.0
(omogoci objektno usmerjen model programiranja v Flashu, toda le ob rocnem vnosu ukazov
AS, saj ni bil zdruZljiv z uporabo podpore programiranja), vedenja, sloj za razsiritve (JSAPI),
podpora tekstu, ucinki ¢asovne linije. Poleg vseh moznosti iz Flash MX 2004 je Macromedia
Flash MX Professional 2004 vseboval Se: zaslone (forme za nelinearno izdelavo glede na
stanje ter diapozitive za organizacijo vsebin v linearni obliki kot pri programu PowerPoint),
integracija spletnih storitev, Carovnik za uvoz videa, komponente za predvajanje medijev
(vsebujejo celoten predvajalnik MP3 ali FLV, odet v obliko komponente, ki se vstavi v SWF),
komponente za podatke (DataSet, XMLConnector, WebServicesConnector, XupdateResolver
itd.) ter vmesnike za programiranje aplikacij, ki jih povezujejo, zavihek za projekte, novo

razli¢ico komponent za uporabniski vmesnik (v2) in zbirko prehodov.

Macromedia Flash 8 (2005) - Macromedia Flash Professional 8 s Flash Player 8 vsebuje
dodatke, osredotoCene na izrazitost, kakovost, video in mobilno zalozniStvo. Dodani so bili
filtri in nacini prelivanja med objekti, nova orodja za animacijo, nain risanja objektov,
dodatne lastnosti pri risanju, izboljSano mehc¢anje robov teksta, On2 VP6 napreden video
kodek, podpora za prosojnost v videu, samostojni enkoder in napredni uvoznik videa,
napredno komponento za predvajanje videa, interaktivni emulator mobilnih naprav ter Se
vrsto drugih novosti ter izboljSav.

Hkrati je izSla tudi razli¢ica Macromedia Flash Basic 8, namenjena novim uporabnikom, ki
zelijo uporabljati le osnove risanja, animacije in interaktivnosti. Ta razli¢ica je omejena, zato

ji manjka doloc¢ena podpora za video in napredne graficne ter animacijske ucinke.

Adobe Flash CS3 Professional (2007) - Flash CS3 je bila prva razli¢ica Flasha izdana pod
blagovno znamko Adobe. CS3 omogoca pretvorbo celotnih aplikacij v AS, vsebuje polno
podporo AS 3.0, izboljsano integracijo z ostalimi programi Adobe ter posodobljeno risanje

vektorjev.

Adobe Flash CS4 Professional (2008) - vsebuje inverzno kinematiko (Bomnes), osnovno
manipulacijo 3D-objektov, animacijo na osnovi objektov, nov pogon za tekst in dodatne

siritve k AS 3.0. Dodana so bila tudi nova orodja za uporabo pri ustvarjanju animacij.

Adobe Flash CS5 Professional (2010) - vsebuje podporo za zalozniStvo aplikacij za iPhone.
Med drugimi novostmi je tu nov pogon za delo s tekstom, dodatne izboljSave k inverzni

kinematiki ter nov zavihek koscki kode.

16

2.2 ActionScript
AS je skriptni programski jezik, ki se v glavnem uporablja za razvoj spletnih strani in
programske opreme za platformo Adobe Flash Player. V originalu ga je razvijalo podjetje

Macromedia, a si ga zdaj lasti podjetje Adobe (ki je pridobilo podjetje Macromedia v letu
2005).

ActionScript 1.0

Zacetna inacica jezika AS je bila nacrtovana za Macromedia Flash in je bila zelo omejena, saj
se je uporabljala za vodenje preprostih 2D-vektorskih animacij. Posodobitve so v kasnejsih
razli¢icah omogocile izdelavo spletnih iger ter bogatih spletnih aplikacij s pretakajocim se

videom in zvokom.

ActionScript 2.0

Flash MX 2004 je prinesel skriptni programski jezik AS 2.0, ki je bil bolje prilagojen razvoju
aplikacij v Flashu. Velikokrat poskusamo nekaj animirati na roko, a se izkaze, da je to v
resnici laze sprogramirati z uporabo AS-a. Tak nacin pri urejanju vecino ¢asa nudi tudi vecjo

fleksibilnost.

ActionScript 3.0

Leta 2006 je s prihodom platforme Flash Player 9 alpha izSla tudi nova inacica skriptnega
programskega jezika AS. AS 3.0 je objektno usmerjen programski jezik, ki ponuja precej
vecji nadzor in ponovno rabo kode, s ¢imer se da ustvariti zapletene Flash aplikacije. V AS-u

3.0 se koda izvrsi tudi do desetkrat hitreje kot v prej$njih razli¢icah.

Vec¢ o AS-u in njegovem delovanju se da izvedeti na:

http://livedocs.adobe.com/flash/9.0/main/flash_as2 learning.pdf, dne 15. 12. 2010.

17

http://livedocs.adobe.com/flash/9.0/main/flash_as2_learning.pdf

2.3 Orodja

V tem poglavju so omenjena in opisana samo tista orodja, ki sem jih uporabil pri izdelavi

kroZisca.

Casovna linija (Timeline)
Flash se veliko uporablja za ustvarjanje animacij, zato ni ¢udno, da imamo moznost premika
skozi Cas. Gre za dodatno dimenzijo, na katero je treba misliti ob ustvarjanju projekta, in

casovna linija je orodje, ki nam jo pomaga vizualizirati.

TIMELIME

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
a =X
&l MoveController{a)
ql Sound{a)
@l Buttcn(a)
v & Ozadje
Wl PesecTocke(a)
al Grm{a)
Al & o f moWw L A0 00s [9]] |

PRERD. - BB
EEEEEOE DO

Slika 2: Casovna linija (Timeline)

Vir: Lasten

Orodja (Tools)

Na tem mestu se nahajajo orodja, ki jih potrebujemo za delo z grafiko.

B P ¢ TNOZ2 L& L0 F 2 0Q PR>ws | [@
Slika 3: Orodja (Tools)

Vir: Lasten

Napake prevajalnika (Compiler Errors)
Tukaj nam Flash javi, kje v kodi so se pojavile napake. Te napake so najveckrat rezultat
povrsnosti pri pisanju kode, velikokrat pa nam tudi sporocajo, da stvari, ki smo si jih

zamislili, enostavno ne morejo tako delovati.

COMPILER ERRORS - 3 REPORTED |

Location Description Source

Scene=5Scene 1, lyer=Scrip... The class or interface "Mumbr’ could not be loaded. var rozeOn:Mumbr = 1;// Grafik...
Scene=Scene 1, layer=5Scrip... '] or ', expected var placelist: Array = [[0, 0, O, ...
Scene=5cene 1, hyer=5Scrip... ') expected while (i carLimitall)

Total ActionScript Errors: 3, Reported Errors: 3 Go to Source

Slika 4: Napake prevajalnika (Compiler Errors)

Vir: Lasten

18

Lastnosti (Properties)

V tem oknu lahko upravljamo z lastnostmi

oznacenih objektov.

-‘U' POSITION AND SIZE

X 256.00

= w2 51200

[s COLOR EFFECT
[> DISPLAY

[s TRACKING

[> FILTERS

o |
|sliderbutton | @
’E | Button | =]
Instance of: Button3 |W

Y 182.00

H: 38400

Slika 5: Lastnosti (Properties)

Vir: Lasten

Barva (Color)

Vsa izbira barv in njihovo meSanje se

dogaja tukaj. Obroba (Stroke) in polnilo

(Fill) imata loCene nastavitve.

COLOR
oW e
& = D\rerﬂow:l i -
. a; [] Linear RGB
R: 0 |
Go |7 I
B0 | p
Alpha: 100% [+| = #000000
I
& a

Slika 7: Barva (Color)

Vir: Lasten

19

Knjiznica (Library)
V knjiznico se shranjujejo ustvarjeni

simboli.

LIBRARY

[KroZiée27_cs4

B |

143 items fs]

Nama a | Type E
» B _Other Folder =
3 B About - Menu Folder ||
v EZ-LZ Car Folder
» B Arrow Folder
Blinker Movie Clip
Card Mavie Clip
Carda Movie Clip
CarMask Mavie Clip |»
Al 6 Ge] I L4

Slika 6: Knjiznica (Library)

Vir: Lasten

Odtenki (Swatches)
To so ze obstojeCe meSanice barv, kjer

lahko ustvarimo tudi lastne odtenke.

SWATCHES

Slika 8: Odtenki (Swatches)
Vir: Lasten

Akcije (Actions)

To je mesto, kjer piSemo kodo za AS. Za boljSo preglednost se napisan tekst obarva glede na

pomen.
ACTIONS - FRAME
|Actionscript 1.0 & 2.0 = P GwEEREITEY OO M " Script Assist
] 180 FESCI
= Current Selection - 181
[B Seript ¢ Frame 1 182 Zpostan glawvne spremenliivike za delovaniz pedce
= % scene 1 = 183 war pesecTimer:Humber = 0;
______ E Script : Frame 1 184 war pesecTimerlimit:Numkber = 40;//V n
% MoveContral = 185 war pesecCount:MHumkber = 0;
----- & oweController -
- 186 war pesecSpeed:Number = 2;
""" 53 Soundd, <sound0> 187 war pesecLimitAll:Mumkber = 30;/, 3 oZni.
""" &% Buttong 188 war pesecDivide:Number = 150 / pesecLimitAll;/ cunica za pravilno nastavit
----- &5 Buttons 188 war pesecPlace:frray = [[O, O, O, O], [O, O, O, O1, [O, O, O, O, IO, O, O,
..... %5 Buttond 150 war pesecPlaceCount:&rray = [[O, O, O, O], [O, O, O, O}, [O, O, O, O], [O, O
..... Eﬂ Buttona }fi war pesecSensor:Number = 0;//Prikaz pesZcevih pogledov (za debug
..... &% Buttond < I n
..... ¥ Buttons o] script:1 |4
..... M Rittana T || Line 13 of 1067, Col 30

@

Izpis (Output)

Slika 9: Akcije (Actions)

Vir: Lasten

S pomocjo funkcije trace() lahko na preprost na¢in preverimo, kaj se dogaja v nasi kodi.

Pri¢akovane informacije se zapisejo v tem oknu.

OUTPUT

carlList
carList

carList
carList
carlList

carList:

:6,10,11,12,15,19,20,21,24,
:6,10,11,12,15,19,20,21,24,
6,10,11,12,15,13,20,21,24, 2
16,10, empty, empty,15,19,20,21
:72,empty, 65,66,15,19,20,21,24

30,32,36,37,38,41,45,46,47 ,empty,empty, empty, empty, empty
30,32,36,37,38,41,45,46,47 ,,enpty, empty, empty, enpty, empty
30,32,36,37,38,41,45,46,47,54,56,57,, empty,empty
28,29,30,32,36,37,38,41,45,46,47,54,56,57,63,enpty

23
29
29
24
,28,29,30,32,36,37,38,41,45,46,47,54,56,57,63,67

r
r
r
’
a

:72,74,65,66,79,80,20,21,empty,28,29,30,32,36,37,38,41,45,46,47,54,56,57,63,67

|L.m

1

Slika 10: Izpis (Output)

Vir: Lasten

Informacije (Info)

Poravnava (Align)
Priro¢no orodje za enostavno razporeditev

oznacenih objektov glede na druge objekte.

Ko potrebujemo natan¢nost pri delu s

postavitvijo in velikostjo objekta, nam te

ALIGN

informacije pridejo zelo prav.

Align:

E & & @ 8 5o |

Distribute: stage:

=2 = b oggod | I INFO

Match size: Space: W X

S 0T 8= =3 db = @
Slika 11: Poravnava (A4lign) P + % 100

B - i 100
Vir: Lasten A

Slika 12: Informacije (Info)

Vir: Lasten

20

2.4 Objekti

Vektorje, ki jih nariSemo v Flashu, lahko pretvorimo v objekte. Ti nam nudijo naprednejSe
funkcije urejanja in animacije. Teh objektov je ve€ vrst, in Ceprav se med seboj razlikujejo, so

nekatere lastnosti, ki jih imajo, enake. Uporabnej$e med njimi so:

- Polozaj (Position) je izjemno uporabna lastnost, Se posebej ¢e zelimo biti pri
postavitvi objektov karseda natancni. Nastavljamo lahko vrednosti za obe osi (x, y) in
to v slikovnih pikah (pixels).

- Sirina in vi§ina (Width and Height) objekta se prav tako nastavljata v slikovnih pikah.

- Rotacija (Rotation) je izrazena v stopinjah. Z njeno pomocjo lahko objekt vrtimo

okoli svoje osi oziroma nastavljene tocke.

2.4.1 Risalni objekt (Drawing object)
Flashev risalni model navadno deluje na principu spojitve — vsaka nova ¢rta, ki jo nariSemo,
se spoji s prejSnjo in skupaj postaneta en graficni element. Risalni objekt je alternativa, ki

zagotovi, da je vsaka nova poteza risanja svoj lasten objekt.

2.4.2 Grafic¢ni simboli (Graphic symbols)

Grafi¢ni simbol je t. 1. zabojnik, v katerega lahko vstavimo grafiko, sliko ali celo animacijo,
saj vsak od teh objektov do neke mere poseduje svojo Casovno linijo. Najvecja prednost
simbola je dejstvo, da ga lahko uporabimo ponovno na ve¢ koncih naSe animacije. Prirocnost
se tako pokaze v tem, da nam potem, ko zelimo narediti spremembe, ni treba spremeniti
vsakega simbola posebej, temve¢ naredimo spremembe samo v enem in avtomatsko se
pokazejo na vseh drugih. Vsak od teh objektov poseduje svojo Casovno linijo, ki pa od

simbola do simbola deluje drugace.

V Flashu lahko ustvarimo tri vrste grafi¢nih simbolov, od katerih ima vsak svoje prednosti.

To so Graphic, MovieClip (v nadaljevanju MC) in Button.

Graphic je edini simbol, ki mu ne moramo dati imena, saj po njem ni potrebe. Graphic za
delovanje namre€ ne koristi skriptnega jezika AS, tako da mu ne moremo spreminjati lastnosti
s pomo&jo kode. Casovna linija simbola Graphic je enaka kot glavna Gasovna linija
dokumenta z eno pomembno spremembo. Ce se odlo¢imo na glavni asovni liniji ustaviti
animacijo, se bo ustavila tudi animacija vseh nasih objektov Graphic. Ce tega ne Zelimo,

lahko uporabimo MC, katerega animacija se privzeto predvaja v nedogled, saj se ponavlja.

21

Ceprav kot reéeno sam Graphic ne podpira AS, ga pa lahko vnesemo na njegovo asovno

linijo, kar je dobro vedeti.

MovieClip je med simboli tisti, ki ima najve¢jo funkcionalnost. Tako kot Graphic tudi MC
poseduje sebi lastno ¢asovno linijo, ki pa se privzeto predvaja znova in znova, tudi ¢e nam
glavna Casovna linija miruje. Ker je popolnoma integriran v AS, lahko s pomoc¢jo kode z njim
pocnemo stvari, ki jim z ro€no animacijo ne bi bili kos. Pomembni dejavnik pri njegovi
ucinkovitosti je tako tudi moznost interakcije oziroma vplivanja na njegovo delovanje v
realnem Casu. Na tak nacin lahko naredimo dinamic¢ne in vedno znova spreminjajoce se
vsebine, ki omogocijo vkljucitev samega uporabnika. Dolocenih skriptnih ukazov, ki jih
poseduje Button, MC ne poseduje, toda z malo razmisljanja se dajo doseci enaki, ¢e ne boljsi

rezultati.

Button ima ¢asovno linijo, ki je popolnoma drugacna od Casovne linije v zgoraj omenjenih
simbolih in to je pravzaprav njegova prednost. Njegova ¢asovna linija ima namre¢ samo Stiri
mesta, kar ga naredi izredno preprostega za uporabo. Kot simbol lahko sprejema ukaze AS-a,

toda ne moramo jih vpisati neposredno na njegovo ¢asovno linijo.

TIMELINE |

ver Down Hit

(=1

s an|l »
al X and .lolt]

al o 3@ { @m B 300fps 005

Slika 13: Nenavadna ¢asovna linija simbola Button

Vir: Lasten

22

2.5 Nacdini animacije

Okvir ob okvirju (Frame by frame)

To je nacin, kjer vsako sliko animacije izriSemo ro¢no, tako kot klasicne Disneyeve risanke.
Ta nacin nudi najvecji nadzor nad animacijo, a hkrati vzame najve¢ ¢asa. Uporabimo lahko

tako Ciste vektorje kot graficne simbole.

