
VIŠJA STROKOVNA ŠOLA ACADEMIA,

MARIBOR

DIPLOMSKO DELO

INTERAKTIVNI PRIKAZ PRAVILNE VOŽNJE

V KROŽIŠČU V ADOBE FLASH CS4

Kandidat: Matej Zavernik

Študent študija ob delu

Številka indeksa: 11190122764

Program: Multimediji

Mentor: Veronika Saje, univ. dipl. inž. arh.

Mentor v podjetju: Matej Butala

Maribor, februar 2011

2

IZJAVA O AVTORSTVU DIPLOMSKEGA DELA
Podpisani Matej Zavernik, št. indeksa 11190122764, sem avtor diplomske naloge z naslovom

INTERAKTIVNI PRIKAZ PRAVILNE VOŽNJE

V KROŽIŠČU V ADOBE FLASH CS4,

ki sem jo napisal pod mentorstvom Veronike Saje, univ. dipl. inž. arh.

S svojim podpisom zagotavljam, da:

- je predložena diplomska naloga izključno rezultat mojega dela;

- sem poskrbel, da so dela in mnenja drugih avtorjev, ki jih uporabljam v predloženi

nalogi, navedena oz. citirana skladno s pravili Višje strokovne šole Academia;

- se zavedam, da je plagiatorstvo – predstavljanje tujih del oz. misli kot moje lastne –

kaznivo po Zakonu o avtorskih in sorodnih pravicah (UL št. 16/2007 – v nadaljevanju

ZASP), prekršek pa podleže tudi ukrepom VSŠ Academia, skladno z njenimi pravili;

- skladno z 32. členom ZASP dovoljujem VSŠ Academia objavo diplomske naloge na

spletnem portalu šole.

Maribor, februar 2011 Podpis študenta:

3

ZAHVALA
Ob zaključku diplomskega dela se zahvaljujem svoji družini, prijateljem in dekletu Mateji ter

njeni družini, da so me podpirali in mi omogočali študij.

Zahvaljujem se mentorici Veroniki Saje, univ. dipl. inž. arh., ter mentorju v podjetju Mateju

Butali za čas, ki sta mi ga namenila, da sta mi svetovala ter me vodila skozi pisanje diplomske

naloge.

Zahvala velja tudi vsem profesorjem, ki so skozi moje šolanje ustvarjali prijeten prostor za

sprejemanje znanja.

Posebna zahvala gre gospe Silvi Požlep, inž. multimedije, ki mi je v 1. in 2. letniku študija

omogočila opravljanje obvezne delovne prakse, ter

Hvala lektorici Kseniji Pečnik, prof. slov., za slovnični pregled naloge.

4

POVZETEK
Diplomsko delo opisuje proces ustvarjanja aplikacije Interaktivni prikaz vožnje v krožišču od

ideje do končnega izdelka. V začetnem delu je prikazan program Adobe Flash, njegova

zgodovina ter opis bistvenih orodij, ki sem jih uporabil. Sledi jedro naloge, kjer sem postavil

temelje za uspešen potek dela in nadaljeval z razlago delovanja posameznih elementov, ki

sestavljajo krožišče. Zaključek predstavlja moje mnenje o končnem izdelku ter doseženem

rezultatu nasploh.

Ključne besede:

Adobe Flash, programiranje logike, animacija, interaktivnost, pravilna vožnja v krožišču

5

ABSTRACT
This diploma thesis describes the process of creating the application Interactive presentation

of correct driving in the roundabout, from the initial idea to the finished product. At the

beginning I describe Adobe Flash, its history and the essential tools I used. What follows is

the core of the thesis, where I lay down the foundation for a successful workflow and proceed

to explain the function of the individual components that make up the roundabout. The

conclusion presents my opinion on the final product and the achieved result in general.

Key words:

Adobe Flash, logic programming, animation, interactivity, roundabout, correct driving in a

roundabout.

6

KAZALO

1 UVOD .. 11

1.1 NAMEN, CILJI IN OSNOVNE TRDITVE DIPLOMSKEGA DELA .. 12

1.1.1 Glavni cilji .. 12

1.1.2 Dodatni cilji .. 12

1.2 PREDPOSTAVKE IN OMEJITVE ... 13

1.3 PREDVIDENE METODE DELA ... 13

1.4 UPORABLJENE KRATICE ... 13

2 ADOBE FLASH CS4 ... 14

2.1 KRATKA ZGODOVINA PROGRAMA FLASH ... 15

2.2 ACTIONSCRIPT .. 17

2.3 ORODJA ... 18

2.4 OBJEKTI ... 21

2.4.1 Risalni objekt (Drawing object) ... 21

2.4.2 Grafični simboli (Graphic symbols) ... 21

2.5 NAČINI ANIMACIJE ... 23

3 INTERAKTIVNO KROŽIŠČE .. 25

3.1 TEMELJI ... 25

3.1.1 Vektorske oblike ali bitne slike ... 25

3.1.2 Dimenzije v slikovnih pikah .. 26

3.1.3 Hitrost predvajanja animacije ali število slik na sekundo 26

3.1.4 ActionScript .. 27

3.1.5 Pravila vožnje v krožišču .. 27

3.2 KROŽIŠČE .. 28

3.2.1 Skica ... 28

3.2.2 Videz krožišča ... 29

3.2.3 Odvijanje v krožišču ... 30

3.2.4 Logika ... 31

3.3 AVTOMOBIL ... 33

3.3.1 Načrtovanje logike .. 33

3.3.2 Videz avtomobila .. 34

3.3.3 Različne preobleke .. 34

3.3.4 Animacija .. 36

7

3.3.5 Nastanek avtomobilov na različnih krakih ... 37

3.3.6 Preverjanje trčenja (Collision Detection) .. 38

3.3.7 Seznam avtomobilov ... 39

3.3.8 Kolone ... 40

3.3.9 Poenostavljen prikaz logike .. 42

3.3.10 Interakcija ... 44

3.3.11 Zajem gibov .. 45

3.3.12 Dodaten avtomobil ... 46

3.4 PEŠEC .. 47

3.4.1 Logika peščevih poti ... 47

3.4.2 Podrobneje o peščevi logiki .. 49

3.4.3 Hoja proti cilju ... 51

3.4.4 Prehod za pešce .. 52

3.4.5 Poenostavljen prikaz logike .. 55

3.5 MAČKA .. 57

3.5.1 Izmikanje ... 58

3.5.2 Sledenje miškinemu kazalcu ... 58

3.5.3 Težava z globino ... 63

3.5.4 Logika ... 64

3.6 UPORABNIŠKI VMESNIK ... 66

3.6.1 Meni in gumbi ... 66

3.6.2 Menjava jezika .. 67

3.6.3 Seštevanje prometa ... 67

3.6.4 Izbira avtomobilove smeri z gumbi ... 67

3.7 ZVOK ... 69

3.7.1 Zvok krožišča .. 70

3.7.2 Zvok mačke ... 72

3.8 OPTIMIZACIJA .. 73

3.8.1 Počasna grafika .. 73

3.8.2 Lov za hrošči ... 74

4 ZAKLJUČEK ... 75

5 LITERATURA IN VIRI .. 77

5.1 LITERATURA .. 77

5.2 SPLETNI VIRI .. 77

8

6 SLOVAR TUJIH BESED .. 78

7 PRILOGE .. 80

KAZALO SLIK
Slika 1: Adobe Flash CS4 ... 14

Slika 2: Časovna linija (Timeline) .. 18

Slika 3: Orodja (Tools) ... 18

Slika 4: Napake prevajalnika (Compiler Errors) ... 18

Slika 5: Lastnosti (Properties) .. 19

Slika 6: Knjižnica (Library) ... 19

Slika 7: Barva (Color) .. 19

Slika 8: Odtenki (Swatches) ... 19

Slika 9: Akcije (Actions) .. 20

Slika 10: Izpis (Output) .. 20

Slika 11: Poravnava (Align) .. 20

Slika 12: Informacije (Info) .. 20

Slika 13: Nenavadna časovna linija simbola Button .. 22

Slika 14: Prikaz pretvorbe vektorja s pomočjo Shape Tween .. 23

Slika 15: Prikaz animacije Classic Tween .. 23

Slika 16: Motion Tween animiramo z orodjem Motion Editor ... 24

Slika 17: Povečeva vektorske oblike .. 25

Slika 18: Povečava bitne slike .. 25

Slika 19: Glavne nastavitve dokumenta ... 26

Slika 20: Podrobnejša skica krožišča.. 28

Slika 21: Oblikovanje krožišča skozi čas ... 29

Slika 22: Različne barve rož ... 30

Slika 23: Senca letala .. 30

Slika 24: Statičen promet je vsakič enak .. 31

Slika 25: Dinamičen promet je vsakič drugačen .. 31

Slika 26: Kraki krožišča (0,1,2,3) ... 32

Slika 27: Razvoj videza avtomobila ... 34

Slika 28: Vse preobleke in dodatni vzorci .. 35

Slika 29: Razvoj smerokaza skozi čas od leve proti desni ... 35

Slika 30: Drobovje MC-a CarSkin0 ... 35

9

Slika 31: »Tirnice«, po katerih je animiran avto ... 36

Slika 32: Različne rotacije avtomobila glede na krak nastanka ... 37

Slika 33: Mesta za preverjanje (0,1,2,3) ... 38

Slika 34: Zanka nastajanja in življenjske dobe avtomobila .. 40

Slika 35: Sistem sestavljene animacije vožnje v koloni ... 41

Slika 36: Vse kombinacije vožnje v koloni .. 42

Slika 37: Poenostavljen graf poteka avtomobilove logike v koloni ... 43

Slika 38: Smeri, ki jih lahko določimo avtu ... 44

Slika 39: Različno dojemanje smeri glede na izvorni krak avtomobila 44

Slika 40: Kako v Flashu merimo slikovne pike .. 45

Slika 41: Kako premik miške pretvorimo v smer ... 46

Slika 42: Videz pešca ... 47

Slika 43: Mreža poti ... 47

Slika 44: Logika peščevih ciljev za krak 0 ... 48

Slika 45: Celoten prikaz logike peščevih ciljev ... 50

Slika 46: Kot med pešcem in ciljem ... 51

Slika 47: Kot iz slike 41 prenesen v krog ... 51

Slika 48: Prostor, kjer pešci prečkajo cestišče .. 53

Slika 49: Postavitev in poimenovanje prehodov za pešce .. 53

Slika 50: Peščevi tipali ... 54

Slika 51: Kako pešec prečka cestišče ... 55

Slika 52: Poenostavljen graf poteka peščeve logike ... 56

Slika 53: Videz mačke v teku ... 57

Slika 54: Mačkin brlog ... 57

Slika 55: Tipali mački sporočita, od kod prihaja nevarnost ... 58

Slika 56: Prikaz enakomernega in neenakomernega 180 ° obrata mačke 59

Slika 57: Težave pri računskem iskanju pravilnega obrata .. 60

Slika 58: Primer računanja pravilnega obrata, kjer sta dir in dirNew pozitivna (a in b) ali

negativna (c in č) .. 61

Slika 59: Primer računanja pravilnega obrata, kjer je dir pozitiven in dirNew negativen 61

Slika 60: Primer računanja pravilnega obrata, kjer je dir negativen in dirNew pozitiven 61

Slika 61: Poenostavljen graf poteka logike za najdbo ustrezne prilagojene rotacije dirTarget 63

Slika 62: Težava z globino mačke .. 64

Slika 63: Poenostavljen graf poteka mačkine logike .. 65

Slika 64: MC AboutScreen vsebuje poleg vseh gumbov tudi meni ter prometne znake 66

10

Slika 65: Seštevanja prometa na kraku ... 67

Slika 66: Grafični prikaz izbrane poti – naključno, prvi, drugi, tretji in četrti izhod 68

Slika 67: Adobe Audition 1.5 ... 69

Slika 68: Graf glasnosti glede na število vozil ... 71

Slika 69: Graf glasnosti glede na število vozil v obliki krivulje .. 71

Slika 70: Formula za glasnost ... 71

Slika 71: Povečan prikaz razlike v kakovosti izrisa – high, medium in low............................. 73

KAZALO TABEL
Tabela 1: Formule za izračun peščevih ciljev .. 49

Tabela 2: Prikaz vrednosti funkcij sinus in kosinus glede na različne smeri v krogu 52

Tabela 3: Formuli za izračun gladkega premika oziroma obrata ... 59

Tabela 4: Izračun primerov b in c ... 60

Tabela 5: Dokazi za primere s slik 58, 59 in 60 ... 62

Tabela 6: Seznam vseh zvokov za mačko .. 72

Tabela 7: Datoteke na priloženem DVD-ju .. 80

11

1 UVOD
Projekt, o katerem govori ta diplomska naloga, je zaživel kot obvezna naloga pri predmetu

glavni multimedijski programi. Izdelati je bilo treba kratko animacijo v programu Adobe

Flash CS4. Ker se s tem programom dokaj aktivno ukvarjam že od srednje šole naprej, sem tu

videl priložnost, da bi namesto osnovne animacije naredil nekaj zahtevnejšega.

Pri iskanju ideje nisem imel sreče, zato sem za nasvet vprašal svoje dekle. Predlagala mi je

prikaz pravilne vožnje v krožišču. Zdelo se mi je, da v obliki animacije takšno krožišče ne bi

bilo zanimivo, saj bi se vožnja avtomobilov kaj hitro začela ponavljati. Da bi bila animacija

zanimiva, bi moral vsak avtomobil voziti in izbirati pot skozi krožišče sam, in to po predpisih.

Hkrati bi se to moralo dogajati vsakič drugače, torej naključno – nekakšen lahkoten približek

simulacije vožnje avtomobilov v krožišču. Bolj kot sem o tem razmišljal, bolj navdušen sem

postajal nad zamislijo. Vsekakor se je slišalo kot izziv, zato sem se lotil ustvarjanja.

Jasno je, da sem dobro poznal osnove programa Flash in njegovega skriptnega jezika

ActionScript (v nadaljevanju AS), ki sem jih osvojil s pomočjo informacij na spletu, toda to

so bile le osnove. Da bi lahko uspešno realiziral zamišljeno, bi se moral naučiti še veliko.

Poleg tega pa sem s tem želel sporočiti tudi, da se v današnjem času da ogromno naučiti kar

od doma. Za to sem potreboval verodostojen vir informacij, iz katerih sem lahko črpal

potrebno znanje. Najboljši vir informacij o programu je gotovo priročnik, ki ga izda podjetje,

ki je program naredilo. Za Flash ta priročnik obstaja v spletni obliki, in sicer kot center za

pomoč, ki je za aktualno doslednost informacij posodobljen iz dneva v dan. Poleg tega pa so

na spletu gradiva za učenje malodane vsepovsod, le voljo in motivacijo potrebujemo, da jih

najdemo. In ker sem od srednje šole naprej srečal ogromno ljudi, ki se sami niso bili

pripravljeni naučiti ničesar, da bi dosegli kaj več, sem bil še toliko bolj motiviran ustvariti

nekaj zanimivega. Sledile so ideje, ki so bile osnova za cilje kot so zapisani v nadaljevanju.

Poudariti želim, da je krožišče, ki sem ga prikazal v svoji diplomski nalogi, posodobljena

različica krožišča, ki sem ga oddal pri predmetu glavni multimedijski programi. Prav tako

želim opomniti, da so vse slike in skice v diplomskem delu moje lastno delo.

Za lažje razumevanje diplomske naloge priporočam predhoden ogled izdelka, ki se nahaja na

priloženem DVD-ju.

12

1.1 Namen, cilji in osnovne trditve diplomskega dela
Namen mojega diplomskega dela je ustvariti aplikacijo s programom Adobe Flash CS4, ki

prikazuje pravilno vožnjo avtomobilov v krožišču ter vsebuje osnovno interaktivnost –

uporabnik lahko posredno manipulira s potjo avtomobilov. Gre za celoten postopek izdelave

multimedijskega projekta od načrtovanja do realizacije, v katerega so vključeni

programiranje, grafika in zvok. Za stvarjenje vseh segmentov projekta sem poskrbel

popolnoma sam, prav tako sem projekt tudi sam vodil, kar pomeni, da je moj vpliv prisoten v

celotnem obsegu projekta.