Animacija oblike (Shape Tween)
Gre za nacin animacije, kjer vektorje skozi ¢as pretvorimo v druge vektorje. Tehnika je precej

podobna tehniki Morphing. S tem na¢inom ne moremo animirati grafinih simbolov, temvec

T e

Slika 14: Prikaz pretvorbe vektorja s pomocjo Shape Tween

le Ciste vektorje.

Vir: Lasten

Klasi¢na animacija gibanja (Classic Tween)
To je nacin animacije, pri katerem z malo dela dosezemo veliko. Deluje po principu klju¢nih
slik, ki jih postavimo in animiramo ro¢no, nakar Flash vmesno animacijo ustvari sam. Z njim

lahko animiramo samo grafi¢ne simbole.

m o

Slika 15: Prikaz animacije Classic Tween

Vir: Lasten

Animacija gibanja (Motion Tween)

V primerjavi s Classic Tween nudi naprednejsi sistem animacije s krivuljami, ki dolocajo
hitrost in manipulacijo posameznih delov objekta, loceno od nastavitev na casovni liniji. Ima
pa v Casu pisanja Motion Tween eno nevsecnost. Ko z njim animiramo premikanje objekta, ga
ni mozno mehko ustaviti oziroma pospesiti, vendar lahko kot pri Classic Tween to storimo
neposredno na ¢asovni liniji. Tudi tukaj lahko animiramo samo grafi¢ne simbole.

23

MOTION EDITOR

Property | Walue | Ezs= | Keyframe | Graph
5 . m 15 T
Skew X [[No.Ease =] EE -—D._____________/r‘":"—___‘-‘—-—-—.-__g___,
)| — = | e P O [
——''__'_'_. e
Skew Y] [NoEase 1+ o b p— e EECEEPEEPEEERY
Scale X 100% €5 Y[No Ease S S B = e WUERIE P teitiey
T
B a [= T 11 [«] |

Slika 16: Motion Tween animiramo z orodjem Motion Editor

Vir: Lasten

Pot gibanja (Motion Guide)

Tukaj ne gre za nacin animacije, temve¢ za pripomocek, s katerim dolo¢imo pot animacije
objekta. Pot ustvarimo tako, da jo nariSemo z uporabo Flashevih risalnih sredstev. Uporabimo
lahko tako krivulje kot tudi vektorje, narisane s prosto roko. Objekt se te poti oprime in se po

njej vozi kot po tirnicah. Na tak nacin lahko ustvarimo privla¢nej$e animacije.

24

3 INTERAKTIVNO KROZISCE

Preden sem zacel delati v Flashu, sem moral najprej narediti nacrt. Ta nacrt je vkljuceval
splosne cilje, skice posameznih delov projekta in zapis drugih pomembnih odlocitev, ki se

skozi ustvarjanje ne bi spreminjale.

3.1 Temelji

Flash dokument vsebuje pomembne lastnosti, ki se skozi nadaljnje ustvarjanje naj ne bi ve¢
spreminjale. S tem, ko jih dorecem, ustvarim temelje, s katerimi se Ze na zacetku obvarujem
pred morebitnimi slabimi odlo¢itvami, ki bi me lahko kasneje ovirale pri izdelavi projekta. Te
lastnosti so na primer: ali za grafiko uporabiti vektorje ali bitne slike, kaksni bosta resolucija

in hitrost predvajanja animacije itd.

3.1.1 Vektorske oblike ali bitne slike
Bitne slike in vektorske oblike sta glavni vrsti grafike v programu Adobe Flash. Bitna slika
(Bitmap) opredeljuje sliko kot mreza barvnih tock in shrani barvo za vsako slikovno piko na

sliki. Vektorska oblika je matemati¢ni opis geometrijske oblike.

Bitne slike lahko vsebujejo veliko podrobnosti, vendar se ob njihovi povefavi opazijo
nazobcani robovi. Vektorji, ¢eprav obicajno vkljucujejo manj podrobnosti kot bitne slike, te

tezave ne poznajo.

Slika 17: Povecéeva vektorske oblike Slika 18: Povecava bitne slike

Vir: Lasten Vir: Lasten
Izbral sem vektorje, saj sem si Zelel Cisto in ostro grafiko, ne glede na resolucijo. Slabost tega

pristopa je, da je treba paziti na zapletenost vektorskih oblik, saj njih izris zahteva vecjo

koli¢ino procesorske moci kot pa izris bitnih slik.

25

3.1.2 Dimentije v slikovnih pikah
Flash omogoca prikaz animacije v kakr$ni koli resoluciji ne glede na izvorno dimenzijo. Sam
sem se odlocil za resolucijo 1024 x 768 slikovnih pik, saj je pri vecji resoluciji prikaz grafike

ostrejsi. Za izris vi§je resolucije prav tako potrebujemo ve¢ procesorske moci.

3.1.3 Hitrost predvajanja animacije ali Stevilo slik na sekundo

V kolikor delamo z animacijo, je to verjetno najpomembnejSa odlocitev, saj diktira njeno
dolzino. Ce Zelimo, da animacija traja eno sekundo, zanjo pri 30 fps potrebujemo 30
posameznih sli¢ic (frames). Ce bi v tem primeru animirali 60 sli¢ic, bi dobili dve sekundi
animacije. Ce pa se odlo¢imo spremeniti hitrost predvajanja animacije s 30 fps na 60 fps,
ponovno dobimo eno sekundo animacije. Tak$na sprememba lahko razdre delovanje projekta,

zato moramo to odlocitev doreci ze na zacetku projekta.

PROPERTIES
F Diocument
KrnFi&fe?7_r=d

=7 PUBLISH

Player: Flash Player 10

Script: ActionScript 2.0
Class:
Profile: Default | Edit... |

AIR Settings
= PROPERTIES

FPS: 30,00

Size: 1074 % 768 px | Edit... |

Stage: I:l

Slika 19: Glavne nastavitve dokumenta

Vir: Lasten

Z namenom, da sem priSel do dobre odlocitve, sem moral vzeti v zakup gladkost animacije
glede na osvezitev zaslona. Vec¢ina LCD-monitorjev privzeto osvezuje oziroma izrisuje sliko s
frekvenco 60 hz. Za gladek prikaz animacije brez cukanja je potrebno imeti takSno hitrost
izrisa, da dobimo celo $tevilo, &e z njo delimo 60 (zaradi 60 hz). Stevila, ki so tako primerna
za monitorje s frekvenco 60 hz, so 60, 30, 20, 15, 12, 10, 5, 3, 2, 1. V primeru 30 fps (60/30 =
2) je animacija prikazana vsak drugi izris slike na monitorju. Poskusil sem s Stevili manjSimi
od 30, vendar se mi potem animacija ni zdela dovolj lepa oziroma gladka. Poskusil sem tudi
60 fps, kar je najbolj gladko, saj se animacija osvezi vsak izris slike na monitorju, vendar bi

glede na 30 fps tako moral animirati preveliko koli¢ino sli¢ic. Poleg omenjenega pa sem

26

gledal Se na koli¢ino podrobnosti, ki jih lahko racunalnik izriSe v sekundi. Enaka koli¢ina
podrobnosti na ekranu namre¢ pri 60 fps za gladek izris zahteva mocnej$i raCunalnik kot pri
30 fps, in ker je risanje zapletenih vektorskih oblik procesorsko precej pozresno, sem zato

moral gledati tudi na to. Tako sem se odlo€il za hitrost 30 fps.

3.1.4 ActionScript
V casu ustvarjanja projekta z AS 3.0 Se nisem bil seznanjen, zato sem se raje odlo¢il uporabiti
razli¢ico 2.0, s katero sem takrat Ze imel nekaj izkuSenj. Namre¢, obtic¢ati v luknji neznanja

brez moznosti nadaljevanja je bila moja zadnja Zelja.

3.1.5 Pravila voZnje v kroZis¢u

Ceprav smo vozniki s pravili v prometu dobro seznanjeni, sem za vsak sluaj preveril
zakonitosti voznje v krozi$¢u. Za tiste, ki teh zakonitosti ne poznajo oziroma so jih pozabili,
predlagam branje Zakona o pravilih cestnega prometa, natancneje, ¢lena o voznji v kroziscu:
http://www.mzp.gov.si/fileadmin/mzp.gov.si/pageuploads/DPR/Predlogi predpisov. DPR/10
01 20-Zakon o pravilih cestnega prometa.pdf, dne 15. 12. 2010.

27

http://www.mzp.gov.si/fileadmin/mzp.gov.si/pageuploads/DPR/Predlogi_predpisov_DPR/10_01_20-Zakon_o_pravilih_cestnega_prometa.pdf
http://www.mzp.gov.si/fileadmin/mzp.gov.si/pageuploads/DPR/Predlogi_predpisov_DPR/10_01_20-Zakon_o_pravilih_cestnega_prometa.pdf

3.2 KroZi§ce

Premisljeval sem o tem, kaksno naj bo krozisce, ki ga bom upodobil in skozi katerega se bo
odvijal promet. Spraseval sem se, koliko krakov naj ima krozis¢e in ali naj bo cesta
enopasovna ali dvopasovna. Po razmisleku sem izbral krozisc¢e s Stirimi kraki, od katerih ima
vsak dva vozna pasova. S Stirimi kraki je krozis¢e lepo simetri¢no, iz ¢esar sem sklepal, da mi
bo olajSalo ne samo risanje krozi$¢a, temvec tudi ustvarjanje voznje avtomobilov skozen;.
Dva vozna pasova pa sem izbral zaradi teznje po zanimivem dogajanju. Izmed teh voznih

pasov bi namrec¢ vsak potreboval malce drugacno logiko.

3.2.1 Skica
Ze od zaletka sem imel v mislih, da bo kroZi§¢e vidno iz pti¢je perspektive, saj se mi je ta

zorni kot na dogajanje zdel najbolj pregleden.

| he?

‘ cestA 1 [
@ MCRSEIT 51 '
E@@/A\I"l’o N/

20) «——— Geo

PSR
(AR
1 ELEC]

—

® §T\ (e’

o (B / i T /

{ [| “ ‘I./ LR e,
A NV N r Blc

/g i XV [RAWDN | [ENABLED

| |
l ‘\ <—¢esiA 0)
| s

@\

= VWAT i
} &
| GearHiC "

B iliial B '®

Slika 20: Podrobnejsa skica krozisca

Vir: Lasten

Za zaCetek sem potreboval le grob tloris krozis¢a, zato se pri risanju skice nisem
obremenjeval s podrobnostmi. Ker sem zelel, da je skica jasna, sem moral ob vsaki

spremembi krozis¢e skicirati znova, zato sem v tem trenutku skusal upodobiti le najnujnejse

28

elemente. Vkljucil sem tudi nekatere predvidene interaktivne elemente, kot so gumbi in

meniji.

3.2.2 Videz kroZis¢a
Pri ustvarjanju grafike sem se trudil, da bi bil videz krozis¢a ¢im bolj jasen. Z vektorji sem
oblikoval ¢iste poteze, pri katerih sem si pomagal z naceli simetrije. Videza nisem dokoncal

takoj, temvec sem ga neprestano izpopolnjeval.

V prvi izvedbi (slika 21a) sem upodobil cestis¢e in rastlinje ter ustvaril temeljno grafi¢no
vzdusje. Kasneje (slika 21b) sem dodal prehod za peSce ter zametke kolesarske poti. Zgladil
sem tudi ostre robove med krozis€em in cesto, ki pelje vanj. Naslednja razli€ica (slika 21c) je
imela dodan ploc¢nik ter kolesarsko pot. Za konec (slika 21¢) so mi poleg dodatnega rastlinja
ostale samo Se malenkosti v obliki prometnih znakov in ¢rt, ki avtomobile na desnem pasu
prisilijo, da obvezno zapustijo krozis¢e. Prav tako sem bil proti koncu prepri¢an, da bom

vkljucil macko, zato sem ji na sredi krozi$¢a ustvaril brlog.

SR

[T

Slika 21: Oblikovanje kroZiSca skozi ¢as

Vir: Lasten
29

Zaradi natan¢ne izdelave grafike sem dozivel Stevilne nevsecnosti s postavitvijo elementov.
Kaj hitro se mi je zgodilo, da elementi ve¢ niso bili pravokotni eden na drugega, s ¢imer sem
ogrozil simetri¢nost izdelka. Ker je v samem kroziScu prevladovala simetrija, sem si dal toliko

ve¢ duska pri asimetri¢ni postavitvi rastlinja.

Roze Letalo

Pri tem so izstopale roze, ki so ob vsakem Ob tej priliki lahko omenim Se letalo, ki je
zagonu aplikacije dobile drugo barvo. v resnici samo senca, ki vsake toliko ¢asa
Dejansko posedujejo pet razlicnih preleti ekran. Njegovo nastajanje je do
preoblek, ki se izbirajo naklju¢no. Poleg neke mere nakljuc¢no.

omenjenega sem jih tudi animiral, in sicer

tako, da so videti kot da veselo skacejo.

Slika 22: Razli¢ne barve roz Slika 23: Senca letala

Vir: Lasten Vir: Lasten

3.2.3 Odvijanje v kroZi§cu

Ali bi se dalo krozis¢e narediti kot eno dolgo animacijo? Seveda, toda slej ko prej bi se zacela
ponavljati in ko bi v isti minuti Ze tretjic videli popolnoma enako kolono avtomobilov, ki
ponovno uberejo iste izhode, to enostavno ne bi bilo ve¢ zanimivo. S stali§¢a nacrtovanja bi
bil ta nacin relativno enostaven, le nekaj zbode v o¢i — voznjo posameznega avtomobila in
pesca bi bilo treba animirati na roko, kar je v tem primeru izredno neucinkovito, saj je
krozis¢e zanimivo prav z velikim §tevilom avtomobilov. Poleg tega pa je animirati veliko

Stevilo premikajocih se objektov rocno herkulski podvig.

Nasprotje je dinami¢en promet, kjer bi bil nastanek avtomobilov in peScev povsem nakljucen.
Ustvarjal jih torej ne bi ro¢no, temve¢ bi obstajal sistem, ki bi jih ustvarjal na dolocene
intervale. Animacija avtomobilov bi sicer bila pripravljena vnaprej, toda avtomobil bi vsakic
ubral drug pristop skozi kroziS¢e. To daje dobre temelje za vkljucitev interakcije, saj nismo

vezani na vedno isto animirano voznjo vseh avtomobilov.

30

p .
4_____""'\\ §::§~22'f::'::'."l':'l".'ﬂfﬂ...) ‘_____""'\\ .°°“-'m >
v v
Slika 24: Stati¢en promet je vsaki¢ enak
Vir: Lasten
@ 1
....u \";
e e s e, -\ .-.:\Nﬁ:‘:: tl: ::':2':':2':!-3“ ¥ mm|lll|r|||ru|||||u||u|ml““‘“‘\‘ | .
\ ‘\\\\,\\“ > /" E3
\ /
£\ /
v v

Slika 25: Dinami¢en promet je vsaki¢ drugacen

Vir: Lasten

Za izvedbo takSnega pristopa potrebujemo vecji premislek kot za prvo reSitev, kajti
naklju¢nost v logiki lahko povzroci veliko glavobolov, saj se stvari ne zgodijo vedno enako.

Pristop, ki sem ga izbral sam, je dinamicen pristop, kar pomeni, da sem si moral izmisliti

logiko, ki bi ga vodila.

3.2.4 Logika

Pri programiranju logike nekako ni najboljSih reSitev, Se posebej ¢e se programiranja Sele
uc¢imo. Vsak problem se da namre¢ reSiti na vrsto nacinov in ko se nam zdi, da smo nasli
najboljSega, se ob kasnejSem vnovicnem pregledu kode zavemo, da bi se to dalo narediti Se
bolje. Temu postopku tako imenovanega preciS¢evanja kode nikdar ni konca, saj znova in
znova najdemo dele, kjer bi se dalo kaj izboljsati. Seveda to ne pomeni, da to, kar naredimo,

ni ucinkovito. Kar Zelim povedati, je, da si moramo sami postavljati meje, tako da nam

dolocen del, ki mogoce sploh ni tako pomemben, ne odvzame prevelike koli¢ine Casa, ki bi ga

lahko uporabili za kaj drugega.
31

Nacértovanje logike in raznih algoritmov mi je bilo Ze od nekdaj zanimivo in ker sem s
programiranjem Ze imel nekaj izkuSenj, sem vedel, da ¢e skuSamo nekaj zapletenega spraviti
v kodo, se je tega najbolje lotiti s poenostavitvijo. Na tak nacin iz osnove izluS¢imo elemente,
ki so kljuéni za delovanje nase logike. V primeru krozi$¢a sem skusal nekaj, kar je analogno,
ro¢no prenesti v digitalno obliko. Pri tem sem stremel k jasnosti, preprostosti in u¢inkovitosti.
Krozis¢e sem si tako razdelil na mesta, kjer bi nastajali avtomobili. Ta mesta so bila Stevila,
saj se mi je to zdelo najucinkovitejSe, ceprav mogoce malce nepregledno (slika 26). Torej,

avtomobili bodo nastajali sproti, in to naklju¢no.

O
O O
O

Slika 26: Kraki krozisc¢a (0,1,2,3)

Vir: Lasten

32

3.3 Avtomobil

Preden govorimo o naklju¢nem nastanku avtomobilov, moramo najprej vedeti tudi nekaj o

samih avtomobilih, in sicer, kako bo delovala njihova logika.

3.3.1 Nacrtovanje logike

V programiranju obstaja praksa — ponavljajo¢e se kode ne piSemo veckrat, vendar jo
poskusamo napisati tako, da se jo da uporabiti znova in znova. UpoStevajoc ta pristop in Zeljo,
da bi v kratkem ¢asu ustvaril kar najve¢, sem se odlocCil za samo en model avtomobila. Vsi
avtomobili, ne glede na to iz katere smeri pridejo v krozisce, se v osnovi drzijo enakih pravil
in imajo v zvezi s prometom enako funkcionalnost, zato bi bilo lepo imeti eno univerzalno
vozilo, ki bi ga lahko pomnozil in tako dobil celo armado vozil, od katerih bi vsako peljalo po

svoje. Dobiti idejo je seveda preprosto, tezji del je realizacija.

Za zacetek se mi je zdelo najbolje poenostaviti voznjo avtomobila skozi krozisce:

1. Avto se pripelje in se ustavi pred kroziSc¢em.

2. Na tej tocki preveri, ali se lahko vkljuéi v krozig¢e. Ce se ne more vkljugiti, podaka,
dokler nima proste poti, nakar zapelje v krozisce.

3. Avto vozi skozi krozis€e, dokler ne najde zelenega izhoda.

4. Ko ga najde, mu preostane le, da odpelje iz kroZzisca.

Za nas je zgornji tekst razumljiv, toda ne za Flash. To, kar sem napisal, je treba pretvoriti v

nekaj, kar je bolj podobno necemu, kar se da narediti v Flashu, s ¢imer si precej olajSamo

delo:

1. Avto nastane izven vidnega obmocja ekrana — avto moramo najprej ustvariti.

2. Vozilo za¢ne voziti in vozi, dokler se ne ustavi pred krozis¢em. To se da doseci z
animacijo.

3. Na tej tocki avto preveri, ali se lahko vklju¢i v krozis¢e. Tukaj bo moral nekako
izvedeti, ali je v kroziscu kak avto, ki mu onemogoca vkljucevanje. V kolikor ga ni,
nadaljuje z animacijo vklju¢evanja, v drugem primeru nadaljuje s ponovnim
preverjanjem.

4. Animacija vkljucevanja.

5. Avto vozi skozi krozisCe. V tej animaciji obstajajo Stiri tocke, kjer ima moznost ubrati

izhod. Ko doseze izbrano toCko, se sprozi izbrana animacija voznje iz krozis¢a. Ce

avto ne izbere izhoda, ponovi voznjo v kroziscu.
33

6. Izbrana animacija voznje iz krozisca, kjer avto odpelje izven vidnega obmocja ekrana,

kjer se tudi izbrisSe.

To je ze bolje, saj se da videti, kako bi stvar lahko delovala v Flashu. Tak$no realizacijo
avtomobila se da doseci le z uporabo MC-a, saj je izmed grafi¢nih simbolov ta edini, ki nudi

vse potrebne funkcije.

3.3.2 Videz avtomobila

Najprej sem ustvaril podolgovat lik v obliki pravokotnika, ki sem ga razrezal na kup
navpicnih pravokotnikov (slika 27a). Na tak na¢in sem avto razdelil na dele, ki sem jih nato
lahko oblikoval brez nevSecnosti (slika 27b). Ustvaril sem karoserijo, ki mi je bila vSe¢na, in

nadaljeval z oblikovanjem stekel (slika 27c).

a b C ¢
Slika 27: Razvoj videza avtomobila

Vir: Lasten

Kot je razvidno iz slike, sem uporabil kar nekaj barvnih prelivov, za katere izris Flash porabi
veliko procesorske moci (slika 27¢). Vseeno se mi je videz avtomobila tako prikupil, da sem
se odlocil, da v tem primeru trenutno ne bom iskal kompromisov glede zmanjSanja
zahtevnosti graficnega prikaza, ampak bom raje pocakal na kon¢no fazo projekta, saj bo

Vv v

komaj takrat jasno, kolikSno optimizacijo ta del krozis¢a resni¢no potrebuje.

3.3.3 Razli¢ne preobleke

Za vecjo razgibanost sem avtu ustvaril ve¢ videzov, natan¢neje devet. Zamislil sem si tudi
dodatne vzorce, ki jih avto lahko uporabi pri dolocenih preoblekah. Ob vsakem nastanku si
avto izbere eno izmed preoblek, in Ce ta podpira vzorce, si v€asih izbere tudi enega izmed

njih.

Nacin, s katerim sem to dosegel, je, da sem v glavni MC avtomobila namesto koncne risbe
dodal MC CarSkin0, ki je imel na vsakem frame-u drugo preobleko, izmed teh pa je za
dolocene (1, 2, 4, 6, 8 in 9) vseboval Se dodaten MC z vzorci. Ta CarSkin0 je bil torej grafi¢ni

videz avtomobila.
34

BECEBOECEE
0o 8 18

Slika 28: Vse preobleke in dodatni vzorci

Vir: Lasten

Pri lepoti¢enju avtomobilov se nisem ustavil le pri preoblekah. Dodal sem Se smerokaze, ki se
vklopijo v trenutku, ko avto naleti na izbran izhod iz krozis¢a. Kar se ti¢e videza, so ti do
zadnje razli¢ice doziveli vrsto sprememb. Glavni razlog za to je bilo dejstvo, da se enostavno
niso dovolj dobro videli. VSe¢ mi je, da je koncna, tj. najboljSa inacica, hkrati tudi najbolje
optimizirana. Cim sem napisal $e kodo za delovanje omenjenega, je promet postal bolj pisan
in bolj vSecen za oko. Z videzom avtomobila sem zelo zadovoljen, saj ne glede na zgradbo iz

¢istih vektorjev daje bezen obcutek tridimenzionalnosti.

Slika 29: Razvoj smerokaza skozi ¢as od leve proti desni

Vir: Lasten
TIMELINE |
= @ 0
o HitMask - A |
Wl Window a o
Eubhka Maska @ |m|
I w DESIQH(E h .
B LeviBok @ |
' DesniBok . @ |:|
B kaluselua . a .
AR L IOR!
Slika 30: Drobovje MC-a CarSkin0
Vir: Lasten

35

3.3.4 Animacija

Zelel sem, da bi bila voZnja avtomobilov natanéna, in to brez odstopanj. Zaradi tega se mi je
zdelo najbolje narediti vso animacijo avtomobila vnaprej. Avto bi se dejansko obnasal kot
vlak. Peljal bi po »tirnicah« in na doloc¢enih to¢kah oziroma »postajah« bi imel izbiro, kaj

narediti. Te postaje bi bile klju¢ne tocke, kjer se sprozijo nadaljnje animacije.

2

0

Slika 31: »Tirnice«, po katerih je animiran avto

Vir: Lasten

Voznjo avtomobila sem skuSal animirati tako, da bi se odvijala ¢im bolj gladko, zato sem se
odlo¢il za uporabo nacina animacije Classic Tween. S pomocjo krivulj sem narisal poti

avtomobila in jih pretvoril v Motion Guide, nakar sem zacel z animacijo.

Flash pri animaciji z Motion Guide ne podpira vejitve poti, zato sem moral narisati ve¢
razli¢nih poti, ki so se dopolnjevale. 1zziv je bil narediti animacijo, ki deluje gladko in kjer se
ne obcuti, da je v resnici razdeljena na dele, ki so med seboj povezani. Temu sem namenil

precejSen del Casa, vendar se je izplacalo.

36

3.3.5 Nastanek avtomobilov na razliénih krakih

V tej tocki razvoja kroziS¢a sem imel univerzalen avtomobil in njegova celotna animacija
voznje je bila prilagojena zaéetku na kraku 0 (slika 32 — levo zgoraj). Ce bi ta avto postavili
na drugi zacetni krak, bi Se vedno zacel voziti navzgor, kar ni dobro, saj bi namesto tega
moral peljati proti krozi§¢u. Moral bi biti ne samo na pravi poziciji, temve¢ glede na zacetni

krak tudi pravilno obrnjen.

¥. e
Bt E@:

0 0

Slika 32: Razli¢ne rotacije avtomobila glede na krak nastanka

Vir: Lasten

To sem resil tako, da sem pravilni polozaj in rotacijo MC-a avtomobila za vsako zacetno
pozicijo krozis¢a (0—3) shranil vnapre;.
[s [} [}];

[506,506.5,516.2,514.5];
[386,392,391.3,385.3];

var carSpawnRot:Array
var carSpawnX:Array =
var carSpawnY:Array =

Do teh vrednosti sem se dokopal z ro¢nim postavljanjem avtomobila na sceno. Rotacija je

izrazena v stopinjah, osi X in y pa v slikovnih pikah z izvorom v levem zgornjem kotu

37

projekta. Ti podatki so dovolj, da lahko avto pravilno obrnemo ter ga umestimo v krozisce.
Poskrbeti sem moral le Se, da je avto ob svojem nastanku te shranjene podatke prebral in jih
uporabil kot lasten poloZzaj in rotacijo. Na tak nacin sem dosegel pravilno voznjo avtomobila,

ne glede na njegov zacetni poloZzaj.

3.3.6 Preverjanje tréenja (Collision Detection)

Ker sem izbral naklju¢ni nastanek avtomobilov, se med njihovo voznjo skozi krozis¢e zna
zgoditi, da se srecajo, kar lahko povzroci, da en avto dobesedno pelje ¢ez drugega. Tega si pri
pravilni voznji ne zelimo, zato bi bilo dobro na tocki, ko se avto ustavi pred krozis¢em (slika

33a), preveriti, ¢e mu kateri avto preprecuje vkljucevanje (slika 33b). Preveriti je torej bilo

2

treba trk med dvema objektoma.

C
- avto je zapeljal
3 b v krozisce 1
avto vozi skozi -\
krozisce

a
- avto ¢aka na prosto pot

0

Slika 33: Mesta za preverjanje (0,1,2,3)

Vir: Lasten

S tem trkom ne mislim na tréenje dveh avtomobilov, temve¢ na tréenje med avtomobilom in
delom krozisca, ki mora biti prazno, da se doloc¢en avto lahko vkljuci. Ob pogledu na krozisce

se pokazejo Stiri mesta, kjer bi bilo pametno preverjati prisotnost avtomobilov (slika 33).

38

Vsako mesto preverjanja je vezano na svoj krak, saj ni potrebe, da vsak avto, ki se vkljucuje,

preveri vse Stiri moznosti.

Za preverjanje trka dveh objektov obstaja v AS-u funkcija hitTest(), ki nam pove, ali sta
dva MC-a trcila. Seveda potrebujemo njuno ime, saj ju v AS-u drugace ne moremo najti. V
tem primeru bi en objekt bil mesto v kroziscu, kjer se preverja, drugi pa avtomobil. Da
najdemo, ali je mesto zasedeno, ga je treba preveriti za vse mozne avtomobile v kroziscu.
Najlazji nacin se mi je zdel slede¢. Vsako izmed teh Stirih mest bi bilo MC z unikatnim
imenom (piece(), piecel, piece2, piece3) in avtomobil, ki ¢aka na prosto pot, bi preverjal, ali
je vanj trcil kateri koli avto oziroma MC z imenom car. Vsi avtomobili, ki bi nastali, bi torej

imeli enako ime, saj jih je tako laZe preveriti vse.

Ceprav se je v teoriji slidalo delujote, se je v realnem poskusu izkazalo, da ni tako.
Avtomobili so peljali v krozis¢e ne gleda na to, ali je bilo mesto za preverjanje prazno ali
polno. Napravil sem naslednji poskus. Ustvaril sem okolje, kjer avtomobili nenehno vozijo
¢ez mesto krozisca, kjer se preverja njihova prisotnost. In najbolj zanimivo ter hkrati nadlezno
je bilo to, da je mesto zaznalo trk samo z avtomobilom, ki je nastal prvi, ne pa tudi z vsemi
ostalimi, ki so nastali kasneje. Na tem primeru sem spoznal, da ¢e v Flashu ustvarimo vec
objektov z enakim imenom (v tem primeru car), bo za AS viden samo tisti, ki je nastal prvi.
Zato sem moral najti novo resitev, kjer bi vsak avtomobil imel sebi lastno ime, ki mora biti

unikat.

3.3.7 Seznam avtomobilov

Ko s pomoc¢jo AS-a ustvarimo MC, se njegova globina zapiSe v Flashev seznam prikaznih
objektov. Gre za seznam globine, kjer vecje Stevilo pomeni, da je objekt prikazan blizje v
ospredju kot pa objekt z manjSim Stevilom. V tem seznamu je nemogoce, da bi dva objekta
imela isto Stevilo, zato sem se za ime avtomobilov odlo¢il uporabiti prav to Stevilo globine. S
tem, ko sem dobil edinstveno ime za posamezen avto, pa sem potreboval Se dodaten seznam,

kjer bi se ta imena hranila.

Seznam je dobra izbira prav zaradi dejstva, da lahko na ucinkovit na¢in potujemo skozenj in
tako nenehno preverjamo, ali se je objektu, katerega ime najdemo v seznamu, spremenila
kaksna lastnost. Ob nastanku posameznega avtomobila ta dobi sebi lastno ime iz Stevila

globine, ki se zapiSe v seznam. Medtem ko avto vozi, je na voljo za preverjanje. Ko se avto ob

39

koncu svoje poti odstrani, se iz seznama odstrani tudi ime. S tem, ko sem v logiko uvedel

sezname, sem ustvaril red.

Belezenje trkov med mesti preverjanja in vsemi avtomobili v seznamu je z uporabo najdenih
reSitev konc¢no delovalo. Spoznal sem tudi, da ni potrebe po nenehnem preverjanju
zasedenosti krozis€a. Preverjati jo je treba le, kadar se posamezen avtomobil Zeli vkljuciti v

krozisce. S tem zmanjSamo obremenitev racunalnika z nepotrebnimi ukazi.

/ Zanka - Zacetek _‘.

o . . - Avtomobil vozi 1zbrisi avtomobil in
~"Ali je seznam ™- Ustvari avtomobil in - o - -
< >=—NE-P»| . P dokler ne zapelje iz ' ga odstrani iz
~_ poln? > ga dodaj v seznam -
. S kroZisca seznama
DA

Slika 34: Zanka nastajanja in Zivljenjske dobe avtomobila
Vir: Lasten

3.3.8 Kolone

Kolone nastanejo, ko dolo¢en avto zasede pot drugim avtom, ki so za njim. Vzel sem si ¢as in
razmislil o tem, kako se avtomobili obnasajo v kolonah. Logika bi §la nekako takole — vsak
avtomobil preverja prostor pred seboj, in ¢e naleti na avto ali peSca, se mora ustaviti. Tu so se
pojavile tezave. Vsak avto bi moral to preverjati nenehno, ¢esar pa si nisem Zelel, saj se mi je
to glede uporabe ra¢unalniske moci zazdelo potratno. Toda hujSe je bilo spoznanje, da sem
morda naredil ve¢ Skode kot koristi, ko sem celotno voznjo avtomobila animiral vnaprej, kar
pomeni, da ga med voznjo ni mogoce kar tako ustaviti, saj bi moral vsak njegov postanek

predvideti in ga vnesti v animacijo.