Vnaprej napisani cilji so ključna opora, kamor se lahko vrnemo, ko ne vemo več, kaj smo

želeli doseči. Zajemati morajo bistvene dele našega projekta, saj se po njih orientiramo.

1.1.1 Glavni cilji

Gre za cilje, ki sem jih dorekel še pred razvojem projekta. Ti elementi so pomembni za

osnovno delovanje krožišča in predstavljajo bistvo tega projekta:

- ustvariti krožišče s štirimi kraki, od katerih ima vsak dva vozna pasova,

- ustvariti avtomobile, ki bodo znali pravilno voziti v krožišču, se postavljati v kolono

ter paziti na druge avtomobile in pešce – njihov nastanek mora biti do neke mere

naključen,

- ustvariti pešce, ki se bodo naključno sprehajali ob cestišču ter uporabljali prehod za

pešce, s čimer bodo ovirali avtomobile – njihov nastanek mora biti prav tako do neke

mere naključen,

- vključiti možnost avtomobilom dodeliti smer z uporabo miške in/ali tipkovnice,

- ustvariti meni oz. gumbe, ki bodo služili spreminjanju določenih nastavitev krožišča,

- ustvariti všečno grafiko in animacijo ter vključiti zvok v aplikacijo,

- optimizirati delovanje aplikacije.

1.1.2 Dodatni cilji

Ti cilji niso bili v mojem izvirnem načrtu, temveč so se mi porajali sproti. Gre za dodatne

elemente, ki ne vplivajo na osnovno delovanje krožišča. Ti cilji so:

- ustvariti mačko, ki bo nastala na ukaz uporabnika in bo bežala pred avtomobili,

- vključiti možnost vodenja mačke z uporabo miške,

- ustvariti letalo, ki bo v naključnih intervalih preletelo krožišče,

- vključiti možnost spreminjanja jezika aplikacije.

13

1.2 Predpostavke in omejitve
Predvidevam, da s samo uporabo programa Adobe Flash CS4 ne bom imel težav, saj imam z

njim že veliko izkušenj, prav tako pa je literatura na internetu prosto dostopna. Tako se bo

največji izziv pokazal v samem oblikovanju aplikacije, oblikovanju algoritmov delovanja

posameznih delov aplikacije ter smiselni uporabi skriptnega jezika AS, ki je za takšen podvig

nuja. Največji izziv pa pričakujem v upodabljanju celotnega postopka izdelave aplikacije v

besedilo.

1.3 Predvidene metode dela
Za teoretični del diplomskega dela bom uporabil:

- knjižne vire,

- podatke z interneta in

- lastne izkušnje.

Raziskovalni del moje diplomske naloge pa bo potekal v naslednjih korakih:

- načrt,

- izdelava,

- končni izdelek,

- analiza celotnega postopka izdelave in

- predstavitev izdelka.

1.4 Uporabljene kratice
AS – ActionScript

DVD – Digital Versatile Disc

FPS – Frames per second1

HZ – Hertz

MC – MovieClip

1 Pove, koliko slik se izmenja v eni sekundi.

2 ADOBE FLASH CS4
Program Flash podjetja Adobe je namenjen ustvarjanju vsebine za splet. Z njegovo pomočjo

lahko spletnim stranem dodamo animacije, video in interaktivnost. Gre za dandanes izredno

priljubljeno spletno aplikacijo, ki jo glede na meritve, opravljene julija 2010, uporablja 99 %

vseh spletnih deskarjev. Poleg samih spletnih strani se Flash v veliki meri uporablja tudi za

oglaševanje in spletne igre (http://en.wikipedia.org/wiki/Adobe_Flash/, dne 15. 12. 2010).

Flash z manipulacijo vektorske in rastrske grafike omogoča animacijo teksta, risb in statičnih

slik. Podpira dvostransko pretakanje zvoka in videa ter komunikacijo z uporabnikom preko

miške, tipkovnice, mikrofona in kamere. Flash vsebuje objektno usmerjen programski jezik

AS.

Več o programu Adobe Flash se da prebrati na:

http://www.adobe.com/products/flash/, dne 15.12.2010

Slika 1: Adobe Flash CS4

Vir: Lasten

14

http://en.wikipedia.org/wiki/Adobe_Flash/
http://www.adobe.com/products/flash/

15

2.1 Kratka zgodovina programa Flash
Predhodnik programa Flash je bila risalna aplikacija SmartSketch za operacijski sistem

PenPoint OS. Po začetnem neuspehu na trgu je bil program preveden tudi za operacijska

sistema Windows in Mac. S priljubljenostjo interneta je bil program SmartSketch posodobljen

in izdan kot FutureSplash – vektorsko orodje za spletno animacijo, neposreden konkurent

takratnemu Macromedia Shockwave. Leta 1995 je izšel FutureSplash Animator –

posodobljena različica programa SmartSketch z izboljšavami pri delu z animacijo. Leto dni

kasneje je FutureSplash pridobilo podjetje Macromedia in na njegovi podlagi izdalo Flash.

Sledi seznam vseh inačic programa Flash do sedaj, in sicer s kratkim opisom sprememb, ki

sem ga povzel po Wikipediji (http://en.wikipedia.org/wiki/Adobe_Flash/, dne 15. 12. 2010).

FutureSplash Animator (1996) - prvotna različica programa Flash s časovno linijo in

osnovnimi orodji za urejanje.

Macromedia Flash 1 (1996) - program FutureSplash Animator s spremenjeno blagovno

znamko.

Macromedia Flash 2 (1997) - izdan s Flash Player 2. Nove možnosti: zbirka objektov.

Macromedia Flash 3 (1998) - izdan s Flash Player 3. Nove možnosti: element MovieClip,

vtična integracija jezika JavaScript, prozornost in zunanji samostojni predvajalnik vsebine.

Macromedia Flash 4 (1999) - izdan s Flash Player 4. Nove možnosti: notranje

spremenljivke, polje za vnos teksta, napreden AS in možnost pretoka MP3.

Macromedia Flash 5 (2000) - izdan s Flash Player 5. Nove možnosti: AS 1.0 (zaradi zasnove

na ECMAScript v skladnji zelo podoben jeziku JavaScript), podpora XML, objekti Smartclip

(predhodniki Flashevih komponent), dodano oblikovanje besedila na osnovi HTML za

dinamičen tekst.

Macromedia Flash MX (2002) - izdan s Flash Player 6. Nove možnosti: video kodek

(Sorenson Spark), Unicode, nova različica komponent za uporabniški vmesnik (v1),

kompresija, vmesnik za programiranje aplikacij za risanje vektorjev v AS.

http://en.wikipedia.org/wiki/Adobe_Flash/

16

Macromedia Flash MX 2004 (2003) - izdan s Flash Player 7. Nove možnosti: AS 2.0

(omogoči objektno usmerjen model programiranja v Flashu, toda le ob ročnem vnosu ukazov

AS, saj ni bil združljiv z uporabo podpore programiranja), vedenja, sloj za razširitve (JSAPI),

podpora tekstu, učinki časovne linije. Poleg vseh možnosti iz Flash MX 2004 je Macromedia

Flash MX Professional 2004 vseboval še: zaslone (forme za nelinearno izdelavo glede na

stanje ter diapozitive za organizacijo vsebin v linearni obliki kot pri programu PowerPoint),

integracija spletnih storitev, čarovnik za uvoz videa, komponente za predvajanje medijev

(vsebujejo celoten predvajalnik MP3 ali FLV, odet v obliko komponente, ki se vstavi v SWF),

komponente za podatke (DataSet, XMLConnector, WebServicesConnector, XupdateResolver

itd.) ter vmesnike za programiranje aplikacij, ki jih povezujejo, zavihek za projekte, novo

različico komponent za uporabniški vmesnik (v2) in zbirko prehodov.

Macromedia Flash 8 (2005) - Macromedia Flash Professional 8 s Flash Player 8 vsebuje

dodatke, osredotočene na izrazitost, kakovost, video in mobilno založništvo. Dodani so bili

filtri in načini prelivanja med objekti, nova orodja za animacijo, način risanja objektov,

dodatne lastnosti pri risanju, izboljšano mehčanje robov teksta, On2 VP6 napreden video

kodek, podpora za prosojnost v videu, samostojni enkoder in napredni uvoznik videa,

napredno komponento za predvajanje videa, interaktivni emulator mobilnih naprav ter še

vrsto drugih novosti ter izboljšav.

Hkrati je izšla tudi različica Macromedia Flash Basic 8, namenjena novim uporabnikom, ki

želijo uporabljati le osnove risanja, animacije in interaktivnosti. Ta različica je omejena, zato

ji manjka določena podpora za video in napredne grafične ter animacijske učinke.

Adobe Flash CS3 Professional (2007) - Flash CS3 je bila prva različica Flasha izdana pod

blagovno znamko Adobe. CS3 omogoča pretvorbo celotnih aplikacij v AS, vsebuje polno

podporo AS 3.0, izboljšano integracijo z ostalimi programi Adobe ter posodobljeno risanje

vektorjev.

Adobe Flash CS4 Professional (2008) - vsebuje inverzno kinematiko (Bones), osnovno

manipulacijo 3D-objektov, animacijo na osnovi objektov, nov pogon za tekst in dodatne

širitve k AS 3.0. Dodana so bila tudi nova orodja za uporabo pri ustvarjanju animacij.

Adobe Flash CS5 Professional (2010) - vsebuje podporo za založništvo aplikacij za iPhone.

Med drugimi novostmi je tu nov pogon za delo s tekstom, dodatne izboljšave k inverzni

kinematiki ter nov zavihek koščki kode.

17

2.2 ActionScript
AS je skriptni programski jezik, ki se v glavnem uporablja za razvoj spletnih strani in

programske opreme za platformo Adobe Flash Player. V originalu ga je razvijalo podjetje

Macromedia, a si ga zdaj lasti podjetje Adobe (ki je pridobilo podjetje Macromedia v letu

2005).

ActionScript 1.0

Začetna inačica jezika AS je bila načrtovana za Macromedia Flash in je bila zelo omejena, saj

se je uporabljala za vodenje preprostih 2D-vektorskih animacij. Posodobitve so v kasnejših

različicah omogočile izdelavo spletnih iger ter bogatih spletnih aplikacij s pretakajočim se

videom in zvokom.

ActionScript 2.0

Flash MX 2004 je prinesel skriptni programski jezik AS 2.0, ki je bil bolje prilagojen razvoju

aplikacij v Flashu. Velikokrat poskušamo nekaj animirati na roko, a se izkaže, da je to v

resnici laže sprogramirati z uporabo AS-a. Tak način pri urejanju večino časa nudi tudi večjo

fleksibilnost.

ActionScript 3.0

Leta 2006 je s prihodom platforme Flash Player 9 alpha izšla tudi nova inačica skriptnega

programskega jezika AS. AS 3.0 je objektno usmerjen programski jezik, ki ponuja precej

večji nadzor in ponovno rabo kode, s čimer se da ustvariti zapletene Flash aplikacije. V AS-u

3.0 se koda izvrši tudi do desetkrat hitreje kot v prejšnjih različicah.

Več o AS-u in njegovem delovanju se da izvedeti na:

http://livedocs.adobe.com/flash/9.0/main/flash_as2_learning.pdf, dne 15. 12. 2010.

http://livedocs.adobe.com/flash/9.0/main/flash_as2_learning.pdf

2.3 Orodja
V tem poglavju so omenjena in opisana samo tista orodja, ki sem jih uporabil pri izdelavi

krožišča.

Časovna linija (Timeline)

Flash se veliko uporablja za ustvarjanje animacij, zato ni čudno, da imamo možnost premika

skozi čas. Gre za dodatno dimenzijo, na katero je treba misliti ob ustvarjanju projekta, in

časovna linija je orodje, ki nam jo pomaga vizualizirati.

Slika 2: Časovna linija (Timeline)

Vir: Lasten

Orodja (Tools)

Na tem mestu se nahajajo orodja, ki jih potrebujemo za delo z grafiko.

Slika 3: Orodja (Tools)

Vir: Lasten

Napake prevajalnika (Compiler Errors)

Tukaj nam Flash javi, kje v kodi so se pojavile napake. Te napake so največkrat rezultat

površnosti pri pisanju kode, velikokrat pa nam tudi sporočajo, da stvari, ki smo si jih

zamislili, enostavno ne morejo tako delovati.

Slika 4: Napake prevajalnika (Compiler Errors)

Vir: Lasten

18

Lastnosti (Properties)

V tem oknu lahko upravljamo z lastnostmi

označenih objektov.

Slika 5: Lastnosti (Properties)

Vir: Lasten

Knjižnica (Library)

V knjižnico se shranjujejo ustvarjeni

simboli.

Slika 6: Knjižnica (Library)

Vir: Lasten

Barva (Color)

Vsa izbira barv in njihovo mešanje se

dogaja tukaj. Obroba (Stroke) in polnilo

(Fill) imata ločene nastavitve.

Slika 7: Barva (Color)

Vir: Lasten

Odtenki (Swatches)

To so že obstoječe mešanice barv, kjer

lahko ustvarimo tudi lastne odtenke.

Slika 8: Odtenki (Swatches)

Vir: Lasten

19

Akcije (Actions)

To je mesto, kjer pišemo kodo za AS. Za boljšo preglednost se napisan tekst obarva glede na

pomen.

Slika 9: Akcije (Actions)

Vir: Lasten

Izpis (Output)

S pomočjo funkcije trace() lahko na preprost način preverimo, kaj se dogaja v naši kodi.

Pričakovane informacije se zapišejo v tem oknu.

Slika 10: Izpis (Output)

Vir: Lasten

Poravnava (Align)

Priročno orodje za enostavno razporeditev

označenih objektov glede na druge objekte.

Slika 11: Poravnava (Align)

Vir: Lasten

Informacije (Info)

Ko potrebujemo natančnost pri delu s

postavitvijo in velikostjo objekta, nam te

informacije pridejo zelo prav.

Slika 12: Informacije (Info)

Vir: Lasten

20

21

2.4 Objekti
Vektorje, ki jih narišemo v Flashu, lahko pretvorimo v objekte. Ti nam nudijo naprednejše

funkcije urejanja in animacije. Teh objektov je več vrst, in čeprav se med seboj razlikujejo, so

nekatere lastnosti, ki jih imajo, enake. Uporabnejše med njimi so:

- Položaj (Position) je izjemno uporabna lastnost, še posebej če želimo biti pri

postavitvi objektov karseda natančni. Nastavljamo lahko vrednosti za obe osi (x, y) in

to v slikovnih pikah (pixels).

- Širina in višina (Width and Height) objekta se prav tako nastavljata v slikovnih pikah.

- Rotacija (Rotation) je izražena v stopinjah. Z njeno pomočjo lahko objekt vrtimo

okoli svoje osi oziroma nastavljene točke.

2.4.1 Risalni objekt (Drawing object)

Flashev risalni model navadno deluje na principu spojitve – vsaka nova črta, ki jo narišemo,

se spoji s prejšnjo in skupaj postaneta en grafični element. Risalni objekt je alternativa, ki

zagotovi, da je vsaka nova poteza risanja svoj lasten objekt.

2.4.2 Grafični simboli (Graphic symbols)

Grafični simbol je t. i. zabojnik, v katerega lahko vstavimo grafiko, sliko ali celo animacijo,

saj vsak od teh objektov do neke mere poseduje svojo časovno linijo. Največja prednost

simbola je dejstvo, da ga lahko uporabimo ponovno na več koncih naše animacije. Priročnost

se tako pokaže v tem, da nam potem, ko želimo narediti spremembe, ni treba spremeniti

vsakega simbola posebej, temveč naredimo spremembe samo v enem in avtomatsko se

pokažejo na vseh drugih. Vsak od teh objektov poseduje svojo časovno linijo, ki pa od

simbola do simbola deluje drugače.