Pri kolonah se postanki zgodijo kadar koli avtomobil naleti na oviro, kar zna biti kadar koli,
Se posebej s pesci, ki se odlocijo preckati cestisce, kot se jim zazdi. Kako torej animirati kaj
takega? Ce sem avtomobile ustvaril tako, da se obnasajo kot vlak, potem bi si jih moral tudi
predstavljati kot vlake. Pa vendar, Se noben vlak se ni ustavil peScu, ki mu je v hipu prekrizal
pot, saj enostavno niso tako nacrtovani. Vlaki se praviloma ustavijo le na postajah, kar me je
privedlo do spoznanja, da bi si mesta v koloni lahko predstavljal kot postaje. Kolono bi tako
razdelil na ve¢ mest, in ker bi ta mesta bila staticna, bi za voznjo po njih lahko brez tezav
ustvaril animacijo. Seveda gre za kompromis, saj avtomobili v kolonah ne vozijo vedno le z
mesta na mesto — v kolonah namre¢ ni vnaprej ozna¢enih mest. Velikokrat tudi drsijo, ne da

bi se ustavili, kar v tem primeru ne bi bilo mogoce.

40

Zacel sem razmisljati o nacinu, s katerim bi animiral vse moznosti voznje v koloni. Prisel sem
do spoznanja, da bi voznjo lahko razdelil na dele, ki bi jih nato sestavil kot neke vrste
sestavljanko in tako dobil celotno voznjo avtomobila. Na koncu vsakega »kosa« animacije bi
avtomobil preveril, kak$no je stanje zasedenosti mest pred njim, in glede na rezultat bi se
odlocil, katero animacijo izbrati za nadaljnjo pot. V kolikor bi bila vsa mesta zasedena, bi

pocakal, dokler se mesto pred njim ne izprazni.

Vsak del animacije voznje v koloni bi potekal z izbranega mesta na sosednjo mesto in bi bil

eden izmed Stirih razli¢nih vrst, ki so predstavljene na sliki 35:

a) Avto pelje s konstantno polno hitrostjo. Za tem delom lahko nadaljuje z a ali s ¢.
b) Avto pospesi do polne hitrosti. Za tem delom lahko nadaljuje z a ali s ¢.
c) Avto se popolnoma ustavi. Za tem delom lahko nadaljuje z b ali s €.

¢) Avto pospesi, nakar se takoj ustavi. Za tem delom lahko nadaljuje z b ali s €.

1 a konstantna polna hitrost

-

_——1 b avto pospesido polne hitrosti

=D D ¢ avtosepopolnoma ustavi

I :m LD\ & avto pospesi, na kar se takoj ustavi

prikaz
animacija iz mesta namesto hitrosti

Vse obstojece animacije

5 4 3 2 1 0
EpEp (= e = = = = =

L A A A

Slika 35: Sistem sestavljene animacije voznje v koloni

Vir: Lasten

Najprej nisem bil preprican glede dolzine kolone, a sem spoznal, da je komaj 6. mesto
(oznaceno s Stevilom 5) stalo dovolj izven vidnega obmocja ekrana, kjer je varno, da nastane

avto. Prikazal sem vse mozne dele animacije, ki so potrebni za pravilno delovanje kolone. Za
41

razumevanje je treba vedeti, da avto na mestu, oznaenim s Stevilom 5, za¢ne s polno
hitrostjo, na mestu 0 pa se popolnoma ustavi, saj tu doseze trenutek, ko preveri, ali se lahko
vkljuci v promet. Z uporabo te metode sem moral ustvariti le Stiri razli¢ne animacije, ki sem

jih nato enostavno skopiral za razli¢na mesta v koloni.

Slika 36 prikazuje vse mozne kombinacije animacije voznje, ki se jih da na ta na¢in doseci za

toliko mest kolone.

Najtezje pri tem je bilo programiranje

5 4 3 2 1 0
logike, ki upoSteva zgoraj opisane principe. G = & = = =D

Prav to mi je vzelo najve¢ Casa, saj se je | | I

pojavilo toliko stvari, na katere sem moral

biti pozoren. Zaradi moje povrSnosti pri

vodenju velike koli¢ine spremenljivk v

kodi sem imel tukaj kup teZav, katerih

razlog ni bil takoj ociten, zato sem veliko

Casa porabil z iskanjem napak. Ne glede na
natancnost, s katero delamo, se temu pri
programiranju ne moremo izogniti. Ostalo

je samo Se, da sem funkciji za nastanek

avtomobila dodal kodo, ki je v primeru, da

je kolona polna, poskrbela, da avto ni smel

/

avtomobili zaceli voziti eden preko Slika 36: Vse kombinacije voznje v koloni

nastati. S tem sem preprecil, da bi nastali

drugega, kar se je pred tem dogajalo. Vir: Lasten

Ko je kolona kon¢no delovala tako, kot sem si zamislil, sem bil navdusen, saj nekako nisem
pricakoval, da bo delovala tako dobro. Velik razlog za to je dejstvo, da med delom vidis le

nedelujoce delcke, ki jih moras povezati v delujoco celoto, tudi ¢e Se ne ves tocno, kako.

3.3.9 Poenostavijen prikaz logike

Slika 37 kot zanimivost prikazuje poenostavljeno razli¢ico logike, ki sem jo zasnoval za
pravilno delovanje kolon. Sprozi se vsako osvezitev aplikacije, kar je v tem primeru 30-krat
na sekundo. Poudariti moram, da gre tu za konc¢no razliico, zato je vanjo vnesena tudi

interakcija s pesci, o katerih bom govoril kasneje.

42

Zanka - Zaletek |«

e

mesto v koloni
4,3ali2?

zasedeno?

Jemesto-1
zasedeno?

Trenutno mesto v

DA koloni je mesto

mesto - 1 76

e mesto -2 ze
zasedeno?

Avto se bo ustavil

Zasedi mesto-1v

Zaigraj animacijo
5dod

Avto se ne bo ustavil

Zaigraj animacijo
5ka

NE

Je mesto -2
zasedeno?

mesto v
koloni 2?

A 4

Trenutno mesto v

koloni

Na zacetek zanke

/

koloni je mesto

Zaigraj animacijo

(mesto)v(mesto - 1)

Se je avto
ustavil?

A 4

Zaigraj animacijo
(mesto)do(mesto - 1)

mesto v koloni
1?

DA

v koloni

asedeno?
NE

e avto pr
izhodu iz

kroZis¢a naletel

e na tem pasu
e vedno pesec?

Avto se bo ustavil

Je trenutno
mesto v koloni
predzadnje?

Zaigraj animacijo
(mesto)od(mesto - 1)

Se je avto
ustavil?

Zaigraj animacijo

Avto se ne bo ustavil |
A

(mesto)k(mesto - 1)

DA

Sprosti predzadnje
mesto v koloni

v

NE Zasedi mesto-1v
|_> koloni L
Sprosti mesto v
koloni

Na zacetek zanke

/

Avto se bo ustavil

e na tem pasu
pesec?

DA
Se je avto

ustavil?
NE

Zasedi mesto O v koloni |
Sprosti mesto 1 v koloni [
Trenutno mesto v Zaigraj animacijo
. &—DA NE——p
koloni je 1 1v0

Zaigraj animacijo
1do0

T

Sprosti mesto, kjer
se ¢aka na pesca, ki
precka prehod

>

|—)

Avto je koncal
voinjo iz kroZisca

Na zaletek zanke

/

NE

DA

Slika 37: Poenostavljen graf poteka avtomobilove logike v koloni

Vir: Lasten

43

3.3.10 Interakcija

Pri nacrtovanju elementov, ki sem jih Zelel vnesti v ta projekt, se mi je zdelo izredno
zanimivo, da bi imel uporabnik moZnost avtomobilom dolo¢iti, kam naj peljejo v kroziscu.
Premisljeval sem o nacinu interakcije — kaj klikniti, kakSen bo odziv in podobno. Vedel sem,
da bom za to moral pose¢i v AS. Domislil sem se naslednjega postopka, kako avtu dolociti

Smer.

Najprej bi se z miSko premaknil na avto, kateremu bi zelel spremeniti pot. Pritisnil bi levi
miskin gumb in ga drzal, nakar bi s premikom miske dolo¢il, kateri izhod iz krozis¢a naj avto
uporabi. Pojavila bi se pusCica, ki bi nakazala izbrano smer. Ko bi miskin gumb spustil, bi

avtu ostala nazadnje izbrana smer. Prepoznati bi bilo treba samo osnovne gibe — gor, dol, levo

b §=O

Slika 38: Smeri, ki jih lahko dolo¢imo avtu

in desno.

Vir: Lasten

Smeri, ki jih z gibi lahko dolo¢imo, so prikazane na sliki 38. Kot vidimo, se razen voznje v

A

krogu (4) vse smeri nanagajo na krake krozis¢a (0, 1, 2, 3)?. Premik miske navzgor na primer

pomeni, da smo izbrali krak 2. Toda tu se je pojavila teZava, ki jo prikazuje slika 39.

2z 2

(2, @

3 © O 1 ® 1
©
0 0

Slika 39: Razli¢no dojemanje smeri glede na izvorni krak avtomobila

W

Vir: Lasten

? Za boljse razumevanje krakov krozi$¢a si oglejte na sliko 20.

44

Na vsaki skici imamo napisana Stevila krakov in smeri, kakor jih dojema avto. Prva so
napisana ob robu vsake skice, medtem ko so slednja napisana v ¢rnih krogih na sredini. Kadar
avto nastane na kraku 0, deluje vse normalno, saj je njegovo dojemanje smeri enako krakom
krozi$¢a, kar pomeni, da ¢e mu dolo¢imo smer desno (1), bo vzel izhod desno (krak 1).
Poglejmo naslednjo sliko, kjer je avto nastal na kraku 1. Ker gre za isti avtomobil iz kraka 0,
le da je obrnjen tako, da namesto navzgor pelje levo, se glede na krake spremeni njegovo
dojemanje smeri. Ce bomo temu avtu dologili smer desno (1), bo vzel izhod navzgor (krak 2),
saj je to njegova desna, kar si seveda nisem zelel. Vidimo torej, da avtomobil dojema smer
relativno na svoj izvor. Da sem priSel do resitve, sem moral narediti, da se je smer, ki smo jo
izbrali s premikom miske, avtu posredovala v obliki, ki je ustrezala njegovemu kraku izvora.

S tem sem dosegel, da se je avto pravilno odzval na ukazano smer ne glede na krak nastanka.

Potreboval sem $e en dodaten gib, ki bi oznacil peto moznost — voznjo v krogu (slika 38,4).
Ta bi se sprozil, kadar uporabnik za doloCen Cas ne bi naredil nobenega izmed prej nastetih
gibov. Gib sem usposobil tako, da sem ob izbiri avtomobila zacel odStevati ¢as. Ko ga je
preteklo zadostno S$tevilo, se je aktivirala smer. V kolikor pa bi uporabnik med tem

odstevanjem naredil nek drug gib, se bi Cas, ki ga je bilo treba odsteti do aktivacije, povecal.

3.3.11 Zajem gibov

Kar se miske tice, lahko v AS-u dobimo samo njeno pozicijo na x in y osi, zato sem za
prepoznavo gibov moral napisati svoj algoritem. Toda preden se v to poglobimo, je dobro
vedeti, da se slikovne pike v Flashu za¢nejo meriti od levega zgornjega roba proti desnemu
spodnjemu. To pomeni, da so vrednosti na osi x pozitivne desno od izhodis¢a, za y os pa

navzdol. Primer na sliki 40 prikazuje dimenzije krozisca.

0.0y¢ »

]
]
I
I
I
]
]
) A 5 1024,768

Slika 40: Kako v Flashu merimo slikovne pike

Vir: Lasten

Na sliki 41a se vidi, da sem vzel trenutno pozicijo miske (beli kazalec) in od nje odstel

prejs$njo pozicijo miske (sivi kazalec). Na tak nacin sem dobil pot (oranzna ¢rta), ki jo je mis
45

opravila v enem fiame-u. Ceprav sem pravkar omenil pot, tu v resnici ne gre za vektor,
temvecC za razliko med tockama na x in y osi — delta x in delta y. Slika 41b prikazuje, kako
sem »pot«, ki sem jo dobil, pretvoril v Zeleno smer. Da uporabnik giba ne bi naredil
pomotoma, sem vnesel toleranco, ki je na sliki prikazana kot bel kvadrat, od koder se meri
pot. Kadar je bila delta x ali y ve¢ja od te tolerance, je bil premik dovolj velik, da sem ga
lahko obravnaval kot smer. Nato sem izmeril, katera izmed vrednosti je daljsa, delta x ali
delta y. S tem sem dobil os, na kateri se je zgodil vecji premik. Preostalo mi je le, da sem
preveril, ali je vrednost pozitivna ali negativna. Tako sem dobil najverjetnejSo smer. Za
pravilno odzivnost se je morala koda za ta algoritem izvrSiti za vsak frame delovanja

aplikacije.

X5 - X tocka
< 2 o Y /

[] Xz:Yz
+X

N

'Illll'lll.ly

Y2- Vi I

EEEEEsEmEBEEEEEE uuuu-uﬁf}ﬁ

a b

Slika 41: Kako premik miske pretvorimo v smer

Vir: Lasten

Spoznal sem, da je zelo pomembno, da ti gibi delujejo gladko in brez tezav, saj je bilo prvih
nekaj razli¢ic prav nerodnih. Na primer tezava, kjer je bilo prelahko nehote spremeniti smer,

je botrovala zamisli o Ze prej omenjeni toleranci.

3.3.12 Dodaten avtomobil

Poudariti moram, da sem ves ¢as govoril o MC-u avtomobila car0, ki vozi na levem pasu
cesti$€a, nisem pa omenil obstoja Se enega MC-a avtomobila, ki vozi po desnem — carlOa. Ta
se od car0 razlikuje v tem, da je njegova pot voznje vedno enaka, zato ne poseduje zgoraj

omenjene zmoznosti spreminjanja smeri z misko. V drugih pogledih sta MC-a identi¢na.

46

3.4 Pesec
Ena tezjih nalog pri delu na tem projektu je bila zasnova pesScev. Pri ustvarjanju pescevega
videza se nisem Zelel prenagliti, zato sem jih naredil karseda enostavne. Razlog za to je bil

podroben videz avtomobilov, ki so Ze sami bili procesorsko zelo pozresni.

Preprostost videza me je najprej motila,

vendar se mi je skozi tok projekta .
priljubila. Tako je prikazana razlicica Slika 42: Videz peSca
ostala nespremenjena do konca projekta. Vir: Lasten

3.4.1 Logika pescevih poti
Prva stvar, ki sem jo naredil, je bila, da sem si narisal skico, na kateri sem oznacil vse poti, ki
bi jih naj pesci lahko naredili. Ta skica je bila temeljnega pomena, saj sem se pri iskanju

optimalnih reSitev orientiral prav po nje;j.

Slika 43: MreZa poti
Vir: Lasten

47

Tako kot univerzalen avtomobil bi peSci nastali, se premikali, nakar bi se izbrisali. Toda ob
pogledu na Stevilénost poti (slika 43) sem se odlocil, da za razliko od avtov pesci ne bi bili
animirani po tirnicah, temve¢ bi se orientirali na podlagi tock, ki sem jih poimenoval cilji. Ob
nastanku bi peSec namre¢ dobil nalogo slediti enemu izmed teh ciljev. Ko bi se ga dotaknil

oziroma vanj tr¢il, bi dobil nalogo slediti drugemu cilju in tako napre;.

Vzel sem si ¢as in razmislil o nacinu poenostavitve prikaza skice. PriSel sem do spoznanja, da
obstajata dve vrsti to¢k oziroma ciljev. Na sliki 43 sem ju oznacil z a in b. Pri tocki a gre za
tem cilju bi peSec imel moznost izbrati eno izmed preostalih dveh poti, saj je iz ene strani
ravnokar prisel. Vsak cilj bi lahko prehodil le enkrat, zatem tja ve¢ ne bi smel iti. S tem bi ga

prisilil, da bi mu slej ko prej zmanjkalo postaj in bi bil primoran oditi iz krozisca.