V Flashu lahko ustvarimo tri vrste grafičnih simbolov, od katerih ima vsak svoje prednosti.

To so Graphic, MovieClip (v nadaljevanju MC) in Button.

Graphic je edini simbol, ki mu ne moramo dati imena, saj po njem ni potrebe. Graphic za

delovanje namreč ne koristi skriptnega jezika AS, tako da mu ne moremo spreminjati lastnosti

s pomočjo kode. Časovna linija simbola Graphic je enaka kot glavna časovna linija

dokumenta z eno pomembno spremembo. Če se odločimo na glavni časovni liniji ustaviti

animacijo, se bo ustavila tudi animacija vseh naših objektov Graphic. Če tega ne želimo,

lahko uporabimo MC, katerega animacija se privzeto predvaja v nedogled, saj se ponavlja.

Čeprav kot rečeno sam Graphic ne podpira AS, ga pa lahko vnesemo na njegovo časovno

linijo, kar je dobro vedeti.

MovieClip je med simboli tisti, ki ima največjo funkcionalnost. Tako kot Graphic tudi MC

poseduje sebi lastno časovno linijo, ki pa se privzeto predvaja znova in znova, tudi če nam

glavna časovna linija miruje. Ker je popolnoma integriran v AS, lahko s pomočjo kode z njim

počnemo stvari, ki jim z ročno animacijo ne bi bili kos. Pomembni dejavnik pri njegovi

učinkovitosti je tako tudi možnost interakcije oziroma vplivanja na njegovo delovanje v

realnem času. Na tak način lahko naredimo dinamične in vedno znova spreminjajoče se

vsebine, ki omogočijo vključitev samega uporabnika. Določenih skriptnih ukazov, ki jih

poseduje Button, MC ne poseduje, toda z malo razmišljanja se dajo doseči enaki, če ne boljši

rezultati.

Button ima časovno linijo, ki je popolnoma drugačna od časovne linije v zgoraj omenjenih

simbolih in to je pravzaprav njegova prednost. Njegova časovna linija ima namreč samo štiri

mesta, kar ga naredi izredno preprostega za uporabo. Kot simbol lahko sprejema ukaze AS-a,

toda ne moramo jih vpisati neposredno na njegovo časovno linijo.

Slika 13: Nenavadna časovna linija simbola Button

Vir: Lasten

22

2.5 Načini animacije
Okvir ob okvirju (Frame by frame)

To je način, kjer vsako sliko animacije izrišemo ročno, tako kot klasične Disneyeve risanke.

Ta način nudi največji nadzor nad animacijo, a hkrati vzame največ časa. Uporabimo lahko

tako čiste vektorje kot grafične simbole.

Animacija oblike (Shape Tween)

Gre za način animacije, kjer vektorje skozi čas pretvorimo v druge vektorje. Tehnika je precej

podobna tehniki Morphing. S tem načinom ne moremo animirati grafičnih simbolov, temveč

le čiste vektorje.

Slika 14: Prikaz pretvorbe vektorja s pomočjo Shape Tween

Vir: Lasten

Klasična animacija gibanja (Classic Tween)

To je način animacije, pri katerem z malo dela dosežemo veliko. Deluje po principu ključnih

slik, ki jih postavimo in animiramo ročno, nakar Flash vmesno animacijo ustvari sam. Z njim

lahko animiramo samo grafične simbole.

Slika 15: Prikaz animacije Classic Tween

Vir: Lasten

Animacija gibanja (Motion Tween)

V primerjavi s Classic Tween nudi naprednejši sistem animacije s krivuljami, ki določajo

hitrost in manipulacijo posameznih delov objekta, ločeno od nastavitev na časovni liniji. Ima

pa v času pisanja Motion Tween eno nevšečnost. Ko z njim animiramo premikanje objekta, ga

ni možno mehko ustaviti oziroma pospešiti, vendar lahko kot pri Classic Tween to storimo

neposredno na časovni liniji. Tudi tukaj lahko animiramo samo grafične simbole.

23

Slika 16: Motion Tween animiramo z orodjem Motion Editor

Vir: Lasten

Pot gibanja (Motion Guide)

Tukaj ne gre za način animacije, temveč za pripomoček, s katerim določimo pot animacije

objekta. Pot ustvarimo tako, da jo narišemo z uporabo Flashevih risalnih sredstev. Uporabimo

lahko tako krivulje kot tudi vektorje, narisane s prosto roko. Objekt se te poti oprime in se po

njej vozi kot po tirnicah. Na tak način lahko ustvarimo privlačnejše animacije.

24

3 INTERAKTIVNO KROŽIŠČE
Preden sem začel delati v Flashu, sem moral najprej narediti načrt. Ta načrt je vključeval

splošne cilje, skice posameznih delov projekta in zapis drugih pomembnih odločitev, ki se

skozi ustvarjanje ne bi spreminjale.

3.1 Temelji
Flash dokument vsebuje pomembne lastnosti, ki se skozi nadaljnje ustvarjanje naj ne bi več

spreminjale. S tem, ko jih dorečem, ustvarim temelje, s katerimi se že na začetku obvarujem

pred morebitnimi slabimi odločitvami, ki bi me lahko kasneje ovirale pri izdelavi projekta. Te

lastnosti so na primer: ali za grafiko uporabiti vektorje ali bitne slike, kakšni bosta resolucija

in hitrost predvajanja animacije itd.

3.1.1 Vektorske oblike ali bitne slike

Bitne slike in vektorske oblike sta glavni vrsti grafike v programu Adobe Flash. Bitna slika

(Bitmap) opredeljuje sliko kot mreža barvnih točk in shrani barvo za vsako slikovno piko na

sliki. Vektorska oblika je matematični opis geometrijske oblike.

Bitne slike lahko vsebujejo veliko podrobnosti, vendar se ob njihovi povečavi opazijo

nazobčani robovi. Vektorji, čeprav običajno vključujejo manj podrobnosti kot bitne slike, te

težave ne poznajo.

Slika 17: Povečeva vektorske oblike Slika 18: Povečava bitne slike

Vir: Lasten Vir: Lasten

Izbral sem vektorje, saj sem si želel čisto in ostro grafiko, ne glede na resolucijo. Slabost tega

pristopa je, da je treba paziti na zapletenost vektorskih oblik, saj njih izris zahteva večjo

količino procesorske moči kot pa izris bitnih slik.

25

3.1.2 Dimenzije v slikovnih pikah

Flash omogoča prikaz animacije v kakršni koli resoluciji ne glede na izvorno dimenzijo. Sam

sem se odločil za resolucijo 1024 x 768 slikovnih pik, saj je pri večji resoluciji prikaz grafike

ostrejši. Za izris višje resolucije prav tako potrebujemo več procesorske moči.

3.1.3 Hitrost predvajanja animacije ali število slik na sekundo

V kolikor delamo z animacijo, je to verjetno najpomembnejša odločitev, saj diktira njeno

dolžino. Če želimo, da animacija traja eno sekundo, zanjo pri 30 fps potrebujemo 30

posameznih sličic (frames). Če bi v tem primeru animirali 60 sličic, bi dobili dve sekundi

animacije. Če pa se odločimo spremeniti hitrost predvajanja animacije s 30 fps na 60 fps,

ponovno dobimo eno sekundo animacije. Takšna sprememba lahko razdre delovanje projekta,

zato moramo to odločitev doreči že na začetku projekta.

Slika 19: Glavne nastavitve dokumenta

Vir: Lasten

Z namenom, da sem prišel do dobre odločitve, sem moral vzeti v zakup gladkost animacije

glede na osvežitev zaslona. Večina LCD-monitorjev privzeto osvežuje oziroma izrisuje sliko s

frekvenco 60 hz. Za gladek prikaz animacije brez cukanja je potrebno imeti takšno hitrost

izrisa, da dobimo celo število, če z njo delimo 60 (zaradi 60 hz). Števila, ki so tako primerna

za monitorje s frekvenco 60 hz, so 60, 30, 20, 15, 12, 10, 5, 3, 2, 1. V primeru 30 fps (60/30 =

2) je animacija prikazana vsak drugi izris slike na monitorju. Poskusil sem s števili manjšimi

od 30, vendar se mi potem animacija ni zdela dovolj lepa oziroma gladka. Poskusil sem tudi

60 fps, kar je najbolj gladko, saj se animacija osveži vsak izris slike na monitorju, vendar bi

glede na 30 fps tako moral animirati preveliko količino sličic. Poleg omenjenega pa sem

26

27

gledal še na količino podrobnosti, ki jih lahko računalnik izriše v sekundi. Enaka količina

podrobnosti na ekranu namreč pri 60 fps za gladek izris zahteva močnejši računalnik kot pri

30 fps, in ker je risanje zapletenih vektorskih oblik procesorsko precej požrešno, sem zato

moral gledati tudi na to. Tako sem se odločil za hitrost 30 fps.

3.1.4 ActionScript

V času ustvarjanja projekta z AS 3.0 še nisem bil seznanjen, zato sem se raje odločil uporabiti

različico 2.0, s katero sem takrat že imel nekaj izkušenj. Namreč, obtičati v luknji neznanja

brez možnosti nadaljevanja je bila moja zadnja želja.

3.1.5 Pravila vožnje v krožišču

Čeprav smo vozniki s pravili v prometu dobro seznanjeni, sem za vsak slučaj preveril

zakonitosti vožnje v krožišču. Za tiste, ki teh zakonitosti ne poznajo oziroma so jih pozabili,

predlagam branje Zakona o pravilih cestnega prometa, natančneje, člena o vožnji v krožišču:

http://www.mzp.gov.si/fileadmin/mzp.gov.si/pageuploads/DPR/Predlogi_predpisov_DPR/10

_01_20-Zakon_o_pravilih_cestnega_prometa.pdf, dne 15. 12. 2010.

http://www.mzp.gov.si/fileadmin/mzp.gov.si/pageuploads/DPR/Predlogi_predpisov_DPR/10_01_20-Zakon_o_pravilih_cestnega_prometa.pdf
http://www.mzp.gov.si/fileadmin/mzp.gov.si/pageuploads/DPR/Predlogi_predpisov_DPR/10_01_20-Zakon_o_pravilih_cestnega_prometa.pdf

3.2 Krožišče
Premišljeval sem o tem, kakšno naj bo krožišče, ki ga bom upodobil in skozi katerega se bo

odvijal promet. Spraševal sem se, koliko krakov naj ima krožišče in ali naj bo cesta

enopasovna ali dvopasovna. Po razmisleku sem izbral krožišče s štirimi kraki, od katerih ima

vsak dva vozna pasova. S štirimi kraki je krožišče lepo simetrično, iz česar sem sklepal, da mi

bo olajšalo ne samo risanje krožišča, temveč tudi ustvarjanje vožnje avtomobilov skozenj.

Dva vozna pasova pa sem izbral zaradi težnje po zanimivem dogajanju. Izmed teh voznih

pasov bi namreč vsak potreboval malce drugačno logiko.

3.2.1 Skica

Že od začetka sem imel v mislih, da bo krožišče vidno iz ptičje perspektive, saj se mi je ta

zorni kot na dogajanje zdel najbolj pregleden.

Slika 20: Podrobnejša skica krožišča

Vir: Lasten

Za začetek sem potreboval le grob tloris krožišča, zato se pri risanju skice nisem

obremenjeval s podrobnostmi. Ker sem želel, da je skica jasna, sem moral ob vsaki

spremembi krožišče skicirati znova, zato sem v tem trenutku skušal upodobiti le najnujnejše

28

elemente. Vključil sem tudi nekatere predvidene interaktivne elemente, kot so gumbi in

meniji.

3.2.2 Videz krožišča

Pri ustvarjanju grafike sem se trudil, da bi bil videz krožišča čim bolj jasen. Z vektorji sem

oblikoval čiste poteze, pri katerih sem si pomagal z načeli simetrije. Videza nisem dokončal

takoj, temveč sem ga neprestano izpopolnjeval.

V prvi izvedbi (slika 21a) sem upodobil cestišče in rastlinje ter ustvaril temeljno grafično

vzdušje. Kasneje (slika 21b) sem dodal prehod za pešce ter zametke kolesarske poti. Zgladil

sem tudi ostre robove med krožiščem in cesto, ki pelje vanj. Naslednja različica (slika 21c) je

imela dodan pločnik ter kolesarsko pot. Za konec (slika 21č) so mi poleg dodatnega rastlinja

ostale samo še malenkosti v obliki prometnih znakov in črt, ki avtomobile na desnem pasu

prisilijo, da obvezno zapustijo krožišče. Prav tako sem bil proti koncu prepričan, da bom

vključil mačko, zato sem ji na sredi krožišča ustvaril brlog.

Slika 21: Oblikovanje krožišča skozi čas

29
Vir: Lasten

Zaradi natančne izdelave grafike sem doživel številne nevšečnosti s postavitvijo elementov.

Kaj hitro se mi je zgodilo, da elementi več niso bili pravokotni eden na drugega, s čimer sem

ogrozil simetričnost izdelka. Ker je v samem krožišču prevladovala simetrija, sem si dal toliko

več duška pri asimetrični postavitvi rastlinja.

Rože Letalo

Pri tem so izstopale rože, ki so ob vsakem

zagonu aplikacije dobile drugo barvo.

Dejansko posedujejo pet različnih

preoblek, ki se izbirajo naključno. Poleg

omenjenega sem jih tudi animiral, in sicer

tako, da so videti kot da veselo skačejo.

Ob tej priliki lahko omenim še letalo, ki je

v resnici samo senca, ki vsake toliko časa

preleti ekran. Njegovo nastajanje je do

neke mere naključno.

Slika 22: Različne barve rož Slika 23: Senca letala

Vir: Lasten Vir: Lasten

3.2.3 Odvijanje v krožišču

Ali bi se dalo krožišče narediti kot eno dolgo animacijo? Seveda, toda slej ko prej bi se začela

ponavljati in ko bi v isti minuti že tretjič videli popolnoma enako kolono avtomobilov, ki

ponovno uberejo iste izhode, to enostavno ne bi bilo več zanimivo. S stališča načrtovanja bi

bil ta način relativno enostaven, le nekaj zbode v oči – vožnjo posameznega avtomobila in

pešca bi bilo treba animirati na roko, kar je v tem primeru izredno neučinkovito, saj je

krožišče zanimivo prav z velikim številom avtomobilov. Poleg tega pa je animirati veliko

število premikajočih se objektov ročno herkulski podvig.

Nasprotje je dinamičen promet, kjer bi bil nastanek avtomobilov in pešcev povsem naključen.

Ustvarjal jih torej ne bi ročno, temveč bi obstajal sistem, ki bi jih ustvarjal na določene

intervale. Animacija avtomobilov bi sicer bila pripravljena vnaprej, toda avtomobil bi vsakič

ubral drug pristop skozi krožišče. To daje dobre temelje za vključitev interakcije, saj nismo

vezani na vedno isto animirano vožnjo vseh avtomobilov.

30

Slika 24: Statičen promet je vsakič enak

Vir: Lasten

Slika 25: Dinamičen promet je vsakič drugačen

Vir: Lasten

Za izvedbo takšnega pristopa potrebujemo večji premislek kot za prvo rešitev, kajti

naključnost v logiki lahko povzroči veliko glavobolov, saj se stvari ne zgodijo vedno enako.

Pristop, ki sem ga izbral sam, je dinamičen pristop, kar pomeni, da sem si moral izmisliti

logiko, ki bi ga vodila.

3.2.4 Logika

Pri programiranju logike nekako ni najboljših rešitev, še posebej če se programiranja šele

učimo. Vsak problem se da namreč rešiti na vrsto načinov in ko se nam zdi, da smo našli

najboljšega, se ob kasnejšem vnovičnem pregledu kode zavemo, da bi se to dalo narediti še

bolje. Temu postopku tako imenovanega prečiščevanja kode nikdar ni konca, saj znova in

znova najdemo dele, kjer bi se dalo kaj izboljšati. Seveda to ne pomeni, da to, kar naredimo,

ni učinkovito. Kar želim povedati, je, da si moramo sami postavljati meje, tako da nam

določen del, ki mogoče sploh ni tako pomemben, ne odvzame prevelike količine časa, ki bi ga

lahko uporabili za kaj drugega.

31

Načrtovanje logike in raznih algoritmov mi je bilo že od nekdaj zanimivo in ker sem s

programiranjem že imel nekaj izkušenj, sem vedel, da če skušamo nekaj zapletenega spraviti

v kodo, se je tega najbolje lotiti s poenostavitvijo. Na tak način iz osnove izluščimo elemente,

ki so ključni za delovanje naše logike. V primeru krožišča sem skušal nekaj, kar je analogno,

ročno prenesti v digitalno obliko. Pri tem sem stremel k jasnosti, preprostosti in učinkovitosti.

Krožišče sem si tako razdelil na mesta, kjer bi nastajali avtomobili. Ta mesta so bila števila,

saj se mi je to zdelo najučinkovitejše, čeprav mogoče malce nepregledno (slika 26). Torej,

avtomobili bodo nastajali sproti, in to naključno.

Slika 26: Kraki krožišča (0,1,2,3)

Vir: Lasten

32

33

3.3 Avtomobil
Preden govorimo o naključnem nastanku avtomobilov, moramo najprej vedeti tudi nekaj o

samih avtomobilih, in sicer, kako bo delovala njihova logika.

3.3.1 Načrtovanje logike

V programiranju obstaja praksa – ponavljajoče se kode ne pišemo večkrat, vendar jo

poskušamo napisati tako, da se jo da uporabiti znova in znova. Upoštevajoč ta pristop in željo,

da bi v kratkem času ustvaril kar največ, sem se odločil za samo en model avtomobila. Vsi

avtomobili, ne glede na to iz katere smeri pridejo v krožišče, se v osnovi držijo enakih pravil

in imajo v zvezi s prometom enako funkcionalnost, zato bi bilo lepo imeti eno univerzalno

vozilo, ki bi ga lahko pomnožil in tako dobil celo armado vozil, od katerih bi vsako peljalo po

svoje. Dobiti idejo je seveda preprosto, težji del je realizacija.

Za začetek se mi je zdelo najbolje poenostaviti vožnjo avtomobila skozi krožišče:

1. Avto se pripelje in se ustavi pred krožiščem.

2. Na tej točki preveri, ali se lahko vključi v krožišče. Če se ne more vključiti, počaka,

dokler nima proste poti, nakar zapelje v krožišče.

3. Avto vozi skozi krožišče, dokler ne najde želenega izhoda.

4. Ko ga najde, mu preostane le, da odpelje iz krožišča.

Za nas je zgornji tekst razumljiv, toda ne za Flash. To, kar sem napisal, je treba pretvoriti v

nekaj, kar je bolj podobno nečemu, kar se da narediti v Flashu, s čimer si precej olajšamo

delo:

1. Avto nastane izven vidnega območja ekrana – avto moramo najprej ustvariti.

2. Vozilo začne voziti in vozi, dokler se ne ustavi pred krožiščem. To se da doseči z

animacijo.

3. Na tej točki avto preveri, ali se lahko vključi v krožišče. Tukaj bo moral nekako

izvedeti, ali je v krožišču kak avto, ki mu onemogoča vključevanje. V kolikor ga ni,

nadaljuje z animacijo vključevanja, v drugem primeru nadaljuje s ponovnim

preverjanjem.

4. Animacija vključevanja.

5. Avto vozi skozi krožišče. V tej animaciji obstajajo štiri točke, kjer ima možnost ubrati

izhod. Ko doseže izbrano točko, se sproži izbrana animacija vožnje iz krožišča. Če

avto ne izbere izhoda, ponovi vožnjo v krožišču.

6. Izbrana animacija vožnje iz krožišča, kjer avto odpelje izven vidnega območja ekrana,

kjer se tudi izbriše.

To je že bolje, saj se da videti, kako bi stvar lahko delovala v Flashu. Takšno realizacijo

avtomobila se da doseči le z uporabo MC-a, saj je izmed grafičnih simbolov ta edini, ki nudi

vse potrebne funkcije.

3.3.2 Videz avtomobila

Najprej sem ustvaril podolgovat lik v obliki pravokotnika, ki sem ga razrezal na kup

navpičnih pravokotnikov (slika 27a). Na tak način sem avto razdelil na dele, ki sem jih nato

lahko oblikoval brez nevšečnosti (slika 27b). Ustvaril sem karoserijo, ki mi je bila všečna, in

nadaljeval z oblikovanjem stekel (slika 27c).

Slika 27: Razvoj videza avtomobila

Vir: Lasten

Kot je razvidno iz slike, sem uporabil kar nekaj barvnih prelivov, za katere izris Flash porabi

veliko procesorske moči (slika 27č). Vseeno se mi je videz avtomobila tako prikupil, da sem

se odločil, da v tem primeru trenutno ne bom iskal kompromisov glede zmanjšanja

zahtevnosti grafičnega prikaza, ampak bom raje počakal na končno fazo projekta, saj bo

komaj takrat jasno, kolikšno optimizacijo ta del krožišča resnično potrebuje.

3.3.3 Različne preobleke

Za večjo razgibanost sem avtu ustvaril več videzov, natančneje devet. Zamislil sem si tudi

dodatne vzorce, ki jih avto lahko uporabi pri določenih preoblekah. Ob vsakem nastanku si

avto izbere eno izmed preoblek, in če ta podpira vzorce, si včasih izbere tudi enega izmed

njih.

Način, s katerim sem to dosegel, je, da sem v glavni MC avtomobila namesto končne risbe

dodal MC CarSkin0, ki je imel na vsakem frame-u drugo preobleko, izmed teh pa je za

določene (1, 2, 4, 6, 8 in 9) vseboval še dodaten MC z vzorci. Ta CarSkin0 je bil torej grafični

videz avtomobila.
34

Slika 28: Vse preobleke in dodatni vzorci

Vir: Lasten

Pri lepotičenju avtomobilov se nisem ustavil le pri preoblekah. Dodal sem še smerokaze, ki se

vklopijo v trenutku, ko avto naleti na izbran izhod iz krožišča. Kar se tiče videza, so ti do

zadnje različice doživeli vrsto sprememb. Glavni razlog za to je bilo dejstvo, da se enostavno

niso dovolj dobro videli. Všeč mi je, da je končna, tj. najboljša inačica, hkrati tudi najbolje

optimizirana. Čim sem napisal še kodo za delovanje omenjenega, je promet postal bolj pisan

in bolj všečen za oko. Z videzom avtomobila sem zelo zadovoljen, saj ne glede na zgradbo iz

čistih vektorjev daje bežen občutek tridimenzionalnosti.

Slika 29: Razvoj smerokaza skozi čas od leve proti desni

Vir: Lasten

Slika 30: Drobovje MC-a CarSkin0

Vir: Lasten

35

3.3.4 Animacija

Želel sem, da bi bila vožnja avtomobilov natančna, in to brez odstopanj. Zaradi tega se mi je

zdelo najbolje narediti vso animacijo avtomobila vnaprej. Avto bi se dejansko obnašal kot

vlak. Peljal bi po »tirnicah« in na določenih točkah oziroma »postajah« bi imel izbiro, kaj

narediti. Te postaje bi bile ključne točke, kjer se sprožijo nadaljnje animacije.

Slika 31: »Tirnice«, po katerih je animiran avto

Vir: Lasten

Vožnjo avtomobila sem skušal animirati tako, da bi se odvijala čim bolj gladko, zato sem se

odločil za uporabo načina animacije Classic Tween. S pomočjo krivulj sem narisal poti

avtomobila in jih pretvoril v Motion Guide, nakar sem začel z animacijo.

Flash pri animaciji z Motion Guide ne podpira vejitve poti, zato sem moral narisati več

različnih poti, ki so se dopolnjevale. Izziv je bil narediti animacijo, ki deluje gladko in kjer se

ne občuti, da je v resnici razdeljena na dele, ki so med seboj povezani. Temu sem namenil

precejšen del časa, vendar se je izplačalo.

36

3.3.5 Nastanek avtomobilov na različnih krakih

V tej točki razvoja krožišča sem imel univerzalen avtomobil in njegova celotna animacija

vožnje je bila prilagojena začetku na kraku 0 (slika 32 – levo zgoraj). Če bi ta avto postavili

na drugi začetni krak, bi še vedno začel voziti navzgor, kar ni dobro, saj bi namesto tega

moral peljati proti krožišču. Moral bi biti ne samo na pravi poziciji, temveč glede na začetni

krak tudi pravilno obrnjen.

Slika 32: Različne rotacije avtomobila glede na krak nastanka

Vir: Lasten

To sem rešil tako, da sem pravilni položaj in rotacijo MC-a avtomobila za vsako začetno

pozicijo krožišča (0–3) shranil vnaprej.

var carSpawnRot:Array = [0,-90,180,90];
var carSpawnX:Array = [506,506.5,516.2,514.5];
var carSpawnY:Array = [386,392,391.3,385.3];

Do teh vrednosti sem se dokopal z ročnim postavljanjem avtomobila na sceno. Rotacija je

izražena v stopinjah, osi x in y pa v slikovnih pikah z izvorom v levem zgornjem kotu

37

projekta. Ti podatki so dovolj, da lahko avto pravilno obrnemo ter ga umestimo v krožišče.

Poskrbeti sem moral le še, da je avto ob svojem nastanku te shranjene podatke prebral in jih

uporabil kot lasten položaj in rotacijo. Na tak način sem dosegel pravilno vožnjo avtomobila,

ne glede na njegov začetni položaj.

3.3.6 Preverjanje trčenja (Collision Detection)

Ker sem izbral naključni nastanek avtomobilov, se med njihovo vožnjo skozi krožišče zna

zgoditi, da se srečajo, kar lahko povzroči, da en avto dobesedno pelje čez drugega. Tega si pri

pravilni vožnji ne želimo, zato bi bilo dobro na točki, ko se avto ustavi pred krožiščem (slika

33a), preveriti, če mu kateri avto preprečuje vključevanje (slika 33b). Preveriti je torej bilo

treba trk med dvema objektoma.

Slika 33: Mesta za preverjanje (0,1,2,3)

Vir: Lasten

S tem trkom ne mislim na trčenje dveh avtomobilov, temveč na trčenje med avtomobilom in

delom krožišča, ki mora biti prazno, da se določen avto lahko vključi. Ob pogledu na krožišče

se pokažejo štiri mesta, kjer bi bilo pametno preverjati prisotnost avtomobilov (slika 33).

38

39

Vsako mesto preverjanja je vezano na svoj krak, saj ni potrebe, da vsak avto, ki se vključuje,

preveri vse štiri možnosti.

Za preverjanje trka dveh objektov obstaja v AS-u funkcija hitTest(), ki nam pove, ali sta

dva MC-a trčila. Seveda potrebujemo njuno ime, saj ju v AS-u drugače ne moremo najti. V

tem primeru bi en objekt bil mesto v krožišču, kjer se preverja, drugi pa avtomobil. Da

najdemo, ali je mesto zasedeno, ga je treba preveriti za vse možne avtomobile v krožišču.

Najlažji način se mi je zdel sledeč. Vsako izmed teh štirih mest bi bilo MC z unikatnim

imenom (piece0, piece1, piece2, piece3) in avtomobil, ki čaka na prosto pot, bi preverjal, ali

je vanj trčil kateri koli avto oziroma MC z imenom car. Vsi avtomobili, ki bi nastali, bi torej

imeli enako ime, saj jih je tako laže preveriti vse.

Čeprav se je v teoriji slišalo delujoče, se je v realnem poskusu izkazalo, da ni tako.

Avtomobili so peljali v krožišče ne gleda na to, ali je bilo mesto za preverjanje prazno ali

polno. Napravil sem naslednji poskus. Ustvaril sem okolje, kjer avtomobili nenehno vozijo

čez mesto krožišča, kjer se preverja njihova prisotnost. In najbolj zanimivo ter hkrati nadležno

je bilo to, da je mesto zaznalo trk samo z avtomobilom, ki je nastal prvi, ne pa tudi z vsemi

ostalimi, ki so nastali kasneje. Na tem primeru sem spoznal, da če v Flashu ustvarimo več

objektov z enakim imenom (v tem primeru car), bo za AS viden samo tisti, ki je nastal prvi.

Zato sem moral najti novo rešitev, kjer bi vsak avtomobil imel sebi lastno ime, ki mora biti

unikat.

3.3.7 Seznam avtomobilov

Ko s pomočjo AS-a ustvarimo MC, se njegova globina zapiše v Flashev seznam prikaznih

objektov. Gre za seznam globine, kjer večje število pomeni, da je objekt prikazan bližje v

ospredju kot pa objekt z manjšim številom. V tem seznamu je nemogoče, da bi dva objekta

imela isto število, zato sem se za ime avtomobilov odločil uporabiti prav to število globine. S

tem, ko sem dobil edinstveno ime za posamezen avto, pa sem potreboval še dodaten seznam,

kjer bi se ta imena hranila.

Seznam je dobra izbira prav zaradi dejstva, da lahko na učinkovit način potujemo skozenj in

tako nenehno preverjamo, ali se je objektu, katerega ime najdemo v seznamu, spremenila

kakšna lastnost. Ob nastanku posameznega avtomobila ta dobi sebi lastno ime iz števila

globine, ki se zapiše v seznam. Medtem ko avto vozi, je na voljo za preverjanje. Ko se avto ob

koncu svoje poti odstrani, se iz seznama odstrani tudi ime. S tem, ko sem v logiko uvedel

sezname, sem ustvaril red.

Beleženje trkov med mesti preverjanja in vsemi avtomobili v seznamu je z uporabo najdenih

rešitev končno delovalo. Spoznal sem tudi, da ni potrebe po nenehnem preverjanju

zasedenosti krožišča. Preverjati jo je treba le, kadar se posamezen avtomobil želi vključiti v

krožišče. S tem zmanjšamo obremenitev računalnika z nepotrebnimi ukazi.

Slika 34: Zanka nastajanja in življenjske dobe avtomobila

Vir: Lasten

3.3.8 Kolone

Kolone nastanejo, ko določen avto zasede pot drugim avtom, ki so za njim. Vzel sem si čas in

razmislil o tem, kako se avtomobili obnašajo v kolonah. Logika bi šla nekako takole – vsak

avtomobil preverja prostor pred seboj, in če naleti na avto ali pešca, se mora ustaviti. Tu so se

pojavile težave. Vsak avto bi moral to preverjati nenehno, česar pa si nisem želel, saj se mi je

to glede uporabe računalniške moči zazdelo potratno. Toda hujše je bilo spoznanje, da sem

morda naredil več škode kot koristi, ko sem celotno vožnjo avtomobila animiral vnaprej, kar

pomeni, da ga med vožnjo ni mogoče kar tako ustaviti, saj bi moral vsak njegov postanek

predvideti in ga vnesti v animacijo.

Pri kolonah se postanki zgodijo kadar koli avtomobil naleti na oviro, kar zna biti kadar koli,

še posebej s pešci, ki se odločijo prečkati cestišče, kot se jim zazdi. Kako torej animirati kaj

takega? Če sem avtomobile ustvaril tako, da se obnašajo kot vlak, potem bi si jih moral tudi

predstavljati kot vlake. Pa vendar, še noben vlak se ni ustavil pešcu, ki mu je v hipu prekrižal

pot, saj enostavno niso tako načrtovani. Vlaki se praviloma ustavijo le na postajah, kar me je

privedlo do spoznanja, da bi si mesta v koloni lahko predstavljal kot postaje. Kolono bi tako

razdelil na več mest, in ker bi ta mesta bila statična, bi za vožnjo po njih lahko brez težav

ustvaril animacijo. Seveda gre za kompromis, saj avtomobili v kolonah ne vozijo vedno le z

mesta na mesto – v kolonah namreč ni vnaprej označenih mest. Velikokrat tudi drsijo, ne da

bi se ustavili, kar v tem primeru ne bi bilo mogoče.