Torej, ¢e predpostavimo, da peSci nastanejo na kateri koli tocki a, potem je jasno, da se
morajo zaceti premikati proti najustreznejsi to¢ki b. Ampak kako vedeti, katera tocka b je

najustreznejsa?

pesecO 0

pesec02 O pesec03

Slika 44: Logika pescevih ciljev za krak 0

Vir: Lasten

Z namenom, da sem prisel do pravega odgovora, sem moral logiko za vsak krak lociti na levo
in desno stran cestiSca, saj lahko pot iz tocke a vodi samo do tiste tocke b, ki se nahaja na isti
strani (slika 44). Enako velja v obratni smeri. Nato sem vsaki tocki dodelil sebi lastno Stevilo
in jih razporedil tako, da se je dalo kar iz njih razlociti, za katero tocko gre. Na primer, Ce je
Stevilo sodo, gre za levo stran cesti$¢a, ¢e pa je liho, pa za desno. Prav tako se da razbrati, ali

gre za tocko b (Stevilo je manjSe od 2) ali za tocko a (Stevilo je vecje od 2). Oc¢itno je tudi, da

48

sem logiko, tako kot pri avtomobilu, razdelil na krake. S tem sem si pripravil jasno osnovo za

pisanje kode, ki bo skrbela za vodenje pescev ter njihove odlocitve.

Medtem ko bi peSci nastajali preko AS-a, sem cilje, po katerih se bi orientirali, ustvaril ro¢no
kot MC-je. Vsak je dobil svoje ime, ki je vsebovalo besedo pesec, Stevilo kraka ter Stevilo
cilja na tem kraku. Ta imena so na sliki zapisana pod to¢kami. To je bilo pomembno, saj se

pesceva logika izbiranja novih ciljev nanaSa prav na ta imena.

3.4.2 Podrobneje o pescevi logiki

Najprej sem spisal logiko za nastajanje peScev, ki jih je ob nastanku postavila na tocko 2 ali 3
na poljubnem kraku. PeSec si je zapisal, da je tukaj Ze bil, nakar je dobil svoj prvi cilj, ki je bil
izraCunan po formuli a. Pri tem cilju gre za tocko b na isti strani cestiS¢a. Od tod naprej bi

pesec postal samostojen.

Formula Primer za @ Primer za .
a trenutni cilj — 2 -2= 3-2=
b trenutni cilj + 2 +2= 1+2=
c | trenutnicilj- 1 | |0-1]|= [1-1]|=
¢ trenutni krak - 1
d trenutni krak + 1

Tabela 1: Formule za izracun pescevih ciljev

Vir: Lasten

Pesec bi se premikal do svojega cilja in ko bi ga zadel, bi se glede na to, za katero vrsto tocke
gre (a ali b), odlo¢il, kako reagirati. Ob srecanju s toc¢ko b bi peSec dobil nov cilj, kamor bi se
zacel premikati. V primeru sreanja s tocko a pa bi se izbrisal, saj tocka a pomeni konec
njegove poti. Ne glede na vrsto tocke bi si za vsak cilj, ki bi ga obiskal, zapisal, da je tam ze
bil. Oborozen s tem znanjem sem se odpravil pisati kodo, ki bi upoStevala vse omenjene

zapovedi.

Poglejmo natancneje, kaj se zgodi, ko peSec naleti na to¢ko b. Ko jo zadene, nakljucno izbere

eno izmed naslednjih mozZnosti:

1. Nov cilj je tocka a v tem kraku. Dobimo jo po formuli b (tabela 1b).
2. Nov cilj je to¢ka b v tem kraku. Dobimo jo po formuli ¢ (tabela Ic).
3. Nov cilj je tocka b v sosednjem kraku. Dobimo jo po formuli ¢ (tabela Ic), toda krak

cilja se spremeni glede na naslednji princip. Ce smo na levi strani cesti$¢a in nismo na

49

kraku 0, nov krak cilja dobimo po formuli ¢ (tabela 1¢). V primeru, da smo na kraku
0, je nov krak cilja krak 3. Ce pa smo na desni strani cesti§¢a in nismo na kraku 3, nov
krak cilja dobimo po formuli d (fabela 1d). V primeru, da smo na kraku 3, je nov krak
cilja krak 0.

V kolikor je peSec na izbranem cilju Ze bil, bi ponovno izbral eno od nastetih moznosti. Za

boljSe razumevanje postopka izbire ciljev si je najbolje pomagati s sliko 45.

) O
pesec22

pesec32 pesec13
pesec33 pesec12

pesec00

pesec02 O pesec03

Slika 45: Celoten prikaz logike pescevih ciljev

Vir: Lasten

50

3.4.3 Hoja proti cilju

Zanimiv je tudi nacin, s katerim sem dosegel, da so peSci znali hoditi proti izbranemu cilju.
Kot vemo, je pozicija vseh MC-jev v Flashu izrazena v dveh dimenzijah, x in y. Ce za¢nemo
katero izmed teh vrednosti spreminjati vsako sliko na sekundo, dobimo gibanje. Gibanje je
seveda odvisno od tega, na kak naéin to vrednost spreminjamo. Ce na x-osi vrednost ve¢amo,
se zaCne objekt premikati v desno, ¢e jo manjSamo, v levo. ManjSanje vrednosti na y-osi ga
premakne navzgor, vecanje navzdol. To je vse odli¢no, toda jaz sem potreboval gibanje proti

neki izbrani tocki.

X2,Y2
cilj

X1.-Y1 Cl
pesec

Slika 46: Kot med peScem in ciljem

Vir: Lasten

Za lazje razumevanje sem moral najprej vedeti, kaksno pot bi peSec sploh moral opraviti.
Gledal sem skico (slika 46) in razmiSljal, kako izracunati premik peSca za vsako os posebe;.
Skiciral sem kup skic, dokler nisem ugotovil, da bi lahko uporabil funkciji sinus in kosinus

(slika 47).

270° -1

0
90° 1 0

Slika 47: Kot iz slike 41 prenesen v krog

Vir: Lasten

V tabeli 2 sem prikazal nekaj primerov, ki dokazujejo, da je sinus idealna funkcija za izracun

premika po osi y, medtem ko za kosinus velja enako kot za os x.

51

Smer Kot Sinus Kosinus

Desno 0° 0 1

Dol 90° 1 0

Levo 180° 0 -1

Gor 270° -1 0
Desno-dol 45° 0,71 0,71
Levo-dol 135° 0,71 -0,71
Levo-gor 225° -0,71 -0,71
Desno-gor 315° -0,71 0,71
Smer iz primera 22,8° 0,39 0,92

Tabela 2: Prikaz vrednosti funkcij sinus in kosinus glede na razli¢ne smeri v krogu

Vir: Lasten

Da bi lahko napisal formulo, sem potreboval le Se nacin, kako pridobiti kot med pesScem in

ciljem. Na spletu sem nasel informacijo o AS-funkciji atan2(), ki je Zze vgrajena v Flash.

Radians = Math.atan2(destName. y - this. y, destName. x - this. Xx);

Ta funkcija vzame razliko med toCkama na osi x ter osi y in vrne kot med njima v radianih. S
pomocjo tega kota sem koncno lahko sestavil funkciji, ki sta izracunali taksno velikost
premika za vsako os, da se je peSec pravilno premaknil v smeri tocke. Za prilagoditev
velikosti tega premika sem dobljeno vrednost pomnozil s Stevilko, ki je predstavljala hitrost

pesca. Tako se je peSec premaknil proti cilju za pot, ki je bila enaka temu $tevilu hitrosti.

X + Math.cos(Radians) * speed;
_y + Math.sin(Radians) * speed;

this. x
this._y

Za nenehno gibanje pesca se je ta koda morala zagnati vsako sliko na sekundo.

3.4.4 Prehod za pesce

Hojo pescev skozi krozisée sem do sem imel Ze vzpostavljeno in delujodo. Zelel sem samo e,
da avtomobili ne bi vozili ¢ez njih. Tako je, vozilom je bilo vseeno za pesSce. Prav tako teh ob
preckanju cestiS¢a ni motilo, da je ¢ez njih pravkar peljala vrsta vozil. Temu je bilo treba
narediti konec. Moj namen je bil prikazati pravilno voznjo v kroziscu, ne pa kup nedeljskih
voznikov, ki niso sposobni spremljati peScev, in ¢e bi bil voznik vzoren, se peScu ob
preckanju cestiS¢a sploh ne bi bilo treba ustaviti. Svojo pot ¢ez prehod bi lahko nadaljeval
brez kakrSnega koli postanka. Na sreCo sem kolone, v katere se formirajo avtomobili,
nacrtoval tako, da je za peSce ostalo nekaj prostora. Avtomobilom je bilo treba sporociti le Se,

kdaj naj se ustavijo.

52

Slika 48: Prostor, kjer pesci preckajo cestisce

Vir: Lasten

Ko je pesec stopil na prehod, je bilo za ustavitev avtomobila ze prepozno. Prav tako si nisem

mogel pomagati s spremljanjem pes¢eve odlocCitve o tem, ali bo preckal cestisce ali ne, saj je

tudi ta priSla prepozno. Zakaj prepozno? Ker se avto ni imel ¢asa tako hitro ustaviti in je

vseeno peljal ¢ez pesca. Nekako bi moral Ze vnaprej vedeti, ali bo peSec izbral pot ¢ez prehod,

2

in to sporociti avtomobilu.

ppiece20 —

ppiece21

ppiece22

ppiece23

ppiece33 1 3
ppiece32 12
ppiece31 11
ppiece30 10

ppiece03
ppiece02
ppiece01
ppiece00

O [
— |

JI
23

—_
o

L]

0

Slika 49: Postavitev in poimenovanje prehodov za pesce

Vir: Lasten

53

01 ppiecel0
1 C—] ppiecell 'I
21 ppiecel2
3 I ppiece13

Tezavo sem resil tako, da sem najprej na vsakem pasu krozisca ustvaril mesto za preverjanje
prisotnosti peSca (slika 49). Ko se je pesSec katerega od njih dotaknil ali se ga nehal dotikati, se

je to zapisalo in avto je lahko reagiral pravilno, ¢eprav Se vedno prepozno.

Resitvi sem bil blize v trenutku, ko sem si
izmislil, da bi pesec imel tipalo (slika 50b), a

s katerim bi lahko pot mestom za

preverjanje prisotnosti sporoc¢il nekoliko

vnaprej. Ko sem zadevo preizkusil, se je
pokazalo, da je avtomobil za reakcijo Slika 50: Pescevi tipali
tokrat imel dovolj ¢asa, s Cimer je lahko Vir: Lasten

bolje predvidel pescev namen.

Zaradi boljSe u€inkovitosti prometa, sem peScu ustvaril Se dodatno tipalo (slika 50a). Kot pri
tipalu b se je tudi to aktiviralo komaj takrat, kadar je zadelo katero od mest za preverjanje
prisotnosti peSca, in se onemogocilo takoj, ko se je katerega izmed njih nehalo dotikati.
Njegova naloga pa ni imela zveze z avtomobili, temvec s hitrostjo pesc¢eve hoje. Pokazalo se
je namre¢, da so bili peSci ob preckanju cestiSCa prepocasni, kar je povzrocilo, da je bila

voznja avtomobilov v krozis¢u manj odzivna, kot sem Zelel. S pospesitvijo hitrosti peSca ob

preckanju cestiS§¢a sem zmanjSal ¢as ¢akanja avtomobilov, s ¢imer je promet postal bolj Ziv.

Preostalo mi je samo Se, da sem celotno logiko nekoliko izpopolnil in v kratkem so
avtomobili zanesljivo pazili na peSce. Za lazje razumevanje sem prilozil sliko 51, ki prikazuje

vrsto primerov te interakcije med pesci in avtomobili:

Krak 1 PeSec je s tipalom zadel v pas cestiSca, ki je ponazorjen z rumeno barvo. S tem
je povzrocil, da se bo avtomobil a moral ustaviti. Avtomobilu b se ne bo treba
ustaviti, saj pesec ni bil dovolj hiter, da bi mu preprecil pot.

Krak 2 Avtomobila ¢ in € se bosta morala ustaviti peScu, saj je s svojim tipalom Se
pravi ¢as naznanil svoj prihod.

Krak 3 Vozilo d se bo moralo ustaviti peScu, medtem ko je vozilo e ze preckalo tocko,
po kateri ve€ ni moZnosti ustavitve. Avto se bo tako peScu umaknil Se pravi Cas.

Krak 0 Kot vidimo, pescevo drugo tipalo ne vpliva na to, ali se bo avto moral ustaviti

ali ne, zato bo avto f lahko voznjo nadaljeval brez tezav.

54

0

Slika 51: Kako peSec precka cestiSce

Vir: Lasten

Ker sem na peSce in dejstvo, da bodo s preCkanjem cestiS¢a motili avtomobile, mislil ze od

zacCetka, pri ustvarjanju prehodov nisem imel znatnih tezav.
3.4.5 Poenostavljen prikaz logike

Kot zanimivost prilagam poenostavljen prikaz pesceve logike (slika 52), ki vsebuje tudi

logiko preckanja cestisca.

55

@ pesec dosegé
svoj CILJ?

NE

Zanka - Zacetek

A

Pesca odstraniiz
seznama ter ga
Izbrisi

DA—P

Je pesec

trenutno na
tocki a ali na
tocki b?

Zapisi, da je pesec
na tem CILJU Ze bil

mo Ze nasli no
c?

Preverimo 4x, torej za vsako mesto NE

/

mo preverili

A

0 - Tocka B v sosednjem kraku
1-Tocka B v tem kraku
2 -Tocka A v tem kraku

/

vsa mesta na
prehodu?

Nakljuéno izberi eno
izmed naslednjih 3
mozZnosti

Smo tukaj ze

NE

e peséev
pogled zadel
mesto ma

) 4

Nov CIL je najblizja
tocka a v tem kraku

DA NE

Alije to
esto prazno?

h 4

Zapisi, da na tem
mestu ni pesca

o)

Zapisi, da se na tem
mestu nahaja pesec

bili?

Nov CIL] je tocka b v

sosednjem kraku

Smo tukaj ze
bili?

Nov CILJ je ali

tocka b v tem kraku

Ali je pescev
senzor za hitrost zade
katero mesto na
prehodu?

Ce je hitrost vegja
od zacetne, jo
zmanjiaj za
vrednost

T

Ce hitrost ne

Premakni pesca

Na zacetek zanke

/

h 4

presega konéne, jo

poveéaj za vrednost proti CILJU

Slika 52: Poenostavljen graf poteka pesceve logike

Vir: Lasten

56

3.5 Macka

Vozniki poznamo obcutek, ko nam v soju no¢nih luci na cesto sko¢i macka. Zaradi njene

neslavne povezave z avtomobili, sem se odloc¢il, da jo vklju¢im v krozisce.

Macka bi se brezbrizno sprehajala po kroziscu, dokler ne bi naletela na nevarnost v obliki
avtomobila, ki bi jo lahko povozil. Macka bi zato morala biti dovolj pametna, da bi se avtu
izognila. Najbolj zanimivo mesto za nastanek macke je bila sredina krozisc¢a, saj macka tam
nima druge izbire, kot da precka cestisCe, kjer vozijo avtomobili. Za to mesto sem imel
najprej namen uporabiti grm, a sem se raje odlocil za brlog, ki je nenavadnejsi (slika 54). Slo

je za MC, ki je nenehno preverjal, ali smo ga z miSko kliknili.

Sama macka je bila prav tako MC, saj je morala tako kot peSec sama zaganjati svojo logiko. Z
njenim videzom se nisem pretirano obremenjeval, saj majhnost njene postave ne bi omogocila
prikaza podrobnosti. Njeno telo sem razdelil na kose, saj sem ga tako laZe animiral. Crno

barvo sem uporabil zato, ker se je med zmedo v kroziS¢u najbolje videla.

Slika 53: Videz macke v teku Slika 54: Mackin brlog

Vir: Lasten Vir: Lasten

Brlog je ob kliku ustvaril macko, ki se je zaCela sprehajati. Pri tem sem uporabil isti nacin
premikanja kot pri peScu. Toda za razliko od peSca se macka ni premikala proti doloceni
tocki, temvec tja, kamor je bila obrnjena. Njena smer je bila torej odvisna od njene rotacije,
katere smer se je izbrala naklju¢no ob mackinem nastanku. Tu sem vnesel tudi, da je macka

ob pobegu iz vidnega obmocja izginila.

Ker je bilo nenavadno, da je macka tekla v matemati¢no popolnoma ravni liniji, sem v njeno
logiko vnesel naklju¢no spreminjanje smeri. Ta vedenjski vzorec macke sem poimenoval

»neinteligentni«, saj se med njenim tekanjem po kroziscu ni zmenila za noben drug objekt.

57

3.5.1 Izmikanje

Ko sem macki vnesel posledice ob morebitnem stiku z avtomobili, sem vedno bolj zacel
razmis$ljati o tem, kako bi se slednjim izognila. Nacrtovati sem zacel nov vedenjski vzorec,
kjer bi macka morala biti pametna, vendar ne prepametna, saj bi jo vozila tu in tam morala
povoziti, vendar redko. Odloc¢il sem se za inteligenco, ki je osnovana na uporabi dveh tipal. Z
njuno pomocjo bi macka prepoznala, iz katere smeri prihaja nevarnost, in se pravilno
umaknila. Ce bi nevarnost zaznalo tipalo a, bi macka zavila v levo, v primeru, da pa bi se
aktiviralo tipalo b, bi zavila desno. DolZino in obliko tipal sem tekom testiranja uspesnosti

izmikanja spreminjal in tako prisel do kon¢nih razlicic (slika 55).

a b

Slika 55: Tipali macki sporocita, od kod prihaja nevarnost

Vir: Lasten

Logika je bila zelo preprosta, zato s pisanjem kode nisem imel tezav. Zagotoviti sem moral le,
da se macka v zmedi, ko sta avto zaznali obe tipali, ni odzvala narobe. Ko je nastala zmeda, je
izmed dveh moznosti morala izbrati najbolj gotovo. To sem dosegel tako, da sem za vsak
avtomobil v krozi§¢u preveril, ali je zadel v katero izmed tipal. Vsakic, ko je bilo doloceno
tipalo izbrano, se je to pristelo k rezultatom. Na koncu sem moral preveriti le Se to, katero
izmed tipal je bilo izbrano veckrat. Ta primitivni nafin zaznavanja je macki na kroziscu,

polnem nevarnosti, omogocil prezivetje.

3.5.2 Sledenje miskinemu kazalcu

Prisel je Cas, ko se mi je zaCelo dozdevati, da avtomobili macke niso povozili, Ceprav so vec
kot oc€itno peljali ¢eznjo. Pri iskanju hroscev, ki so bili odgovorni za to nenavadno dogajanje,
mi obstojeca vedenjska vzorca macke nista prav veliko koristila, kajti potreboval sem vec

kontrole glede narave trka. Tako se je rodila ideja o novem vedenjskem vzorcu, s katerim bi

58

macka sledila kazalcu miske. S tem bi jo lahko vodil in natan¢no preucil morebitne anomalije

v trku z avtomobili.

Da bi macka pravilno tekla proti miskinem kazalcu, je morala uporabljati logiko, podobno
tisti, ki sem jo vnesel pescu, da je lahko hodil proti ciljem. S to kodo bi se obra¢anje macke
zacelo prav tako sunkovito, kot bi se koncalo, cemur sem rekel enakomerna rotacija (slika
56a). Med tak$nim obracanjem je vsak zasuk enako velik, zato se macka ob koncu obracanja
ne bi zaustavila gladko, temve¢ v trenutku. Za razliko od macke je pri peScu to bilo videti
solidno, saj je graficno precej preprostejsi, poleg tega pa se dejansko ne vidi, kam je zasukan.
Zaradi vsega omenjenega sem si za macko Zelel obracanje, ki bi vsebovalo sunkovit zacetek
in bolj gladek konec, kar sem poimenoval neenakomerna rotacija (slika 56b). Za ucinkovito
obracanje po primeru b moramo imeti na razpolago tako zafetno kot kon¢no rotacijo, torej

obe hkrati.

x1:Y1

_____ ﬁ’ Ya XY :::::)S.Yz

Slika 56: Prikaz enakomernega in neenakomernega 180 © obrata macke

Vir: Lasten

Z neenakomernim nacinom premikanja sem v ¢asu dela na projektu Ze bil seznanjen, toda le v
navadnem dvodimenzionalnem koordinatnem sistemu, kjer ga dosezemo s pomocjo preproste
racunske operacije (tabela 3a). To logiko sem pretvoril za uporabo pri neenakomerni rotaciji
(tabela 3b). Napisal sem tudi razliCico te formule za enakomerno rotacijo (tabela 3c). Prav to

izvedenko sem uporabljal, dokler nisem bil prepric¢an, da sistem deluje.

Formula
X1 + (X2 — X1) * vrednost
dir + (dirNew - dir) * vrednost
dirNew - dir
dir + (dirTarget — dir) * vrednost

oo o

Tabela 3: Formuli za izracun gladkega premika oziroma obrata

Vir: Lasten

59

Tu je dir trenutna rotacija, medtem ko je dirNew nova rotacija, torej kamor zelimo, da se
macka obrne. Pri vrednosti gre za Stevilo, ki regulira hitrost premikanja po tej osi in mora biti
manj$e od 1. Ce je enako 1, se objektu rotacija sploh ne spremeni. Za razliko od &loveka
racunalnik ne zna intuitivno prepoznati prave smeri zasuka, zato je bilo treba reSitev poiskati s
pomocjo racunskih in logi¢nih operacij. S pomocjo formule ¢ sem izracunal najkraj$o mozno
rotacijo, ki pa vc€asih ni bila pravilna. Zakaj se je to dogajalo, bom pokazal na naslednjem
primeru, toda preden nadaljujem, moram omeniti, da funkcija za iskanje kota med macko in
kazalcem® vrne vrednosti, ki se gibljejo od -180 ° do 180 ©°, kar je razlog za nenavaden prikaz

stopinj v krogu (slika 57a).

a b C c
-90° -90° -90° -90°
+180° 0°
90° 45° 135 135

Slika 57: Tezave pri racunskem iskanju pravilnega obrata

Vir: Lasten

Ce s formulo ¢ preverimo primer b (slika 57), vidimo, da je pravilna dolzina zasuka najdena
korektno (tabela 4a, primer b) in s tem tudi smer. Ce pa isto formulo uporabimo za primer ¢
(slika 57), pa rezultat (tabela 4a, primer c) ni to, kar zelimo, saj nismo dobili najkrajSega
moznega obrata. Najkraj$i je v nasprotno smer urinega kazalca in je prikazan v primeru ¢
(slika 57), kjer se vidi, da bi dejansko moral iti preko tocke, kjer se zgodi preskok od -180 °
do 180 °.

Formula Primer b Primer ¢
a |dirNeW—dir| |45—(-90)|:135 |135—(—90)|:225
b |dirNew—(360+dir)| |45—(360+(-90)|:225 |135—(360+(—90)|:135

Tabela 4: Izracun primerov b in ¢

Vir: Lasten

3 To je tista, ki je bila uporabljena pri pescu, kadar je iskal kot glede na cilj.

60

Da sem to tezavo resil, sem moral uporabiti formulo, ki bi Stevilo, ki je v minusu, sestela s
360 (tabela 4b). S tem sem -90 spremenil v 270, kar je Se vedno isti kot, le prirejen. Ta kot

sem lahko brez tezav vstavil v obstojeCo formulo b (tabela 3) namesto dirNew in dobil

pravilen rezultat®.

dirNew > dirNew < dir dirNew > f{n dirNew < dir
-135° “ -1 35@
dirNew >=0 dtrNew <@
dir>=0 dir<0
1 35° 45° 135°

Slika 58: Primer racunanja pravilnega obrata, kjer sta dir in dirNew pozitivna (a in b) ali

negativna (c in ¢)

Vir: Lasten
dirNew < dir dirNew < dir dirNew < dir dirbew < dir
| dirblews - dir | | dirbew + (360 - dir}| | dirhlews - dir | | dirhlews + {360 -dir} |
-90° -90° -90° -90°
RrNew

dirNew < 0 dirNew < ¢
dir >=0 dir >=0

4 45° 135° 135°

Slika 59: Primer raunanja pravilnega obrata, kjer je dir pozitiven in dirNew negativen

Vir: Lasten
dirNew = dir dlirNew > dir dirNew > dir dirNew = dir
|dlrﬂew dr| | dirtlews - { 360 + dir} | | dirbeve - dir | | dirhlews - { 360 + dir} |
-90° -90° -90°
dirNew >=0 dirNew >=
dir<@ - dir < G
1
45" 45° 135° 135°

Slika 60: Primer racunanja pravilnega obrata, kjer je dir negativen in dirNew pozitiven

Vir: Lasten

*V tem primeru dobimo pravilen rezultat samo, &e odmislimo atribut vrednost.

61

Bolj ko sem preizkuSal primere, prej sem opazil, da mi te formule ne bi bilo ve¢ treba
spreminjati, samo pravilno prirejen kot, ki sem ga poimenoval dirTarget, bi bilo treba najti. S
tem sem dobil novo formulo (fabela 3d), ki je od tod naprej ostala nespremenjena. Spreminjal
se je samo Se dirTarget, kar mi je precej olajsalo delo. Zanj sem moral napisati kup formul, ki
bi ga izracunale. Poleg tega sem moral zasnovati Se logi¢ni sistem, ki bi izmed omenjenih
formul vedno izbral najustreznejSo. Z intenzivnim primerjanjem razli¢nih primerov sem tako

priSel do formul, ki jih prikazujejo slike 58, 59 ter 60 in ki so dokazane v tabeli 5.

Primer Pogoj Formula Racun Smer
a 1 dirNew >=0 dirNew > dir 135>45=da v
b dir>=0 dirNew < dir 135<45=ne
c) dirNew <0 dirNew > dir -45>-135=da v
¢ dir<0 dirNew < dir -45<-135=ne
d 3 dirNew < 0 | dirNew - dir | | -90 - 45| =135 v
e dir>=0 | dirNew + (360 - dir) | | |-90+ (360 — 45) | = 225
f 4 dirNew <0 | dirNew — dir | |-90-135|=225
g dir>=0 | dirNew + (360 —dir) | | |-90+ (360 -135)|=135 v
h 5 dirNew >=0 | dirNew - dir | | 45 - (-90) | =135 v
i dir< 0 | dirNew - (360 + dir) | | |45 - (360 + (-90) | =-225
] 6 dirNew >=0 | dirNew - dir | | 135 -(-90) | = 225
k dir< 0 | dirNew - (360 + dir)| | |135-(360+(-90)|=135 | v
Tabela 5: Dokazi za primere s slik 58, 59 in 60
Vir: Lasten

Kot vidimo iz primerov, sem ustvarjene formule razdelil na tri kategorije, ki so lo¢ene po tem,

ali so vrednosti pozitivne ali negativne.

1. kategorija — dir in dirNew sta bodisi pozitivna (a in b) bodisi negativna (c in ¢).
2. kategorija — dir je pozitiven, dirNew je negativen (d, e, f in g).

3. kategorija — dir je negativen, dirNew je pozitiven (h, j, 1 in k).

Ceprav je ¢rk dvanajst, gre tu v resnici za Sest primerov. Vsi prikazani primeri namrec¢
delujejo v parih, kar pomeni, da je v izbranem primeru na koncu izmed dveh rezultatov
pravilen samo eden. Ta je v tabeli zapisan pod »Smer«. Pri primerih a—¢ se izbere pravilen

odgovor, medtem ko se pri d-k izbere tisto Stevilo, ki je manjSe, saj oznacuje najkrajsi obrat.

Z namenom, da se vidi, kako sem te formule implementiral v logi¢ni sistem, v katerem s

pomocjo zgoraj omenjenih formul za racunanje trenutne (dir) in nove rotacije (dirNew)

62

iS¢emo prilagojeno rotacijo (dirTarget), sem kot zanimivost prilozil sliko 61, ki prikazuje

poenostavljen graf poteka te logike.

A alije ™

< dirNew <0 A= |dirNew — dir|
y —DA
= in e > B = |dirNew + (360 - dir) | ‘
Sdir>=0 0
NE i
A—P dirTarget = dirNew |
NE T Mlije T
S~ A<B _—
) Alije T []
“‘»\r\i\irNew<di'[‘,.—" DA— dirTarget =dir- A ——
‘\‘)*'." NE
NE ,»"A‘#‘“‘--.._
I—DA—} dirTarget = dirNew < Je T
mma <A
=~ Alije T NE DA— dirTarget = dir + B ———
—DA—P . DA NE——T—
~_dirNew > dir _-~
7 Rije 7 hiije Ao
< dirNew »>=0 ™ < dirNew <0 ™. " dirNew >=0 ™ A = |dirNew — dir
- ALl = P < < DA - .
L i ~ in - - in "{ B = |dirNew - (360 + dir)| ‘
Sdir>=0 7 \ dir<0 " S dir<0 _,/"
\ Zanka - Zacetek _}'. NE ‘__,.-""""Alija““n.
~__A<B _—
— LDA—} dirTarget = dir + A ———
[Konec 5 d ks
o T / NE
dir = dir+(dirTarget-dir) *vrednost '-:"/‘/ GHfe “‘...”'".a
~_B<A _—
A -
!‘"—LDA—} dirTarget = dir - B

Slika 61: Poenostavljen graf poteka logike za najdbo ustrezne prilagojene rotacije dirTarget

Vir: Lasten

Z omenjenimi nacini ter minimalnim igranjem z vrednostmi spremenljivk, ki so bile
zadolzene za obcutek neenakomernega zasuka, mi je uspelo ustvariti gladko obrac¢anje macke
proti miSkinemu kazalcu. Narediti sem moral samo Se to, da se je macka zacela premikati, kar

pa je bilo izredno enostavno, saj sem lahko uporabil enak nacin kot pri pescu.

3.5.3 TeZava 7 globino

Pojavila se je zanimiva tezava, ki je bila rezultat Flashevega nacina upravljana z globino
objektov. Spomnimo se, da objekti, ki nastanejo kasneje, v Flashevem seznamu globine
koncajo bolj v ospredju kot objekti, ki nastanejo prej. Lahko re¢emo, da se kot plasti (layers)
nalagajo eden na drugega. Spomnimo se tudi, da dva objekta ne moreta imeti enakega Stevila

globine.

63

Dokler so zadnji nastajali avtomobili, ni bilo teZav, saj ni bilo ni¢ narobe, ¢e je bila njihova
grafika po globini pred drugimi objekti. Tezave so se pojavile pri nastanku macke, ki je hodila
po rastlinah in avtomobilih, namesto da bi tekla pod njimi (slika 62). Edino, kar sem v tem
primeru lahko naredil, je, da sem vnaprej ustvaril prazen MC, ki je v globini stal med tistimi
objekti, ki morajo biti pred macko, in tistimi, ki morajo biti za njo. Edini na¢in manipulacije
globine, ki jo Flash omogoca, je namre¢ ta, da jo izmenjamo med dvema objektoma. Zato sem
ukaz spremenil tako, da je ob nastanku macka globino tega objekta prevzela, ob smrti oziroma
izbrisu pa mu jo vrnila. To izmenjavo globine sem dosegel z uporabo funkcije

swapDepths().

Slika 62: Tezava z globino macke

Vir: Lasten

3.5.4 Logika
Tezko si je predstavljati, kaj vse se mora sproziti, da macka dela to, kar pac dela. Zato sem za
boljSo predstavo o tem, kaj se dejansko dogaja v drobovju macke, prilozil graf poteka, ki

poenostavljeno prikazuje njeno logiko (slika 63).

64

7

anka - Zacetek |«

T

mrtva in njen
ep miren?

i IJano z0e Predvajaj zvok Predvajaj zvok
eno izmed 4 catcryl catcry3
oznosti v v
A A
A 4 A 4
Je matka ziva? Predvajaj zvok Predvajaj zvok
catcry2 catcry4

Je macka
zaznala avto za
seboj?

Je macka
zaznala avto
pred seboj

Macko preganja
avto in macka bo
zavila v desno

A 4
ljuéno i -
ey | Predvajaj zvok Predvaijaj
. ™| soundCatCrashl animacijo repa
moznosti l
oop
Predvajaj zvok
- &=

soundCatCrash2

Macka je umrla
Predvajaj animacijo [
krvi

akljuéno izberi
eno izmed 4
oZnosti

Macko preganja
avto in macka bo

Je macka
ravkar umrla?

NE

Ali je macka
Ziva?

NE

DA

Predvajaj animacijo
smrti catdie

—i Premakni macko |«

Je hitrost
manjsa od 0?

zavila v levo
Predvajaj zvok Predvajaj zvok
cathiss1 cattalkl
A A
Y Y
Predvajaj zvok Predvajaj zvok
cathiss2 cattalk2

Izbrisi macko

Je hitrost
vecja od 07

Zmanjsaj hitrost za
vrednost

DA

NE

Ali je
acka pobegnila

preganja avto in
macka zavija v

DA

v

izven vidnega
obmocja

akljucno izberi
eno izmed 2
moZnosti

preganja avto in
macka zavija v

DA
* Zavij rahlo v levo

Pospesimo hitrost
macke

Pospesimo hitrost
macke

Zavij rahlo v desno

7

v

Obracanje macke
zmanj$amo za
vrednost

Obracanje macke
povetamo za
vrednost

i

Premakni macko

| Na zacetek zanke

/

Slika 63: Poenostavljen graf poteka mackine logike

Vir: Lasten

65

3.6 Uporabniski vmesnik

O interakciji z avtomobili ter macko sem Ze govoril, zato bom tu opisal preostale elemente, ki

sestavljajo uporabniski vmesnik.