40

Začel sem razmišljati o načinu, s katerim bi animiral vse možnosti vožnje v koloni. Prišel sem

do spoznanja, da bi vožnjo lahko razdelil na dele, ki bi jih nato sestavil kot neke vrste

sestavljanko in tako dobil celotno vožnjo avtomobila. Na koncu vsakega »kosa« animacije bi

avtomobil preveril, kakšno je stanje zasedenosti mest pred njim, in glede na rezultat bi se

odločil, katero animacijo izbrati za nadaljnjo pot. V kolikor bi bila vsa mesta zasedena, bi

počakal, dokler se mesto pred njim ne izprazni.

Vsak del animacije vožnje v koloni bi potekal z izbranega mesta na sosednjo mesto in bi bil

eden izmed štirih različnih vrst, ki so predstavljene na sliki 35:

a) Avto pelje s konstantno polno hitrostjo. Za tem delom lahko nadaljuje z a ali s c.

b) Avto pospeši do polne hitrosti. Za tem delom lahko nadaljuje z a ali s c.

c) Avto se popolnoma ustavi. Za tem delom lahko nadaljuje z b ali s č.

č) Avto pospeši, nakar se takoj ustavi. Za tem delom lahko nadaljuje z b ali s č.

Slika 35: Sistem sestavljene animacije vožnje v koloni

Vir: Lasten

Najprej nisem bil prepričan glede dolžine kolone, a sem spoznal, da je komaj 6. mesto

(označeno s številom 5) stalo dovolj izven vidnega območja ekrana, kjer je varno, da nastane

avto. Prikazal sem vse možne dele animacije, ki so potrebni za pravilno delovanje kolone. Za
41

razumevanje je treba vedeti, da avto na mestu, označenim s številom 5, začne s polno

hitrostjo, na mestu 0 pa se popolnoma ustavi, saj tu doseže trenutek, ko preveri, ali se lahko

vključi v promet. Z uporabo te metode sem moral ustvariti le štiri različne animacije, ki sem

jih nato enostavno skopiral za različna mesta v koloni.

Slika 36 prikazuje vse možne kombinacije animacije vožnje, ki se jih da na ta način doseči za

toliko mest kolone.

Najtežje pri tem je bilo programiranje

logike, ki upošteva zgoraj opisane principe.

Prav to mi je vzelo največ časa, saj se je

pojavilo toliko stvari, na katere sem moral

biti pozoren. Zaradi moje površnosti pri

vodenju velike količine spremenljivk v

kodi sem imel tukaj kup težav, katerih

razlog ni bil takoj očiten, zato sem veliko

časa porabil z iskanjem napak. Ne glede na

natančnost, s katero delamo, se temu pri

programiranju ne moremo izogniti. Ostalo

je samo še, da sem funkciji za nastanek

avtomobila dodal kodo, ki je v primeru, da

je kolona polna, poskrbela, da avto ni smel

nastati. S tem sem preprečil, da bi nastali

avtomobili začeli voziti eden preko

drugega, kar se je pred tem dogajalo.

 Slika 36: Vse kombinacije vožnje v koloni

Vir: Lasten

Ko je kolona končno delovala tako, kot sem si zamislil, sem bil navdušen, saj nekako nisem

pričakoval, da bo delovala tako dobro. Velik razlog za to je dejstvo, da med delom vidiš le

nedelujoče delčke, ki jih moraš povezati v delujočo celoto, tudi če še ne veš točno, kako.

3.3.9 Poenostavljen prikaz logike

Slika 37 kot zanimivost prikazuje poenostavljeno različico logike, ki sem jo zasnoval za

pravilno delovanje kolon. Sproži se vsako osvežitev aplikacije, kar je v tem primeru 30-krat

na sekundo. Poudariti moram, da gre tu za končno različico, zato je vanjo vnesena tudi

interakcija s pešci, o katerih bom govoril kasneje.

42

Slika 37: Poenostavljen graf poteka avtomobilove logike v koloni

Vir: Lasten

43

3.3.10 Interakcija

Pri načrtovanju elementov, ki sem jih želel vnesti v ta projekt, se mi je zdelo izredno

zanimivo, da bi imel uporabnik možnost avtomobilom določiti, kam naj peljejo v krožišču.

Premišljeval sem o načinu interakcije – kaj klikniti, kakšen bo odziv in podobno. Vedel sem,

da bom za to moral poseči v AS. Domislil sem se naslednjega postopka, kako avtu določiti

smer.

Najprej bi se z miško premaknil na avto, kateremu bi želel spremeniti pot. Pritisnil bi levi

miškin gumb in ga držal, nakar bi s premikom miške določil, kateri izhod iz krožišča naj avto

uporabi. Pojavila bi se puščica, ki bi nakazala izbrano smer. Ko bi miškin gumb spustil, bi

avtu ostala nazadnje izbrana smer. Prepoznati bi bilo treba samo osnovne gibe – gor, dol, levo

in desno.

Slika 38: Smeri, ki jih lahko določimo avtu

Vir: Lasten

Smeri, ki jih z gibi lahko določimo, so prikazane na sliki 38. Kot vidimo, se razen vožnje v

krogu (4) vse smeri nanašajo na krake krožišča (0, 1, 2, 3)2. Premik miške navzgor na primer

pomeni, da smo izbrali krak 2. Toda tu se je pojavila težava, ki jo prikazuje slika 39.

Slika 39: Različno dojemanje smeri glede na izvorni krak avtomobila

Vir: Lasten

2 Za boljše razumevanje krakov krožišča si oglejte na sliko 20.

44

Na vsaki skici imamo napisana števila krakov in smeri, kakor jih dojema avto. Prva so

napisana ob robu vsake skice, medtem ko so slednja napisana v črnih krogih na sredini. Kadar

avto nastane na kraku 0, deluje vse normalno, saj je njegovo dojemanje smeri enako krakom

krožišča, kar pomeni, da če mu določimo smer desno (1), bo vzel izhod desno (krak 1).

Poglejmo naslednjo sliko, kjer je avto nastal na kraku 1. Ker gre za isti avtomobil iz kraka 0,

le da je obrnjen tako, da namesto navzgor pelje levo, se glede na krake spremeni njegovo

dojemanje smeri. Če bomo temu avtu določili smer desno (1), bo vzel izhod navzgor (krak 2),

saj je to njegova desna, kar si seveda nisem želel. Vidimo torej, da avtomobil dojema smer

relativno na svoj izvor. Da sem prišel do rešitve, sem moral narediti, da se je smer, ki smo jo

izbrali s premikom miške, avtu posredovala v obliki, ki je ustrezala njegovemu kraku izvora.

S tem sem dosegel, da se je avto pravilno odzval na ukazano smer ne glede na krak nastanka.

Potreboval sem še en dodaten gib, ki bi označil peto možnost – vožnjo v krogu (slika 38,4).

Ta bi se sprožil, kadar uporabnik za določen čas ne bi naredil nobenega izmed prej naštetih

gibov. Gib sem usposobil tako, da sem ob izbiri avtomobila začel odštevati čas. Ko ga je

preteklo zadostno število, se je aktivirala smer. V kolikor pa bi uporabnik med tem

odštevanjem naredil nek drug gib, se bi čas, ki ga je bilo treba odšteti do aktivacije, povečal.

3.3.11 Zajem gibov

Kar se miške tiče, lahko v AS-u dobimo samo njeno pozicijo na x in y osi, zato sem za

prepoznavo gibov moral napisati svoj algoritem. Toda preden se v to poglobimo, je dobro

vedeti, da se slikovne pike v Flashu začnejo meriti od levega zgornjega roba proti desnemu

spodnjemu. To pomeni, da so vrednosti na osi x pozitivne desno od izhodišča, za y os pa

navzdol. Primer na sliki 40 prikazuje dimenzije krožišča.

Slika 40: Kako v Flashu merimo slikovne pike

Vir: Lasten

Na sliki 41a se vidi, da sem vzel trenutno pozicijo miške (beli kazalec) in od nje odštel

prejšnjo pozicijo miške (sivi kazalec). Na tak način sem dobil pot (oranžna črta), ki jo je miš
45

opravila v enem frame-u. Čeprav sem pravkar omenil pot, tu v resnici ne gre za vektor,

temveč za razliko med točkama na x in y osi – delta x in delta y. Slika 41b prikazuje, kako

sem »pot«, ki sem jo dobil, pretvoril v želeno smer. Da uporabnik giba ne bi naredil

pomotoma, sem vnesel toleranco, ki je na sliki prikazana kot bel kvadrat, od koder se meri

pot. Kadar je bila delta x ali y večja od te tolerance, je bil premik dovolj velik, da sem ga

lahko obravnaval kot smer. Nato sem izmeril, katera izmed vrednosti je daljša, delta x ali

delta y. S tem sem dobil os, na kateri se je zgodil večji premik. Preostalo mi je le, da sem

preveril, ali je vrednost pozitivna ali negativna. Tako sem dobil najverjetnejšo smer. Za

pravilno odzivnost se je morala koda za ta algoritem izvršiti za vsak frame delovanja

aplikacije.

Slika 41: Kako premik miške pretvorimo v smer

Vir: Lasten

Spoznal sem, da je zelo pomembno, da ti gibi delujejo gladko in brez težav, saj je bilo prvih

nekaj različic prav nerodnih. Na primer težava, kjer je bilo prelahko nehote spremeniti smer,

je botrovala zamisli o že prej omenjeni toleranci.

3.3.12 Dodaten avtomobil

Poudariti moram, da sem ves čas govoril o MC-u avtomobila car0, ki vozi na levem pasu

cestišča, nisem pa omenil obstoja še enega MC-a avtomobila, ki vozi po desnem – car0a. Ta

se od car0 razlikuje v tem, da je njegova pot vožnje vedno enaka, zato ne poseduje zgoraj

omenjene zmožnosti spreminjanja smeri z miško. V drugih pogledih sta MC-a identična.

46

3.4 Pešec
Ena težjih nalog pri delu na tem projektu je bila zasnova pešcev. Pri ustvarjanju peščevega

videza se nisem želel prenagliti, zato sem jih naredil karseda enostavne. Razlog za to je bil

podroben videz avtomobilov, ki so že sami bili procesorsko zelo požrešni.

Preprostost videza me je najprej motila,

vendar se mi je skozi tok projekta

priljubila. Tako je prikazana različica

ostala nespremenjena do konca projekta.

Slika 42: Videz pešca

Vir: Lasten

3.4.1 Logika peščevih poti

Prva stvar, ki sem jo naredil, je bila, da sem si narisal skico, na kateri sem označil vse poti, ki

bi jih naj pešci lahko naredili. Ta skica je bila temeljnega pomena, saj sem se pri iskanju

optimalnih rešitev orientiral prav po njej.

Slika 43: Mreža poti

Vir: Lasten

47

Tako kot univerzalen avtomobil bi pešci nastali, se premikali, nakar bi se izbrisali. Toda ob

pogledu na številčnost poti (slika 43) sem se odločil, da za razliko od avtov pešci ne bi bili

animirani po tirnicah, temveč bi se orientirali na podlagi točk, ki sem jih poimenoval cilji. Ob

nastanku bi pešec namreč dobil nalogo slediti enemu izmed teh ciljev. Ko bi se ga dotaknil

oziroma vanj trčil, bi dobil nalogo slediti drugemu cilju in tako naprej.

Vzel sem si čas in razmislil o načinu poenostavitve prikaza skice. Prišel sem do spoznanja, da

obstajata dve vrsti točk oziroma ciljev. Na sliki 43 sem ju označil z a in b. Pri točki a gre za

mesto, kjer bi pešec nastal ter končal svojo pot. Pri točki b pa gre za križišče s tremi kraki. Na

tem cilju bi pešec imel možnost izbrati eno izmed preostalih dveh poti, saj je iz ene strani

ravnokar prišel. Vsak cilj bi lahko prehodil le enkrat, zatem tja več ne bi smel iti. S tem bi ga

prisilil, da bi mu slej ko prej zmanjkalo postaj in bi bil primoran oditi iz krožišča.

Torej, če predpostavimo, da pešci nastanejo na kateri koli točki a, potem je jasno, da se

morajo začeti premikati proti najustreznejši točki b. Ampak kako vedeti, katera točka b je

najustreznejša?

Slika 44: Logika peščevih ciljev za krak 0

Vir: Lasten

Z namenom, da sem prišel do pravega odgovora, sem moral logiko za vsak krak ločiti na levo

in desno stran cestišča, saj lahko pot iz točke a vodi samo do tiste točke b, ki se nahaja na isti

strani (slika 44). Enako velja v obratni smeri. Nato sem vsaki točki dodelil sebi lastno število

in jih razporedil tako, da se je dalo kar iz njih razločiti, za katero točko gre. Na primer, če je

število sodo, gre za levo stran cestišča, če pa je liho, pa za desno. Prav tako se da razbrati, ali

gre za točko b (število je manjše od 2) ali za točko a (število je večje od 2). Očitno je tudi, da

48

sem logiko, tako kot pri avtomobilu, razdelil na krake. S tem sem si pripravil jasno osnovo za

pisanje kode, ki bo skrbela za vodenje pešcev ter njihove odločitve.

Medtem ko bi pešci nastajali preko AS-a, sem cilje, po katerih se bi orientirali, ustvaril ročno

kot MC-je. Vsak je dobil svoje ime, ki je vsebovalo besedo pesec, število kraka ter število

cilja na tem kraku. Ta imena so na sliki zapisana pod točkami. To je bilo pomembno, saj se

peščeva logika izbiranja novih ciljev nanaša prav na ta imena.

3.4.2 Podrobneje o peščevi logiki

Najprej sem spisal logiko za nastajanje pešcev, ki jih je ob nastanku postavila na točko 2 ali 3

na poljubnem kraku. Pešec si je zapisal, da je tukaj že bil, nakar je dobil svoj prvi cilj, ki je bil

izračunan po formuli a. Pri tem cilju gre za točko b na isti strani cestišča. Od tod naprej bi

pešec postal samostojen.

 Formula Primer zaooo Primer zaooo
a trenutni cilj – 2 2 – 2 = 0 3 – 2 = 1
b trenutni cilj + 2 0 + 2 = 2 1 + 2 = 3
c | trenutni cilj – 1 | | 0 – 1 | = 1 | 1 – 1 | = 0
č trenutni krak – 1
d trenutni krak + 1

Tabela 1: Formule za izračun peščevih ciljev

Vir: Lasten

Pešec bi se premikal do svojega cilja in ko bi ga zadel, bi se glede na to, za katero vrsto točke

gre (a ali b), odločil, kako reagirati. Ob srečanju s točko b bi pešec dobil nov cilj, kamor bi se

začel premikati. V primeru srečanja s točko a pa bi se izbrisal, saj točka a pomeni konec

njegove poti. Ne glede na vrsto točke bi si za vsak cilj, ki bi ga obiskal, zapisal, da je tam že

bil. Oborožen s tem znanjem sem se odpravil pisati kodo, ki bi upoštevala vse omenjene

zapovedi.

Poglejmo natančneje, kaj se zgodi, ko pešec naleti na točko b. Ko jo zadene, naključno izbere

eno izmed naslednjih možnosti:

1. Nov cilj je točka a v tem kraku. Dobimo jo po formuli b (tabela 1b).

2. Nov cilj je točka b v tem kraku. Dobimo jo po formuli c (tabela 1c).

3. Nov cilj je točka b v sosednjem kraku. Dobimo jo po formuli c (tabela 1c), toda krak

cilja se spremeni glede na naslednji princip. Če smo na levi strani cestišča in nismo na

49

kraku 0, nov krak cilja dobimo po formuli č (tabela 1č). V primeru, da smo na kraku

0, je nov krak cilja krak 3. Če pa smo na desni strani cestišča in nismo na kraku 3, nov

krak cilja dobimo po formuli d (tabela 1d). V primeru, da smo na kraku 3, je nov krak

cilja krak 0.

V kolikor je pešec na izbranem cilju že bil, bi ponovno izbral eno od naštetih možnosti. Za

boljše razumevanje postopka izbire ciljev si je najbolje pomagati s sliko 45.

Slika 45: Celoten prikaz logike peščevih ciljev

Vir: Lasten

50

3.4.3 Hoja proti cilju

Zanimiv je tudi način, s katerim sem dosegel, da so pešci znali hoditi proti izbranemu cilju.

Kot vemo, je pozicija vseh MC-jev v Flashu izražena v dveh dimenzijah, x in y. Če začnemo

katero izmed teh vrednosti spreminjati vsako sliko na sekundo, dobimo gibanje. Gibanje je

seveda odvisno od tega, na kak način to vrednost spreminjamo. Če na x-osi vrednost večamo,

se začne objekt premikati v desno, če jo manjšamo, v levo. Manjšanje vrednosti na y-osi ga

premakne navzgor, večanje navzdol. To je vse odlično, toda jaz sem potreboval gibanje proti

neki izbrani točki.

Slika 46: Kot med pešcem in ciljem

Vir: Lasten

Za lažje razumevanje sem moral najprej vedeti, kakšno pot bi pešec sploh moral opraviti.

Gledal sem skico (slika 46) in razmišljal, kako izračunati premik pešca za vsako os posebej.

Skiciral sem kup skic, dokler nisem ugotovil, da bi lahko uporabil funkciji sinus in kosinus

(slika 47).

Slika 47: Kot iz slike 41 prenesen v krog

Vir: Lasten

V tabeli 2 sem prikazal nekaj primerov, ki dokazujejo, da je sinus idealna funkcija za izračun

premika po osi y, medtem ko za kosinus velja enako kot za os x.

51

52

Smer Kot Sinus Kosinus
Desno 0° 0 1

Dol 90° 1 0
Levo 180° 0 -1
Gor 270° -1 0

Desno-dol 45° 0,71 0,71
Levo-dol 135° 0,71 -0,71
Levo-gor 225° -0,71 -0,71
Desno-gor 315° -0,71 0,71

Smer iz primera 22,8° 0,39 0,92

Tabela 2: Prikaz vrednosti funkcij sinus in kosinus glede na različne smeri v krogu

Vir: Lasten

Da bi lahko napisal formulo, sem potreboval le še način, kako pridobiti kot med pešcem in

ciljem. Na spletu sem našel informacijo o AS-funkciji atan2(), ki je že vgrajena v Flash.

Radians = Math.atan2(destName._y - this._y, destName._x - this._x);

Ta funkcija vzame razliko med točkama na osi x ter osi y in vrne kot med njima v radianih. S

pomočjo tega kota sem končno lahko sestavil funkciji, ki sta izračunali takšno velikost

premika za vsako os, da se je pešec pravilno premaknil v smeri točke. Za prilagoditev

velikosti tega premika sem dobljeno vrednost pomnožil s številko, ki je predstavljala hitrost

pešca. Tako se je pešec premaknil proti cilju za pot, ki je bila enaka temu številu hitrosti.

this._x = _x + Math.cos(Radians) * speed;
this._y = _y + Math.sin(Radians) * speed;

Za nenehno gibanje pešca se je ta koda morala zagnati vsako sliko na sekundo.

3.4.4 Prehod za pešce

Hojo pešcev skozi krožišče sem do sem imel že vzpostavljeno in delujočo. Želel sem samo še,

da avtomobili ne bi vozili čez njih. Tako je, vozilom je bilo vseeno za pešce. Prav tako teh ob

prečkanju cestišča ni motilo, da je čez njih pravkar peljala vrsta vozil. Temu je bilo treba

narediti konec. Moj namen je bil prikazati pravilno vožnjo v krožišču, ne pa kup nedeljskih

voznikov, ki niso sposobni spremljati pešcev, in če bi bil voznik vzoren, se pešcu ob

prečkanju cestišča sploh ne bi bilo treba ustaviti. Svojo pot čez prehod bi lahko nadaljeval

brez kakršnega koli postanka. Na srečo sem kolone, v katere se formirajo avtomobili,

načrtoval tako, da je za pešce ostalo nekaj prostora. Avtomobilom je bilo treba sporočiti le še,

kdaj naj se ustavijo.

Slika 48: Prostor, kjer pešci prečkajo cestišče

Vir: Lasten

Ko je pešec stopil na prehod, je bilo za ustavitev avtomobila že prepozno. Prav tako si nisem

mogel pomagati s spremljanjem peščeve odločitve o tem, ali bo prečkal cestišče ali ne, saj je

tudi ta prišla prepozno. Zakaj prepozno? Ker se avto ni imel časa tako hitro ustaviti in je

vseeno peljal čez pešca. Nekako bi moral že vnaprej vedeti, ali bo pešec izbral pot čez prehod,

in to sporočiti avtomobilu.

Slika 49: Postavitev in poimenovanje prehodov za pešce

Vir: Lasten

53

Težavo sem rešil tako, da sem najprej na vsakem pasu krožišča ustvaril mesto za preverjanje

prisotnosti pešca (slika 49). Ko se je pešec katerega od njih dotaknil ali se ga nehal dotikati, se

je to zapisalo in avto je lahko reagiral pravilno, čeprav še vedno prepozno.

Rešitvi sem bil bliže v trenutku, ko sem si

izmislil, da bi pešec imel tipalo (slika 50b),

s katerim bi lahko pot mestom za

preverjanje prisotnosti sporočil nekoliko

vnaprej. Ko sem zadevo preizkusil, se je

pokazalo, da je avtomobil za reakcijo

tokrat imel dovolj časa, s čimer je lahko

bolje predvidel peščev namen.

Slika 50: Peščevi tipali

Vir: Lasten

Zaradi boljše učinkovitosti prometa, sem pešcu ustvaril še dodatno tipalo (slika 50a). Kot pri

tipalu b se je tudi to aktiviralo komaj takrat, kadar je zadelo katero od mest za preverjanje

prisotnosti pešca, in se onemogočilo takoj, ko se je katerega izmed njih nehalo dotikati.

Njegova naloga pa ni imela zveze z avtomobili, temveč s hitrostjo peščeve hoje. Pokazalo se

je namreč, da so bili pešci ob prečkanju cestišča prepočasni, kar je povzročilo, da je bila

vožnja avtomobilov v krožišču manj odzivna, kot sem želel. S pospešitvijo hitrosti pešca ob

prečkanju cestišča sem zmanjšal čas čakanja avtomobilov, s čimer je promet postal bolj živ.

Preostalo mi je samo še, da sem celotno logiko nekoliko izpopolnil in v kratkem so

avtomobili zanesljivo pazili na pešce. Za lažje razumevanje sem priložil sliko 51, ki prikazuje

vrsto primerov te interakcije med pešci in avtomobili:

Krak 1 Pešec je s tipalom zadel v pas cestišča, ki je ponazorjen z rumeno barvo. S tem

je povzročil, da se bo avtomobil a moral ustaviti. Avtomobilu b se ne bo treba

ustaviti, saj pešec ni bil dovolj hiter, da bi mu preprečil pot.

Krak 2 Avtomobila c in č se bosta morala ustaviti pešcu, saj je s svojim tipalom še

pravi čas naznanil svoj prihod.

Krak 3 Vozilo d se bo moralo ustaviti pešcu, medtem ko je vozilo e že prečkalo točko,

po kateri več ni možnosti ustavitve. Avto se bo tako pešcu umaknil še pravi čas.

Krak 0 Kot vidimo, peščevo drugo tipalo ne vpliva na to, ali se bo avto moral ustaviti

ali ne, zato bo avto f lahko vožnjo nadaljeval brez težav.

54

Slika 51: Kako pešec prečka cestišče

Vir: Lasten

Ker sem na pešce in dejstvo, da bodo s prečkanjem cestišča motili avtomobile, mislil že od

začetka, pri ustvarjanju prehodov nisem imel znatnih težav.

3.4.5 Poenostavljen prikaz logike

Kot zanimivost prilagam poenostavljen prikaz peščeve logike (slika 52), ki vsebuje tudi

logiko prečkanja cestišča.

55

Slika 52: Poenostavljen graf poteka peščeve logike

Vir: Lasten

56

3.5 Mačka
Vozniki poznamo občutek, ko nam v soju nočnih luči na cesto skoči mačka. Zaradi njene

neslavne povezave z avtomobili, sem se odločil, da jo vključim v krožišče.

Mačka bi se brezbrižno sprehajala po krožišču, dokler ne bi naletela na nevarnost v obliki

avtomobila, ki bi jo lahko povozil. Mačka bi zato morala biti dovolj pametna, da bi se avtu

izognila. Najbolj zanimivo mesto za nastanek mačke je bila sredina krožišča, saj mačka tam

nima druge izbire, kot da prečka cestišče, kjer vozijo avtomobili. Za to mesto sem imel

najprej namen uporabiti grm, a sem se raje odločil za brlog, ki je nenavadnejši (slika 54). Šlo

je za MC, ki je nenehno preverjal, ali smo ga z miško kliknili.

Sama mačka je bila prav tako MC, saj je morala tako kot pešec sama zaganjati svojo logiko. Z

njenim videzom se nisem pretirano obremenjeval, saj majhnost njene postave ne bi omogočila

prikaza podrobnosti. Njeno telo sem razdelil na kose, saj sem ga tako laže animiral. Črno

barvo sem uporabil zato, ker se je med zmedo v krožišču najbolje videla.

Slika 53: Videz mačke v teku Slika 54: Mačkin brlog

Vir: Lasten Vir: Lasten

Brlog je ob kliku ustvaril mačko, ki se je začela sprehajati. Pri tem sem uporabil isti način

premikanja kot pri pešcu. Toda za razliko od pešca se mačka ni premikala proti določeni

točki, temveč tja, kamor je bila obrnjena. Njena smer je bila torej odvisna od njene rotacije,

katere smer se je izbrala naključno ob mačkinem nastanku. Tu sem vnesel tudi, da je mačka

ob pobegu iz vidnega območja izginila.

Ker je bilo nenavadno, da je mačka tekla v matematično popolnoma ravni liniji, sem v njeno

logiko vnesel naključno spreminjanje smeri. Ta vedenjski vzorec mačke sem poimenoval

»neinteligentni«, saj se med njenim tekanjem po krožišču ni zmenila za noben drug objekt.

57

3.5.1 Izmikanje

Ko sem mački vnesel posledice ob morebitnem stiku z avtomobili, sem vedno bolj začel

razmišljati o tem, kako bi se slednjim izognila. Načrtovati sem začel nov vedenjski vzorec,

kjer bi mačka morala biti pametna, vendar ne prepametna, saj bi jo vozila tu in tam morala

povoziti, vendar redko. Odločil sem se za inteligenco, ki je osnovana na uporabi dveh tipal. Z

njuno pomočjo bi mačka prepoznala, iz katere smeri prihaja nevarnost, in se pravilno

umaknila. Če bi nevarnost zaznalo tipalo a, bi mačka zavila v levo, v primeru, da pa bi se

aktiviralo tipalo b, bi zavila desno. Dolžino in obliko tipal sem tekom testiranja uspešnosti

izmikanja spreminjal in tako prišel do končnih različic (slika 55).

Slika 55: Tipali mački sporočita, od kod prihaja nevarnost

Vir: Lasten

Logika je bila zelo preprosta, zato s pisanjem kode nisem imel težav. Zagotoviti sem moral le,

da se mačka v zmedi, ko sta avto zaznali obe tipali, ni odzvala narobe. Ko je nastala zmeda, je

izmed dveh možnosti morala izbrati najbolj gotovo. To sem dosegel tako, da sem za vsak

avtomobil v krožišču preveril, ali je zadel v katero izmed tipal. Vsakič, ko je bilo določeno

tipalo izbrano, se je to prištelo k rezultatom. Na koncu sem moral preveriti le še to, katero

izmed tipal je bilo izbrano večkrat. Ta primitivni način zaznavanja je mački na krožišču,

polnem nevarnosti, omogočil preživetje.

3.5.2 Sledenje miškinemu kazalcu

Prišel je čas, ko se mi je začelo dozdevati, da avtomobili mačke niso povozili, čeprav so več

kot očitno peljali čeznjo. Pri iskanju hroščev, ki so bili odgovorni za to nenavadno dogajanje,

mi obstoječa vedenjska vzorca mačke nista prav veliko koristila, kajti potreboval sem več

kontrole glede narave trka. Tako se je rodila ideja o novem vedenjskem vzorcu, s katerim bi

58

mačka sledila kazalcu miške. S tem bi jo lahko vodil in natančno preučil morebitne anomalije

v trku z avtomobili.

Da bi mačka pravilno tekla proti miškinem kazalcu, je morala uporabljati logiko, podobno

tisti, ki sem jo vnesel pešcu, da je lahko hodil proti ciljem. S to kodo bi se obračanje mačke

začelo prav tako sunkovito, kot bi se končalo, čemur sem rekel enakomerna rotacija (slika

56a). Med takšnim obračanjem je vsak zasuk enako velik, zato se mačka ob koncu obračanja

ne bi zaustavila gladko, temveč v trenutku. Za razliko od mačke je pri pešcu to bilo videti

solidno, saj je grafično precej preprostejši, poleg tega pa se dejansko ne vidi, kam je zasukan.

Zaradi vsega omenjenega sem si za mačko želel obračanje, ki bi vsebovalo sunkovit začetek

in bolj gladek konec, kar sem poimenoval neenakomerna rotacija (slika 56b). Za učinkovito

obračanje po primeru b moramo imeti na razpolago tako začetno kot končno rotacijo, torej

obe hkrati.

Slika 56: Prikaz enakomernega in neenakomernega 180 ° obrata mačke

Vir: Lasten

Z neenakomernim načinom premikanja sem v času dela na projektu že bil seznanjen, toda le v

navadnem dvodimenzionalnem koordinatnem sistemu, kjer ga dosežemo s pomočjo preproste

računske operacije (tabela 3a). To logiko sem pretvoril za uporabo pri neenakomerni rotaciji

(tabela 3b). Napisal sem tudi različico te formule za enakomerno rotacijo (tabela 3c). Prav to

izvedenko sem uporabljal, dokler nisem bil prepričan, da sistem deluje.

 Formula
a x1 + (x2 – x1) * vrednost
b dir + (dirNew – dir) * vrednost
c dirNew – dir
d dir + (dirTarget – dir) * vrednost

Tabela 3: Formuli za izračun gladkega premika oziroma obrata

Vir: Lasten

59

Tu je dir trenutna rotacija, medtem ko je dirNew nova rotacija, torej kamor želimo, da se

mačka obrne. Pri vrednosti gre za število, ki regulira hitrost premikanja po tej osi in mora biti

manjše od 1. Če je enako 1, se objektu rotacija sploh ne spremeni. Za razliko od človeka

računalnik ne zna intuitivno prepoznati prave smeri zasuka, zato je bilo treba rešitev poiskati s

pomočjo računskih in logičnih operacij. S pomočjo formule c sem izračunal najkrajšo možno

rotacijo, ki pa včasih ni bila pravilna. Zakaj se je to dogajalo, bom pokazal na naslednjem

primeru, toda preden nadaljujem, moram omeniti, da funkcija za iskanje kota med mačko in

kazalcem3 vrne vrednosti, ki se gibljejo od -180 ° do 180 °, kar je razlog za nenavaden prikaz

stopinj v krogu (slika 57a).