3.6.1 Meniin gumbi

Sprva sploh nisem imel namena narediti menija, temve¢ samo gumbe, ki sem si jih oznacil na
skici z zacetka projekta. Za meni sem se odloc¢il komaj kasneje, ko sem se zavedal, da bi bilo
zanimivo, ¢e bi aplikacija vsebovala nekakSno pomo¢, kjer bi bile na kratko razlozene
funkcije gumbov. Naloge sem se lotil tako, da sem ustvaril MC, ki bi vseboval vse gumbe ter
meni. Njegov prvi frame je bil rezerviran samo za gumbe, ki bi naj bili prikazani nenehno. To
so tisti, ki jih ob zagonu aplikacije vidimo takoj. Naslednji frame-i pa so bili rezervirani za
razli¢na stanja menija, ki se je prikazal ob kliku na gumb Pomoc. Ob ponovnem kliku istega

gumba se je meni ugasnil.

. File Edit View Inset Modify Text Commands Control Debug Window Help MIaEY [[0] -[&lx
TIMELINE | OUTP! co ORS EDITOR -

LY W Script

b 0 Button - 8o Bl

K| W Border .8 o,

Q :jchript - - a :?Immrwul

[2 ql Back - @ O

& | W Eutors .

SR I—T

T I?rjoii:iji st x = —
N g

()

7.
& Dynamic Text |+

$‘ =7 POSITION AND SIZE

?,‘ X -236.00 ¥: -173.00

= €5 Wi 47100 H: 388.10

Toggle, andom

9 Enabled 7 CHARACTER

a _roottextline22 Family:

4 £ style: %

[———— > . -
PY—— Size: 16QPt Letter spacing: 0.0

il color: [& Auto ke

- Anti-alias: | Anti-alias for readability |«

!, Random(900)

=* . @ o

@ _root.language0 _root.textLine25 i Character Embedding...

=7 PARAGRAPH

-~

remat: [E][E|E

Spacing; 3= 20pt

Margins: .0 px S+ 00px

Behavior: | Multiline (R4

|y

Orientation:

=7 OPTIONS

)
Target: =

Variable: | T8Nk

> FILTERS

Enabled
Wait

Graphic
Off.

@]

Random

Enabled

n b

Slika 64: MC AboutScreen vsebuje poleg vseh gumbov tudi meni ter prometne znake

Vir: Lasten

66

S premikom miskinega kazalca na sam meni se da dostopati do nastavitev. Tukaj se nahajata
gumb za ponastavitev Stevil seStevanja prometa ter gumb za spremembo jezika. Prav tako se
tu nahajata dva drsnika — prvi uravnava prehodnost avtomobilov skozi kroZis¢e, medtem ko

drugi omejuje Stevilo dovoljenih pesScev na ekranu.

Zagotoviti sem moral, da je v Flashevem seznamu globine ta MC vedno nad drugimi objekti,
zato sem tako avtomobilom kot peScem ter macki vnesel kodo, ki je ob njihovem nastanku
zamenjala lastno globino z globino tega MC-ja. Vsi elementi, ki so bili v tem MC-ju, so nato

prav tako bili pred drugimi.

3.6.2 Menjava jezika

Najprej sem imel namen tekst napisati kar v okno, vendar sem se odlocil, da ga bom raje
shranil v spremenljivke. To sem storil zaradi ideje o0 moznosti zamenjave jezika. Vse besedilo
sem napisal vnaprej tako v slovens¢ini kot anglescini, vsako v svojih spremenljivkah. Eno
izmed teh besedil je bilo izbrano privzeto in to se je avtomatsko prekopiralo v delovne
spremenljivke, katerih vsebina se je nato prikazala v oknu. Za prikaz teksta iz spremenljivk
sem uporabil dinami¢no tekstovno polje (Dynamic Text). Zamenjavo jezika sem dosegel tako,
da sem naredil gumb, ki je ob kliku preprosto spremenil, kateri izmed tekstov je bil izbran, in

ga prekopiral v delovne spremenljivke. S tem sem dosegel priro¢no menjavo jezika.

3.6.3 Sestevanje prometa

Povsem slucajno sem se spomnil, da bi Nl L

bilo zanimivo prikazati tudi, koliko

avtomobilov je peljalo skozi posamezne

pasove krozis¢a. Tako sem na vsakem

kraku krozis¢a ustvaril dinamicna =1 \

tekstovna polja, ki so za vsak avtomobil to Slika 65: SeStevanja prometa na kraku
koli¢ino belezila. Vir: Lasten

3.6.4 Izbira avtomobilove smeri 7 gumbi

Preden se je dalo avtomobilu spremeniti smer s pomoc¢jo miSke in tipkovnice, so to storili
prav za to namenjeni gumbi. Vsak izmed njih je deloval za svoj krak in imel za izbiro na
razpolago ve¢ moznosti — prvi, drugi, tretji in Cetrti izhod ter nakljucno, skozi katere se da

prehajati s klikom. Prav zaradi te spremenljive funkcionalnosti, kjer mora gumb vsakic¢

67

narediti nekaj drugega, sem se odlocil, da bom za njegovo drobovje namesto Button-a

uporabil MC. S tem in z nekaj kode v AS-u sem dosegel, da ima gumb ve¢ moznih stan;j.

Na zacetku sem naredil tako, da je klik gumba spremenil le privzeto izbiro smeri, ki so jo
dobili avtomobili, ki so nastali na istem kraku. To je pomenilo, da se je smer spremenila
koma;j tistim avtomobilom, ki so nastali po spremembi, ne pa tudi tistim, ki so takrat ze
obstajali in so bili v koloni oziroma so Ze vozili v kroZi§cu. S tem nisem bil zadovoljen, saj
sem prisel do spoznanja, da bi bilo bolj smiselno, ¢e bi se smer spremenila tudi tistim
avtomobilom, ki so ¢akali v koloni, a Se niso zapeljali v krozis¢e. Da pa bi to lahko storil, bi

moral te avtomobile najprej najti.

Najprej sem MC-ju avtomobila dodal spremenljivko, ki je belezila, ali je Se v koloni. Nato
sem napisal algoritem za spremembo smeri, ki je preletel vse avtomobile, ki so bili na ekranu.
Med njimi je preveril, ali so nastali na enakem kraku, na katerem sem se odloc€il spremeniti
smer, in ¢e so, je nato preveril samo $e, ali so se tedaj nahajali v koloni. V kolikor je bil tudi
zadnji odgovor pritrdilen, je ta avtomobil spadal med tiste, katerim sem zelel spremeniti smer.

Po zaslugi te funkcije sem dosegel, da se je smer spremenila tudi avtomobilom v koloni.

Proti koncu se mi je zdelo, da morda ni dovolj jasno razumljivo, kako ti gumbi delujejo, zato

sem ustvaril Se dodaten grafi¢ni prikaz izbrane poti, ki je le-to prikazal jasno in nazorno.

Q@ 29

Slika 66: Grafi¢ni prikaz izbrane poti — nakljucno, prvi, drugi, tretji in cetrti izhod

Vir: Lasten

68

3.7 Zvok

Krozisce je bilo brez zvoka nekako Zalostno, saj mu je manjkalo tistega znanega prijetnega
vzdu§ja, ki ga ne moremo dobiti samo z vizualnimi drazljaji. Zaradi tega sem bil prav
radoveden, kako mi bo uspelo razli¢ne zvoke preplesti v enotno vzdusje. Ampak preden sem

se tega sploh lahko lotil, sem moral zvoke najti.

Vedel sem, da na spletu obstaja kup spletnih strani’, ki ponujajo zvoéne uginke ter glasbo po
licenci Creative Commons®, kjer lahko avtor izdelka s pomog&jo vnaprej pripravljenih licenc
jasno doloci, kateri del pravic da v prosto uporabo. Teh licenc je vec, zato sem pazil, da sem
pri iskanju zvocnih datotek uporabil le tiste, katerih licenca se je skladala z naravo mojega

projekta’ in dejstvom, da sem nekatere zvoke imel namen obdelati.

& catCrash2.wav - Adobe Audition = |2 3]

File Edit View Effects Generate Analyze Favorites Options Window Help

ruieio [=mmary 00

ERTRITRECTEZY
[ri]a] =
I ———————
ij’ £ 55 53 50 57 5 51 g S5 42 29 25 2 20 27 2 21 -18 15 -12 =] 5] o

Opened in 0.80 seconds R:-10.5dB @ 0:00.430 | 44100+ 16bit * Stereo | 164K 40.35 GB free

End

Slika 67: Adobe Audition 1.5

Vir: Lasten

> Te so napisane pod totko 5. Literatura in viri.
% Vet o Creative Commons najdete na www.creativecommons.org, www.creativecommons.si, dne 15. 12. 2010

7 Gre za neprofitni in nekomercialni izdelek.

69

http://www.creativecommons.org/
http://www.creativecommons.si/

Zvoke sem iskal na naslednjih spletnih straneh:
- http://www.flashkit.com/soundfx/, dne 15. 12. 2010
- http://www.freesound.org/, dne 15. 12. 2010
- http://www.partnersinthyme.com/pir/PIRsfx.shtml, dne 15. 12. 2010
- http://www.soundsnap.com/, dne 15. 12. 2010
- http://amazingsounds.iespana.es/en/, dne 15. 12. 2010
- http://www.pachd.com/sounds.html, dne 15. 12. 2010
- http://www.mediacollege.com/downloads/sound-effects/, dne 15. 12. 2010

Kar se ustreznosti zvokov ti¢e, sem za nekatere takoj vedel, da jih bom uporabil, medtem ko
sem moral druge najprej vstaviti v izdelek, da sem lahko ocenil, ali so pravsnji. Zvokov nisem
mogel uporabiti kar tak$nih, kot sem jih dobil, saj sem jih moral prilagoditi za uporabo v
Flashu. Nekatere sem na primer zmesal skupaj, drugi so bili predolgi, zato sem jih skrajsal, in

podobno. Za te potrebe sem uporabil program Adobe Audition.

3.7.1 Zvok kroZisca
Najprej sem imel nenavadno zamisel, da bi zvok prometa dosegel s tem, da bi vsak avto sam
predvajal svoj zvok voznje. Ne glede na trud se zamisel ni obnesla, saj je bil zvok prevec

monoton. Tako sem priSel do zamisli, da bi zvo¢no vzdusje krozis¢a locil na dve fazi, in sicer

na fazo mirovanja ter fazo prometa.

Mirovanje
S to fazo imamo opravka takrat, kadar na cestiSCu ni nobenega avtomobila. Za ta del sem
izbral zvok mirne soseske z blagim Sumom prometa v ozadju. Ta zvok se v krozis¢u slisi

vedno in glasnost se mu ne spreminja.

Promet

Ta faza se pojavi, ko po krozis¢u vozi kakr$no koli Stevilo vozil — od enega avtomobila do
petdeset, kjer je meja njihovega nastajanja. Tu sem uporabil zvok hrupa prometa, ki pa je bil
dokaj glasen, zato ga za razliko od zvoka v fazi mirovanja nisem mogel uporabiti kar tako, saj
se je sliSal prehod. Zamisliti sem si moral nek dinamicen nacin glasnosti glede na koli¢ino

avtomobilov na ekranu. Kaj hitro sem prisel do naslednjega grafa (Slika 68).

70

http://www.flashkit.com/soundfx/
http://www.freesound.org/
http://www.partnersinrhyme.com/pir/PIRsfx.shtml
http://www.soundsnap.com/
http://amazingsounds.iespana.es/en/
http://www.pachd.com/sounds.html
http://www.mediacollege.com/downloads/sound-effects/

glasnost

0

Slika 68: Graf glasnosti glede na Stevilo vozil

Vir: Lasten

S tem nac¢inom sem bil najprej zelo zadovoljen, toda sCasoma me je zacel motiti. Zakaj, ko je
bila na ekranu polovica avtomobilov, je bil promet Ze zelo gost. Glasnost je bila tedaj komaj
na polovici konéne vrednosti. Ce sem od tod naprej v krozis¢e spustil $e ostalo polovico
avtomobilov, se je glasnost povecala Se za enkrat toliko. To mi ni odgovarjalo, saj se v
realnem svetu glasnost ne poveca sorazmerno s Stevilom avtomobilov, torej v ravni Crti,

temvec prej v obliki krivulje.

r=80

glasnost

0
Slika 69: Graf glasnosti glede na Stevilo vozil v obliki krivulje

Vir: Lasten

Najbolj primeren kandidat za poosebitev te krivulje se mi je zdela Cetrtina kroga (slika 69a).
Po grafu sode¢ vidimo, da glasnost ob malem S$tevilu avtomobilov narasc¢a hitro (slika 69b),
ko pa se zacnemo blizati zgornji meji vozil, se ublazi. S tem je zvok prometa hitro postal
glasen, na kar se njegova glasnost ve¢ ni pretirano vecala. Do formule, ki je skrbela za

racunanje te glasnosti (slika 70), sem priSel s kombinacijo trigonometrije in lastne pameti.

sin(acos(\ —— el ——— /80))*80

Slika 70: Formula za glasnost

Vir: Lasten
71

Tu lahko omenim tudi, da sem letalu prav tako dodal zvok. Slo je za zvok preleta, ki je e

poudaril prometno vzdusje okolja.

3.7.2 Zvok macke
Ce se je kdaj zares opazilo, da je manjkal zvok, je bilo to takrat, kadar je avtomobil povozil
macko in sliSala se je le tiSina. Zvok trka z avtom je bil torej prvi, na katerega sem se spomnil.

Ob spremljanju obnasanja macke pa sem se spomnil Se preostalih (tabela 6).

Za predvajanje teh zvokov sem potreboval nekaj zmogljivejSega kot samo monotono
ponavljanje enega in istega. S tem v mislih sem macki ustvaril dodaten MC, ki je vseboval
vse omenjene zvoke. Tako mi je preostalo le, da sem v logiko macke vnesel dejanja, ki so
sprozila predvajanje izbranega zvoka. Pri zvokih trka v avto sem si dal duska in ju oblikoval

tako, da se nesreca slisi hudo ter komi¢no hkrati. Ostalih zvokov vsebinsko nisem spreminjal.

Ime zvoka Razlaga zvoka
soundCatCrash1 | Udarec v avto, ki mu sledita macji krik ter avtomobilska hupa.
soundCatCrash? Udarec v avto, ki mu sledita macji krik ter blagi zvok trganja
mesa.

cathissl . — "

cathiss? Razli¢na zvoka pihanja macke

cattalk1 . . . y

cattalk? Razli¢na zvoka mijavkanja macke

catcryl

catery2 Stevilni zvoki jokanja macke

catcry3

catcry4

Tabela 6: Seznam vseh zvokov za macko

Vir: Lasten

Sploh se ne zavedamo, kaj nam manjka, dokler manjkajo¢ega ne ob¢utimo — nekako tako

lahko na kratko opiSem svojo izkuSnjo z zvokom.

72

3.8 Optimizacija

Ko se projekt bliza koncu, pride ¢as optimizacije delovanja aplikacije. Pri tem gre za
pre¢is¢evanje delov aplikacije z namenom, da ta zacne te¢i hitreje. Ceprav je ta faza v
glavnem namenjena pridobivanju hitrosti, sem precejSnji del namenil tudi iskanju in

odstranjevanju napak.

3.8.1 Pocasna grafika

Motilo me je, da kroziS€e na pocasnejSih racunalnikih ni delovalo gladko. S pomocjo
preprostega preizkusa, kjer sem vso grafiko pretvoril v ¢rne kocke, sem ugotovil, da za to ni
bila kriva obSirnost kode v AS, temve¢ podrobna vektorska grafika. Za izris ¢rnih kock
namre¢ ne potrebujemo toliko procesorske moci kot za zapletene oblike z barvnimi prelivi,
zato je bila ob spremembi pohitritev ve¢ kot o€itna. Seveda nisem zelel, da bi po ekranu

vozile ¢rne kocke, zato sem zmanjsal koli¢ino podrobnosti ter zbrisal doloc¢ene prelive.

S tem sem krozis¢e malenkost pohitril, a vseeno ne dovolj, da na slabsih racunalnikih ne bi
bilo tezav. Za gladkost sem bil pripravljen poseci tudi po slede¢i drasti¢ni metodi — v Flashu
sem privzeto kakovost izrisa® s high zmanjsal na medium. To je obremenitev procesorja
zmanjSalo kar precej, toda Se vedno nisem bil tam, kjer sem Zelel. Po dolgotrajnem
sprehajanju ve¢ nisem vedel, kaj bi optimiziral, in ker pri kakovosti izrisa na manj od medium

nisem zelel iti, sem se enostavno moral sprijazniti s kon¢nim rezultatom.

Slika 71: Pove€an prikaz razlike v kakovosti izrisa — high, medium in low

Vir: Lasten

¥ Moznosti, ki so na razpolago, so high, medium in low.

73

3.8.2 Lov za hro$ci

Vedno, ko sem imel ob&utek, da je krozis¢e delovalo brez tezav, se je pojavil nov hrose’, ki je
imel potencial, da me razjezi. Lov za hro$¢i je upraviCeno najmanj priljubljen del
programiranja, Se posebej pri projektih, kot je tale, v katerih se dogajanje ne odvija vedno

enako.

Najhujsi hros¢ je nastopil, ko je avtomobil v kroziScu kar naenkrat izginil in se v istem
trenutku pojavil na drugi strani krozis¢a. Takrat Se nisem vedel, cemu bi se to lahko zgodilo, a
sem po dolgotrajnem in frustrirajoCem opazovanju le ugotovil. Avtomobil je pri izhodu iz
krozii¢a pocakal na peSca in e si mu takrat z misko spremenil smer, se je teleportiral'® na
tisti krak, kamor je smer dolocala. Temu sem naredil konec tako, da sem avtomobilu po
izhodu iz srednjega dela krozis¢a preprecil, da bi mu sprememba smeri spremenila njegovo
pot. To je bil edini hros¢, ki me je zares presenetil, saj sem bil prepri¢an, da promet deluje

brezhibno.

? Izraz hro$¢ ali bug izvira iz programiranja in predstavlja napako v kodi.

1 Teleport je nekaj, kar omogoga instantno potovanje skozi ¢as in prostor. Lahko je bodisi stroj bodisi portal.

74

4 ZAKLJUCEK

Ob zacetku projekta nisem imel popolnoma realiziranega nacérta. Zapisane sem imel le cilje, ki
so me opomnili, katere elemente sem zelel izdelati. Zaradi tega sem napredoval pocCasneje, kot
bi Zelel, saj sem si delovanje posameznih delov krozis¢a izmisljeval sproti. Ceprav bi z bolje
nastavljenim in podrobnej$im nacrtom projekt dokoncal v krajSem casu, to tukaj ni prislo v
postev, saj menim, da za tak nacrt tedaj nisem imel dovolj izkusenj. K temu je veliko
pripomoglo tudi prepricanje, da sem se spusc¢al v nekaj neznanega. Dodaten razlog je bila tudi
precejSnja koli¢ina elementov, ki bi naj bili vodeni z AS-om. Programirati sem znal le za
vzorec, zato sem skusal slediti najbolj ocitni smeri, tudi ¢e je to pomenilo, da je bilo treba

napredovati po polzje.

S tem, ko sem odstranil ¢as kot kljucen dejavnik pri razvoju izdelka, sem imel lepo moZnost
eksperimentirati, kar sem najve¢ pocel v kombinaciji pisala in lista papirja, veliko pa tudi s
spreminjanjem lastnosti posameznih delov aplikacije. Ko sem pri snovanju logike prisel do
potencialne resitve, sem se jo odpravil prenesti v kodo. Ker AS zajema veliko funkcij, bi bilo
nerealno pricakovati, da sem poznal vse Ze od samega zacetka. Zato je velik razlog za nebole¢
napredek pri pisanju kode bila mozZnost najti pomoc¢. Tukaj sem imel sreco, saj Flash vsebuje
izvrstno bazo pomo¢i'', kjer je razlozeno, kako se sleherna funkcija vede. Pridodani so tudi
bolj ali manj jasni primeri, ki lahko pomenijo razliko med uspehom in brezuspesnim
razbijanjem glave. Ni pa to bil edini vir pomoc¢i pri ustvarjanju tega projekta, saj sem poleg
tega izvedel veliko tudi z brskanjem po spletu. Omenjena pomo¢ mi je pomagala le pri
razumevanju posameznih funkcij AS-a, ne pa tudi pri ustvarjanju logike, kjer sem bil

prepuscen samemu sebi.

Zaradi precejs$nje vsebnosti AS-a delo ni potekalo linearno, temve¢ v nekaksni sinusni krivulji
poteka dela skozi ¢as in prostor. Tezko je opisati obcutek, ki prevladuje v programiranju, toda
dejstvo je, da sem zaradi nevidnih povezav med objekti in AS-om moral pri ustvarjanju
posameznih elementov kroziS€a opraviti precej skakanja iz enega dela projekta v drugega.
Zgodilo se je celo, da je bilo treba zaradi majhne spremembe kode na enem mestu spremeniti
velik del kode na drugem, da ne omenim napak, ki so se mi dogajale zaradi povrSnosti pri
pisanju kode. Flash ti jih sicer javi, toda nekaterih ne opiSe pravilno, zato sem se v€asih znasel

v polozaju, ko sem skuSal popraviti popolnoma delujoci del kode, medtem ko se je napaka

" Najdemo jo na spletni strani http://help.adobe.com/en_US/FlashPlatform/reference/ActionScript/2/help.html,
dne 15. 12.2010

75

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/2/help.html

skrivala povsem drugje. Prav tako je znala nastati zmeda pri iskanju hroscev, za katerih

odkritje je bilo vCasih treba preveriti vsak najmanjsi koticek kode.

V kolikor bi se ponovno lotil tega projekta, bi marsikaj naredil drugace, morda celo vse.
Trenutno logiko, ki vodi posamezne elemente krozisca, bi gotovo popolnoma spremenil, saj
so nekateri njeni vidiki preve¢ omejujoCi. Lep primer je vnaprej pripravljena voznja
avtomobila po tirnicah, ki ne omogoca, da bi se avto ustavil, kadar se mu zahoce. Zato bi
naslednji¢ cestiS¢e ustvaril tako, da bi posedovalo namige o strukturi zavojev. Te namige bi
avtomobili koristili za matemati¢ni izracun poti voznje, kar bi pomenilo, da njihova voznja
ve¢ ne bi bila narejena vnaprej. PeSci so v bistvu Ze zdaj narejeni v takem slogu, le ustaviti bi
se Se morali znati. KroziS¢e bi s podobnimi spremembami postalo Se bolj dinamic¢no, saj bi
lahko vnesel tudi nacin, kjer bi nekateri vozniki vozili manj po pravilih in bolj po svojih
(ne)zmoznostih — tako kot v realnosti. To bi voznjo avtomobilov naredilo znatno bolj
nepredvidljivo in s tem zanimivejSo, da ne pomislim na tezave, ki bi jih ob preckanju cestisca
v tej zmesSnjavi imela uboga macka. Da bi vse omenjeno delovalo s trenutno koli¢ino
elementov, bi najverjetneje moral presedlati z AS-a 2.0 na AS 3.0, saj je bolje prilagojen

upravljanju vecjih koli¢in objektov, poleg tega pa je njegovo izvajanje kode precej hitrejse.

Ne glede na omenjeno sem z nastalim izdelkom izjemno zadovoljen. Hkrati sem tudi
presenecen, da mi je uspelo narediti vse, kar sem si zamislil. Sicer je res, da to kroZis¢e nima
neke prakti¢ne vrednosti, saj gre tu le za beZzno zanimivost, a pomembnejse je dejstvo, da sem
skozi izdelavo tega izdelka pridobil veliko novih izkusen;j in znanj ter hkrati utrdil obstojeca.
Napredoval sem predvsem pri snovanju smiselne logike in njenem pretvarjanju v kodo. S tem
sem dobil dodatno motivacijo za morebitno ucenje drugih programskih jezikov v prihodnosti.
Najvec, kar sem v obsegu tega projekta dosegel, je povecanje lastnega znanja. Upam, da bodo

postopki, ki sem jih omenil v tej nalogi, v prihodnosti pomagali Se marsikomu.

Menim, da danasnja hitrost Zivljenja definira na¢in ucenja, ki je potreben, da se lahko uspesno
kosamo z neustavljivim napredkom v tehnologiji. Ne samo da se moramo uciti sami zase,
znanje moramo usvajati ¢im hitreje ter ¢im bolje, hkrati pa po svojih sposobnostih. Tukaj
nastopi splet, kjer lahko s klikom na miSkino uho dostopamo do dnevno posodobljenih u¢nih
gradiv. Ne gre samo za priro¢nost, temve¢ tudi za moznost, da dobimo prav tisto informacijo,
ki jo i8¢emo, ne pa tudi tiste, ki je ne potrebujemo. Tehnologijo imamo, Cas je, da se je

zacnemo posluzevati stoodstotno. Navsezadnje je tehnologija stvar, ki nam res lajsa zivljenje.

76

S LITERATURA IN VIRI

5.1 Literatura

1. Russel, C.: Adobe Flash CS4 Professional, Adobe Press, Kalifornija, ZDA, 2009.
2. Rich, S.: Learning Flash CS4 professional, O'Reilly, Kalifornija, ZDA, 2009.

5.2 Spletni viri
1. http://en.wikipedia.org/wiki/Adobe Flash/, dne 15. 12. 2010
2. http://www.adobe.com/products/flash/, dne 15. 12. 2010
3. http://livedocs.adobe.com/flash/9.0/main/flash_as2 learning.pdf, dne 15. 12. 2010
4. http://help.adobe.com/en_US/FlashPlatform/reference/ActionScript/2/help.html,
dne 15. 12. 2010
5. http://www.mzp.gov.si/fileadmin/mzp.gov.si/pageuploads/DPR/Predlogi predpisov_D
PR/10 01 20-Zakon o pravilih cestnega prometa.pdf, dne 15. 12. 2010
http://www.flashkit.com/soundfx/, dne 15. 12. 2010
http://www.freesound.org/, dne 15. 12. 2010
http://www.partnersinthyme.com/pir/PIRsfx.shtml, dne 15. 12. 2010
http://www.soundsnap.com/, dne 15. 12. 2010
10. http://amazingsounds.iespana.es/en/, dne 15 .12. 2010
11. http://www.pachd.com/sounds.html, dne 15 .12. 2010
12. http://www.mediacollege.com/downloads/sound-effects/, dne 15. 12. 2010

o N

77

http://en.wikipedia.org/wiki/Adobe_Flash/
http://www.adobe.com/products/flash/
http://livedocs.adobe.com/flash/9.0/main/flash_as2_learning.pdf
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/2/help.html
http://www.mzp.gov.si/fileadmin/mzp.gov.si/pageuploads/DPR/Predlogi_predpisov_DPR/10_01_20-Zakon_o_pravilih_cestnega_prometa.pdf
http://www.mzp.gov.si/fileadmin/mzp.gov.si/pageuploads/DPR/Predlogi_predpisov_DPR/10_01_20-Zakon_o_pravilih_cestnega_prometa.pdf
http://www.flashkit.com/soundfx/
http://www.freesound.org/
http://www.partnersinrhyme.com/pir/PIRsfx.shtml
http://www.soundsnap.com/
http://amazingsounds.iespana.es/en/
http://www.pachd.com/sounds.html
http://www.mediacollege.com/downloads/sound-effects/

6 SLOVAR TUJIH BESED

Actions — akcije

ActionScript — skriptni jezik programa Adobe Flash
Align — poravnava

Bitmap — bitna slika

Button — grafi¢ni simbol Button

Classic Tween — klasi¢na animacija gibanja
Collision Detection — preverjanje trka
Color — barva

Compiler Errors — napake prevajalnika
Drawing Object — risalni objekt

Dynamic Text — dinami¢ni tekst

Fill — polnilo

Frame — okvir

Frame by Frame — okvir za okvirjem
Frames per Second — Stevilo okvirjev na sekundo
Graphic — grafi¢ni simbol Graphic
Graphic Symbol — grafi¢ni simbol

Height — viSina

Hertz — herc

High — visoka kakovost

Info — informacije

Layer — plast

Library — knjiznica

Low — nizka kakovost

Medium — srednja kakovost

Morphing — ucinek pri animaciji, kjer se slika skozi ¢as pretvori v drugo v obliki preobrazbe
Motion Guide — pot animacije

Motion Tween — animacija gibanja
MovieClip — grafi¢ni simbol MovieClip
Output — izpis

Pixel — slikovna pika

Position — pozicija

Properties — lastnosti

Rotation — rotacija
78

Shape Tween — animacija oblike
Swatches — odtenki

Stroke — obroba

Timeline — ¢asovna linija

Tools — orodja

Width — Sirina

79

7 PRILOGE

Poleg tega dokumenta prilagam DVD z aplikacijo Interaktivni prikaz pravilne voznje v

krozis¢u v Adobe Flash CS4. Vse datoteke, ki se nahajajo na DVD-ju, so prikazane v tabeli 7.

Ime datoteke Vrsta datoteke Razlaga
Diplomska naloga.pdf Dokument PDF Diplomska naloga v elektronski obliki
Kropise.exe Program Izdelek v obliki programa (za
Windows)
Krozisce.fla Flash dokument Odprta izvorna datoteka Flash
Krozis¢e.html Dokument HTML Povezava do izdelka v SWF formatu
Krozisce.swf Shockwave datoteka | Izdelek v SWF formatu (za splet)

Tabela 7: Datoteke na prilozenem DVD-ju

Vir: Lasten

80

	1 UVOD
	1.1 Namen, cilji in osnovne trditve diplomskega dela
	1.1.1 Glavni cilji
	1.1.2 Dodatni cilji

	1.2 Predpostavke in omejitve
	1.3 Predvidene metode dela
	1.4 Uporabljene kratice

	2 ADOBE FLASH CS4
	2.1 Kratka zgodovina programa Flash
	2.2 ActionScript
	2.3 Orodja
	2.4 Objekti
	2.4.1 Risalni objekt (Drawing object)
	2.4.2 Grafični simboli (Graphic symbols)

	2.5 Načini animacije

	3 INTERAKTIVNO KROŽIŠČE
	3.1 Temelji
	3.1.1 Vektorske oblike ali bitne slike
	3.1.2 Dimenzije v slikovnih pikah
	3.1.3 Hitrost predvajanja animacije ali število slik na sekundo
	3.1.4 ActionScript
	3.1.5 Pravila vožnje v krožišču

	3.2 Krožišče
	3.2.1 Skica
	3.2.2 Videz krožišča
	3.2.3 Odvijanje v krožišču
	3.2.4 Logika

	3.3 Avtomobil
	3.3.1 Načrtovanje logike
	3.3.2 Videz avtomobila
	3.3.3 Različne preobleke
	3.3.4 Animacija
	3.3.5 Nastanek avtomobilov na različnih krakih
	3.3.6 Preverjanje trčenja (Collision Detection)
	3.3.7 Seznam avtomobilov
	3.3.8 Kolone
	3.3.9 Poenostavljen prikaz logike
	3.3.10 Interakcija
	3.3.11 Zajem gibov
	3.3.12 Dodaten avtomobil

	3.4 Pešec
	3.4.1 Logika peščevih poti
	3.4.2 Podrobneje o peščevi logiki
	3.4.3 Hoja proti cilju
	3.4.4 Prehod za pešce
	3.4.5 Poenostavljen prikaz logike

	3.5 Mačka
	3.5.1 Izmikanje
	3.5.2 Sledenje miškinemu kazalcu
	3.5.3 Težava z globino
	3.5.4 Logika

	3.6 Uporabniški vmesnik
	3.6.1 Meni in gumbi
	3.6.2 Menjava jezika
	3.6.3 Seštevanje prometa
	3.6.4 Izbira avtomobilove smeri z gumbi

	3.7 Zvok
	3.7.1 Zvok krožišča
	3.7.2 Zvok mačke

	3.8 Optimizacija
	3.8.1 Počasna grafika
	3.8.2 Lov za hrošči

	4 ZAKLJUČEK
	5 LITERATURA IN VIRI
	5.1 Literatura
	5.2 Spletni viri

	6 SLOVAR TUJIH BESED
	7 PRILOGE