Slika 57: Težave pri računskem iskanju pravilnega obrata

Vir: Lasten

Če s formulo c preverimo primer b (slika 57), vidimo, da je pravilna dolžina zasuka najdena

korektno (tabela 4a, primer b) in s tem tudi smer. Če pa isto formulo uporabimo za primer c

(slika 57), pa rezultat (tabela 4a, primer c) ni to, kar želimo, saj nismo dobili najkrajšega

možnega obrata. Najkrajši je v nasprotno smer urinega kazalca in je prikazan v primeru č

(slika 57), kjer se vidi, da bi dejansko moral iti preko točke, kjer se zgodi preskok od -180 °

do 180 °.

 Formula Primer b Primer c
a | dirNew – dir | | 45 – (-90) | = 135 | 135 – (-90) | = 225
b | dirNew – (360 + dir) | | 45 – (360 + (-90) | = 225 | 135 – (360 + (-90) | = 135

Tabela 4: Izračun primerov b in c

Vir: Lasten

3 To je tista, ki je bila uporabljena pri pešcu, kadar je iskal kot glede na cilj.

60

Da sem to težavo rešil, sem moral uporabiti formulo, ki bi število, ki je v minusu, seštela s

360 (tabela 4b). S tem sem -90 spremenil v 270, kar je še vedno isti kot, le prirejen. Ta kot

sem lahko brez težav vstavil v obstoječo formulo b (tabela 3) namesto dirNew in dobil

pravilen rezultat4.

Slika 58: Primer računanja pravilnega obrata, kjer sta dir in dirNew pozitivna (a in b) ali

negativna (c in č)

Vir: Lasten

Slika 59: Primer računanja pravilnega obrata, kjer je dir pozitiven in dirNew negativen

Vir: Lasten

Slika 60: Primer računanja pravilnega obrata, kjer je dir negativen in dirNew pozitiven

Vir: Lasten

4 V tem primeru dobimo pravilen rezultat samo, če odmislimo atribut vrednost.

61

62

Bolj ko sem preizkušal primere, prej sem opazil, da mi te formule ne bi bilo več treba

spreminjati, samo pravilno prirejen kot, ki sem ga poimenoval dirTarget, bi bilo treba najti. S

tem sem dobil novo formulo (tabela 3d), ki je od tod naprej ostala nespremenjena. Spreminjal

se je samo še dirTarget, kar mi je precej olajšalo delo. Zanj sem moral napisati kup formul, ki

bi ga izračunale. Poleg tega sem moral zasnovati še logični sistem, ki bi izmed omenjenih

formul vedno izbral najustreznejšo. Z intenzivnim primerjanjem različnih primerov sem tako

prišel do formul, ki jih prikazujejo slike 58, 59 ter 60 in ki so dokazane v tabeli 5.

 Primer Pogoj Formula Račun Smer
a 1 dirNew >= 0

dir >= 0
dirNew > dir 135 > 45 = da

b dirNew < dir 135 < 45 = ne
c 2 dirNew < 0

dir < 0
dirNew > dir -45 > -135 = da

č dirNew < dir -45 < -135 = ne
d 3 dirNew < 0

dir >= 0
| dirNew – dir | | –90 – 45 | = 135

e | dirNew + (360 – dir) | | –90 + (360 – 45) | = 225
f 4 dirNew < 0

dir >= 0
| dirNew – dir | | –90 – 135 | = 225

g | dirNew + (360 – dir) | | –90 + (360 – 135) | = 135
h 5 dirNew >= 0

dir < 0
| dirNew – dir | | 45 – (–90) | = 135

i | dirNew - (360 + dir) | | 45 – (360 + (–90) | = -225
j 6 dirNew >= 0

dir < 0
| dirNew – dir | | 135 – (–90) | = 225

k | dirNew - (360 + dir) | | 135 – (360 + (–90) | = 135

Tabela 5: Dokazi za primere s slik 58, 59 in 60

Vir: Lasten

Kot vidimo iz primerov, sem ustvarjene formule razdelil na tri kategorije, ki so ločene po tem,

ali so vrednosti pozitivne ali negativne.

1. kategorija – dir in dirNew sta bodisi pozitivna (a in b) bodisi negativna (c in č).

2. kategorija – dir je pozitiven, dirNew je negativen (d, e, f in g).

3. kategorija – dir je negativen, dirNew je pozitiven (h, j, i in k).

Čeprav je črk dvanajst, gre tu v resnici za šest primerov. Vsi prikazani primeri namreč

delujejo v parih, kar pomeni, da je v izbranem primeru na koncu izmed dveh rezultatov

pravilen samo eden. Ta je v tabeli zapisan pod »Smer«. Pri primerih a–č se izbere pravilen

odgovor, medtem ko se pri d–k izbere tisto število, ki je manjše, saj označuje najkrajši obrat.

Z namenom, da se vidi, kako sem te formule implementiral v logični sistem, v katerem s

pomočjo zgoraj omenjenih formul za računanje trenutne (dir) in nove rotacije (dirNew)

iščemo prilagojeno rotacijo (dirTarget), sem kot zanimivost priložil sliko 61, ki prikazuje

poenostavljen graf poteka te logike.

Slika 61: Poenostavljen graf poteka logike za najdbo ustrezne prilagojene rotacije dirTarget

Vir: Lasten

Z omenjenimi načini ter minimalnim igranjem z vrednostmi spremenljivk, ki so bile

zadolžene za občutek neenakomernega zasuka, mi je uspelo ustvariti gladko obračanje mačke

proti miškinemu kazalcu. Narediti sem moral samo še to, da se je mačka začela premikati, kar

pa je bilo izredno enostavno, saj sem lahko uporabil enak način kot pri pešcu.

3.5.3 Težava z globino

Pojavila se je zanimiva težava, ki je bila rezultat Flashevega načina upravljana z globino

objektov. Spomnimo se, da objekti, ki nastanejo kasneje, v Flashevem seznamu globine

končajo bolj v ospredju kot objekti, ki nastanejo prej. Lahko rečemo, da se kot plasti (layers)

nalagajo eden na drugega. Spomnimo se tudi, da dva objekta ne moreta imeti enakega števila

globine.

63

Dokler so zadnji nastajali avtomobili, ni bilo težav, saj ni bilo nič narobe, če je bila njihova

grafika po globini pred drugimi objekti. Težave so se pojavile pri nastanku mačke, ki je hodila

po rastlinah in avtomobilih, namesto da bi tekla pod njimi (slika 62). Edino, kar sem v tem

primeru lahko naredil, je, da sem vnaprej ustvaril prazen MC, ki je v globini stal med tistimi

objekti, ki morajo biti pred mačko, in tistimi, ki morajo biti za njo. Edini način manipulacije

globine, ki jo Flash omogoča, je namreč ta, da jo izmenjamo med dvema objektoma. Zato sem

ukaz spremenil tako, da je ob nastanku mačka globino tega objekta prevzela, ob smrti oziroma

izbrisu pa mu jo vrnila. To izmenjavo globine sem dosegel z uporabo funkcije

swapDepths().

Slika 62: Težava z globino mačke

Vir: Lasten

3.5.4 Logika

Težko si je predstavljati, kaj vse se mora sprožiti, da mačka dela to, kar pač dela. Zato sem za

boljšo predstavo o tem, kaj se dejansko dogaja v drobovju mačke, priložil graf poteka, ki

poenostavljeno prikazuje njeno logiko (slika 63).

64

Slika 63: Poenostavljen graf poteka mačkine logike

Vir: Lasten

65

3.6 Uporabniški vmesnik
O interakciji z avtomobili ter mačko sem že govoril, zato bom tu opisal preostale elemente, ki

sestavljajo uporabniški vmesnik.

3.6.1 Meni in gumbi

Sprva sploh nisem imel namena narediti menija, temveč samo gumbe, ki sem si jih označil na

skici z začetka projekta. Za meni sem se odločil komaj kasneje, ko sem se zavedal, da bi bilo

zanimivo, če bi aplikacija vsebovala nekakšno pomoč, kjer bi bile na kratko razložene

funkcije gumbov. Naloge sem se lotil tako, da sem ustvaril MC, ki bi vseboval vse gumbe ter

meni. Njegov prvi frame je bil rezerviran samo za gumbe, ki bi naj bili prikazani nenehno. To

so tisti, ki jih ob zagonu aplikacije vidimo takoj. Naslednji frame-i pa so bili rezervirani za

različna stanja menija, ki se je prikazal ob kliku na gumb Pomoč. Ob ponovnem kliku istega

gumba se je meni ugasnil.

Slika 64: MC AboutScreen vsebuje poleg vseh gumbov tudi meni ter prometne znake

Vir: Lasten

66

S premikom miškinega kazalca na sam meni se da dostopati do nastavitev. Tukaj se nahajata

gumb za ponastavitev števil seštevanja prometa ter gumb za spremembo jezika. Prav tako se

tu nahajata dva drsnika – prvi uravnava prehodnost avtomobilov skozi krožišče, medtem ko

drugi omejuje število dovoljenih pešcev na ekranu.

Zagotoviti sem moral, da je v Flashevem seznamu globine ta MC vedno nad drugimi objekti,

zato sem tako avtomobilom kot pešcem ter mački vnesel kodo, ki je ob njihovem nastanku

zamenjala lastno globino z globino tega MC-ja. Vsi elementi, ki so bili v tem MC-ju, so nato

prav tako bili pred drugimi.

3.6.2 Menjava jezika

Najprej sem imel namen tekst napisati kar v okno, vendar sem se odločil, da ga bom raje

shranil v spremenljivke. To sem storil zaradi ideje o možnosti zamenjave jezika. Vse besedilo

sem napisal vnaprej tako v slovenščini kot angleščini, vsako v svojih spremenljivkah. Eno

izmed teh besedil je bilo izbrano privzeto in to se je avtomatsko prekopiralo v delovne

spremenljivke, katerih vsebina se je nato prikazala v oknu. Za prikaz teksta iz spremenljivk

sem uporabil dinamično tekstovno polje (Dynamic Text). Zamenjavo jezika sem dosegel tako,

da sem naredil gumb, ki je ob kliku preprosto spremenil, kateri izmed tekstov je bil izbran, in

ga prekopiral v delovne spremenljivke. S tem sem dosegel priročno menjavo jezika.

3.6.3 Seštevanje prometa

Povsem slučajno sem se spomnil, da bi

bilo zanimivo prikazati tudi, koliko

avtomobilov je peljalo skozi posamezne

pasove krožišča. Tako sem na vsakem

kraku krožišča ustvaril dinamična

tekstovna polja, ki so za vsak avtomobil to

količino beležila.

Slika 65: Seštevanja prometa na kraku

Vir: Lasten

3.6.4 Izbira avtomobilove smeri z gumbi

Preden se je dalo avtomobilu spremeniti smer s pomočjo miške in tipkovnice, so to storili

prav za to namenjeni gumbi. Vsak izmed njih je deloval za svoj krak in imel za izbiro na

razpolago več možnosti – prvi, drugi, tretji in četrti izhod ter naključno, skozi katere se da

prehajati s klikom. Prav zaradi te spremenljive funkcionalnosti, kjer mora gumb vsakič

67

narediti nekaj drugega, sem se odločil, da bom za njegovo drobovje namesto Button-a

uporabil MC. S tem in z nekaj kode v AS-u sem dosegel, da ima gumb več možnih stanj.

Na začetku sem naredil tako, da je klik gumba spremenil le privzeto izbiro smeri, ki so jo

dobili avtomobili, ki so nastali na istem kraku. To je pomenilo, da se je smer spremenila

komaj tistim avtomobilom, ki so nastali po spremembi, ne pa tudi tistim, ki so takrat že

obstajali in so bili v koloni oziroma so že vozili v krožišču. S tem nisem bil zadovoljen, saj

sem prišel do spoznanja, da bi bilo bolj smiselno, če bi se smer spremenila tudi tistim

avtomobilom, ki so čakali v koloni, a še niso zapeljali v krožišče. Da pa bi to lahko storil, bi

moral te avtomobile najprej najti.

Najprej sem MC-ju avtomobila dodal spremenljivko, ki je beležila, ali je še v koloni. Nato

sem napisal algoritem za spremembo smeri, ki je preletel vse avtomobile, ki so bili na ekranu.

Med njimi je preveril, ali so nastali na enakem kraku, na katerem sem se odločil spremeniti

smer, in če so, je nato preveril samo še, ali so se tedaj nahajali v koloni. V kolikor je bil tudi

zadnji odgovor pritrdilen, je ta avtomobil spadal med tiste, katerim sem želel spremeniti smer.

Po zaslugi te funkcije sem dosegel, da se je smer spremenila tudi avtomobilom v koloni.

Proti koncu se mi je zdelo, da morda ni dovolj jasno razumljivo, kako ti gumbi delujejo, zato

sem ustvaril še dodaten grafični prikaz izbrane poti, ki je le-to prikazal jasno in nazorno.

Slika 66: Grafični prikaz izbrane poti – naključno, prvi, drugi, tretji in četrti izhod

Vir: Lasten

68

3.7 Zvok
Krožišče je bilo brez zvoka nekako žalostno, saj mu je manjkalo tistega znanega prijetnega

vzdušja, ki ga ne moremo dobiti samo z vizualnimi dražljaji. Zaradi tega sem bil prav

radoveden, kako mi bo uspelo različne zvoke preplesti v enotno vzdušje. Ampak preden sem

se tega sploh lahko lotil, sem moral zvoke najti.

Vedel sem, da na spletu obstaja kup spletnih strani5, ki ponujajo zvočne učinke ter glasbo po

licenci Creative Commons6, kjer lahko avtor izdelka s pomočjo vnaprej pripravljenih licenc

jasno določi, kateri del pravic da v prosto uporabo. Teh licenc je več, zato sem pazil, da sem

pri iskanju zvočnih datotek uporabil le tiste, katerih licenca se je skladala z naravo mojega

projekta7 in dejstvom, da sem nekatere zvoke imel namen obdelati.

Slika 67: Adobe Audition 1.5

Vir: Lasten

5 Te so napisane pod točko 5. Literatura in viri.
6 Več o Creative Commons najdete na www.creativecommons.org, www.creativecommons.si, dne 15. 12. 2010
7 Gre za neprofitni in nekomercialni izdelek.

69

http://www.creativecommons.org/
http://www.creativecommons.si/

70

Zvoke sem iskal na naslednjih spletnih straneh:

- http://www.flashkit.com/soundfx/, dne 15. 12. 2010

- http://www.freesound.org/, dne 15. 12. 2010

- http://www.partnersinrhyme.com/pir/PIRsfx.shtml, dne 15. 12. 2010

- http://www.soundsnap.com/, dne 15. 12. 2010

- http://amazingsounds.iespana.es/en/, dne 15. 12. 2010

- http://www.pachd.com/sounds.html, dne 15. 12. 2010

- http://www.mediacollege.com/downloads/sound-effects/, dne 15. 12. 2010

Kar se ustreznosti zvokov tiče, sem za nekatere takoj vedel, da jih bom uporabil, medtem ko

sem moral druge najprej vstaviti v izdelek, da sem lahko ocenil, ali so pravšnji. Zvokov nisem

mogel uporabiti kar takšnih, kot sem jih dobil, saj sem jih moral prilagoditi za uporabo v

Flashu. Nekatere sem na primer zmešal skupaj, drugi so bili predolgi, zato sem jih skrajšal, in

podobno. Za te potrebe sem uporabil program Adobe Audition.

3.7.1 Zvok krožišča

Najprej sem imel nenavadno zamisel, da bi zvok prometa dosegel s tem, da bi vsak avto sam

predvajal svoj zvok vožnje. Ne glede na trud se zamisel ni obnesla, saj je bil zvok preveč

monoton. Tako sem prišel do zamisli, da bi zvočno vzdušje krožišča ločil na dve fazi, in sicer

na fazo mirovanja ter fazo prometa.

Mirovanje

S to fazo imamo opravka takrat, kadar na cestišču ni nobenega avtomobila. Za ta del sem

izbral zvok mirne soseske z blagim šumom prometa v ozadju. Ta zvok se v krožišču sliši

vedno in glasnost se mu ne spreminja.

Promet

Ta faza se pojavi, ko po krožišču vozi kakršno koli število vozil – od enega avtomobila do

petdeset, kjer je meja njihovega nastajanja. Tu sem uporabil zvok hrupa prometa, ki pa je bil

dokaj glasen, zato ga za razliko od zvoka v fazi mirovanja nisem mogel uporabiti kar tako, saj

se je slišal prehod. Zamisliti sem si moral nek dinamičen način glasnosti glede na količino

avtomobilov na ekranu. Kaj hitro sem prišel do naslednjega grafa (Slika 68).

http://www.flashkit.com/soundfx/
http://www.freesound.org/
http://www.partnersinrhyme.com/pir/PIRsfx.shtml
http://www.soundsnap.com/
http://amazingsounds.iespana.es/en/
http://www.pachd.com/sounds.html
http://www.mediacollege.com/downloads/sound-effects/

Slika 68: Graf glasnosti glede na število vozil

Vir: Lasten

S tem načinom sem bil najprej zelo zadovoljen, toda sčasoma me je začel motiti. Zakaj, ko je

bila na ekranu polovica avtomobilov, je bil promet že zelo gost. Glasnost je bila tedaj komaj

na polovici končne vrednosti. Če sem od tod naprej v krožišče spustil še ostalo polovico

avtomobilov, se je glasnost povečala še za enkrat toliko. To mi ni odgovarjalo, saj se v

realnem svetu glasnost ne poveča sorazmerno s številom avtomobilov, torej v ravni črti,

temveč prej v obliki krivulje.

Slika 69: Graf glasnosti glede na število vozil v obliki krivulje

Vir: Lasten

Najbolj primeren kandidat za poosebitev te krivulje se mi je zdela četrtina kroga (slika 69a).

Po grafu sodeč vidimo, da glasnost ob malem številu avtomobilov narašča hitro (slika 69b),

ko pa se začnemo bližati zgornji meji vozil, se ublaži. S tem je zvok prometa hitro postal

glasen, na kar se njegova glasnost več ni pretirano večala. Do formule, ki je skrbela za

računanje te glasnosti (slika 70), sem prišel s kombinacijo trigonometrije in lastne pameti.

Slika 70: Formula za glasnost

71
Vir: Lasten

72

Tu lahko omenim tudi, da sem letalu pr l zvok. Šlo je za zvok preleta, ki je še

.7.2 Zvok mačke

pazilo, da je manjkal zvok, je bilo to takrat, kadar je avtomobil povozil

a predvajanje teh zvokov sem potreboval nekaj zmogljivejšega kot samo monotono

av tako doda

poudaril prometno vzdušje okolja.

3

Če se je kdaj zares o

mačko in slišala se je le tišina. Zvok trka z avtom je bil torej prvi, na katerega sem se spomnil.

Ob spremljanju obnašanja mačke pa sem se spomnil še preostalih (tabela 6).

Z

ponavljanje enega in istega. S tem v mislih sem mački ustvaril dodaten MC, ki je vseboval

vse omenjene zvoke. Tako mi je preostalo le, da sem v logiko mačke vnesel dejanja, ki so

sprožila predvajanje izbranega zvoka. Pri zvokih trka v avto sem si dal duška in ju oblikoval

tako, da se nesreča sliši hudo ter komično hkrati. Ostalih zvokov vsebinsko nisem spreminjal.

Ime zvoka Razlaga zvoka
soundCatCrash1 Udarec v avto, ki mu sle er avtomobilska hupa. dita mačji krik t

soundCatCrash2 Udarec v avto, ki mu sledita mačji krik ter blagi zvok trganja
mesa.

cathiss1 Različna zvoka pihanja mačke cathiss2
cattalk1 Različna zvoka mijavkanja mačke cattalk2
catcry1

Številni zvoki jokanja mačke catcry2
catcry3
catcry4

Tabela 6: Seznam vseh zvokov za mačko

ploh se ne zavedamo, kaj nam manjka, dokler manjkajočega ne občutimo – nekako tako

Vir: Lasten

S

lahko na kratko opišem svojo izkušnjo z zvokom.

3.8 Optimizacija
Ko se projekt bliža koncu, pride čas optimizacije delovanja aplikacije. Pri tem gre za

prečiščevanje delov aplikacije z namenom, da ta začne teči hitreje. Čeprav je ta faza v

glavnem namenjena pridobivanju hitrosti, sem precejšnji del namenil tudi iskanju in

odstranjevanju napak.

3.8.1 Počasna grafika

Motilo me je, da krožišče na počasnejših računalnikih ni delovalo gladko. S pomočjo

preprostega preizkusa, kjer sem vso grafiko pretvoril v črne kocke, sem ugotovil, da za to ni

bila kriva obširnost kode v AS, temveč podrobna vektorska grafika. Za izris črnih kock

namreč ne potrebujemo toliko procesorske moči kot za zapletene oblike z barvnimi prelivi,

zato je bila ob spremembi pohitritev več kot očitna. Seveda nisem želel, da bi po ekranu

vozile črne kocke, zato sem zmanjšal količino podrobnosti ter zbrisal določene prelive.

S tem sem krožišče malenkost pohitril, a vseeno ne dovolj, da na slabših računalnikih ne bi

bilo težav. Za gladkost sem bil pripravljen poseči tudi po sledeči drastični metodi – v Flashu

sem privzeto kakovost izrisa8 s high zmanjšal na medium. To je obremenitev procesorja

zmanjšalo kar precej, toda še vedno nisem bil tam, kjer sem želel. Po dolgotrajnem

sprehajanju več nisem vedel, kaj bi optimiziral, in ker pri kakovosti izrisa na manj od medium

nisem želel iti, sem se enostavno moral sprijazniti s končnim rezultatom.

Slika 71: Povečan prikaz razlike v kakovosti izrisa – high, medium in low

Vir: Lasten

8 Možnosti, ki so na razpolago, so high, medium in low.

73

74

3.8.2 Lov za hrošči

Vedno, ko sem imel občutek, da je krožišče delovalo brez težav, se je pojavil nov hrošč9, ki je

imel potencial, da me razjezi. Lov za hrošči je upravičeno najmanj priljubljen del

programiranja, še posebej pri projektih, kot je tale, v katerih se dogajanje ne odvija vedno

enako.

Najhujši hrošč je nastopil, ko je avtomobil v krožišču kar naenkrat izginil in se v istem

trenutku pojavil na drugi strani krožišča. Takrat še nisem vedel, čemu bi se to lahko zgodilo, a

sem po dolgotrajnem in frustrirajočem opazovanju le ugotovil. Avtomobil je pri izhodu iz

krožišča počakal na pešca in če si mu takrat z miško spremenil smer, se je teleportiral10 na

tisti krak, kamor je smer določala. Temu sem naredil konec tako, da sem avtomobilu po

izhodu iz srednjega dela krožišča preprečil, da bi mu sprememba smeri spremenila njegovo

pot. To je bil edini hrošč, ki me je zares presenetil, saj sem bil prepričan, da promet deluje

brezhibno.

9 Izraz hrošč ali bug izvira iz programiranja in predstavlja napako v kodi.
10 Teleport je nekaj, kar omogoča instantno potovanje skozi čas in prostor. Lahko je bodisi stroj bodisi portal.

75

4 ZAKLJUČEK
Ob začetku projekta nisem imel popolnoma realiziranega načrta. Zapisane sem imel le cilje, ki

so me opomnili, katere elemente sem želel izdelati. Zaradi tega sem napredoval počasneje, kot

bi želel, saj sem si delovanje posameznih delov krožišča izmišljeval sproti. Čeprav bi z bolje

nastavljenim in podrobnejšim načrtom projekt dokončal v krajšem času, to tukaj ni prišlo v

poštev, saj menim, da za tak načrt tedaj nisem imel dovolj izkušenj. K temu je veliko

pripomoglo tudi prepričanje, da sem se spuščal v nekaj neznanega. Dodaten razlog je bila tudi

precejšnja količina elementov, ki bi naj bili vodeni z AS-om. Programirati sem znal le za

vzorec, zato sem skušal slediti najbolj očitni smeri, tudi če je to pomenilo, da je bilo treba

napredovati po polžje.

S tem, ko sem odstranil čas kot ključen dejavnik pri razvoju izdelka, sem imel lepo možnost

eksperimentirati, kar sem največ počel v kombinaciji pisala in lista papirja, veliko pa tudi s

spreminjanjem lastnosti posameznih delov aplikacije. Ko sem pri snovanju logike prišel do

potencialne rešitve, sem se jo odpravil prenesti v kodo. Ker AS zajema veliko funkcij, bi bilo

nerealno pričakovati, da sem poznal vse že od samega začetka. Zato je velik razlog za neboleč

napredek pri pisanju kode bila možnost najti pomoč. Tukaj sem imel srečo, saj Flash vsebuje

izvrstno bazo pomoči11, kjer je razloženo, kako se sleherna funkcija vede. Pridodani so tudi

bolj ali manj jasni primeri, ki lahko pomenijo razliko med uspehom in brezuspešnim

razbijanjem glave. Ni pa to bil edini vir pomoči pri ustvarjanju tega projekta, saj sem poleg

tega izvedel veliko tudi z brskanjem po spletu. Omenjena pomoč mi je pomagala le pri

razumevanju posameznih funkcij AS-a, ne pa tudi pri ustvarjanju logike, kjer sem bil

prepuščen samemu sebi.

Zaradi precejšnje vsebnosti AS-a delo ni potekalo linearno, temveč v nekakšni sinusni krivulji

poteka dela skozi čas in prostor. Težko je opisati občutek, ki prevladuje v programiranju, toda

dejstvo je, da sem zaradi nevidnih povezav med objekti in AS-om moral pri ustvarjanju

posameznih elementov krožišča opraviti precej skakanja iz enega dela projekta v drugega.

Zgodilo se je celo, da je bilo treba zaradi majhne spremembe kode na enem mestu spremeniti

velik del kode na drugem, da ne omenim napak, ki so se mi dogajale zaradi površnosti pri

pisanju kode. Flash ti jih sicer javi, toda nekaterih ne opiše pravilno, zato sem se včasih znašel

v položaju, ko sem skušal popraviti popolnoma delujoči del kode, medtem ko se je napaka

11 Najdemo jo na spletni strani http://help.adobe.com/en_US/FlashPlatform/reference/ActionScript/2/help.html,

dne 15. 12. 2010

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/2/help.html

76

skrivala povsem drugje. Prav tako je znala nastati zmeda pri iskanju hroščev, za katerih

odkritje je bilo včasih treba preveriti vsak najmanjši kotiček kode.

V kolikor bi se ponovno lotil tega projekta, bi marsikaj naredil drugače, morda celo vse.

Trenutno logiko, ki vodi posamezne elemente krožišča, bi gotovo popolnoma spremenil, saj

so nekateri njeni vidiki preveč omejujoči. Lep primer je vnaprej pripravljena vožnja

avtomobila po tirnicah, ki ne omogoča, da bi se avto ustavil, kadar se mu zahoče. Zato bi

naslednjič cestišče ustvaril tako, da bi posedovalo namige o strukturi zavojev. Te namige bi

avtomobili koristili za matematični izračun poti vožnje, kar bi pomenilo, da njihova vožnja

več ne bi bila narejena vnaprej. Pešci so v bistvu že zdaj narejeni v takem slogu, le ustaviti bi

se še morali znati. Krožišče bi s podobnimi spremembami postalo še bolj dinamično, saj bi

lahko vnesel tudi način, kjer bi nekateri vozniki vozili manj po pravilih in bolj po svojih

(ne)zmožnostih – tako kot v realnosti. To bi vožnjo avtomobilov naredilo znatno bolj

nepredvidljivo in s tem zanimivejšo, da ne pomislim na težave, ki bi jih ob prečkanju cestišča

v tej zmešnjavi imela uboga mačka. Da bi vse omenjeno delovalo s trenutno količino

elementov, bi najverjetneje moral presedlati z AS-a 2.0 na AS 3.0, saj je bolje prilagojen

upravljanju večjih količin objektov, poleg tega pa je njegovo izvajanje kode precej hitrejše.

Ne glede na omenjeno sem z nastalim izdelkom izjemno zadovoljen. Hkrati sem tudi

presenečen, da mi je uspelo narediti vse, kar sem si zamislil. Sicer je res, da to krožišče nima

neke praktične vrednosti, saj gre tu le za bežno zanimivost, a pomembnejše je dejstvo, da sem

skozi izdelavo tega izdelka pridobil veliko novih izkušenj in znanj ter hkrati utrdil obstoječa.

Napredoval sem predvsem pri snovanju smiselne logike in njenem pretvarjanju v kodo. S tem

sem dobil dodatno motivacijo za morebitno učenje drugih programskih jezikov v prihodnosti.

Največ, kar sem v obsegu tega projekta dosegel, je povečanje lastnega znanja. Upam, da bodo

postopki, ki sem jih omenil v tej nalogi, v prihodnosti pomagali še marsikomu.

Menim, da današnja hitrost življenja definira način učenja, ki je potreben, da se lahko uspešno

kosamo z neustavljivim napredkom v tehnologiji. Ne samo da se moramo učiti sami zase,

znanje moramo usvajati čim hitreje ter čim bolje, hkrati pa po svojih sposobnostih. Tukaj

nastopi splet, kjer lahko s klikom na miškino uho dostopamo do dnevno posodobljenih učnih

gradiv. Ne gre samo za priročnost, temveč tudi za možnost, da dobimo prav tisto informacijo,

ki jo iščemo, ne pa tudi tiste, ki je ne potrebujemo. Tehnologijo imamo, čas je, da se je

začnemo posluževati stoodstotno. Navsezadnje je tehnologija stvar, ki nam res lajša življenje.

77

5 LITERATURA IN VIRI
5.1 Literatura

1. Russel, C.: Adobe Flash CS4 Professional, Adobe Press, Kalifornija, ZDA, 2009.

2. Rich, S.: Learning Flash CS4 professional, O'Reilly, Kalifornija, ZDA, 2009.

5.2 Spletni viri
1. http://en.wikipedia.org/wiki/Adobe_Flash/, dne 15. 12. 2010

2. http://www.adobe.com/products/flash/, dne 15. 12. 2010

3. http://livedocs.adobe.com/flash/9.0/main/flash_as2_learning.pdf, dne 15. 12. 2010

4. http://help.adobe.com/en_US/FlashPlatform/reference/ActionScript/2/help.html,

dne 15. 12. 2010

5. http://www.mzp.gov.si/fileadmin/mzp.gov.si/pageuploads/DPR/Predlogi_predpisov_D

PR/10_01_20-Zakon_o_pravilih_cestnega_prometa.pdf, dne 15. 12. 2010

6. http://www.flashkit.com/soundfx/, dne 15. 12. 2010

7. http://www.freesound.org/, dne 15. 12. 2010

8. http://www.partnersinrhyme.com/pir/PIRsfx.shtml, dne 15. 12. 2010

9. http://www.soundsnap.com/, dne 15. 12. 2010

10. http://amazingsounds.iespana.es/en/, dne 15 .12. 2010

11. http://www.pachd.com/sounds.html, dne 15 .12. 2010

12. http://www.mediacollege.com/downloads/sound-effects/, dne 15. 12. 2010

http://en.wikipedia.org/wiki/Adobe_Flash/
http://www.adobe.com/products/flash/
http://livedocs.adobe.com/flash/9.0/main/flash_as2_learning.pdf
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/2/help.html
http://www.mzp.gov.si/fileadmin/mzp.gov.si/pageuploads/DPR/Predlogi_predpisov_DPR/10_01_20-Zakon_o_pravilih_cestnega_prometa.pdf
http://www.mzp.gov.si/fileadmin/mzp.gov.si/pageuploads/DPR/Predlogi_predpisov_DPR/10_01_20-Zakon_o_pravilih_cestnega_prometa.pdf
http://www.flashkit.com/soundfx/
http://www.freesound.org/
http://www.partnersinrhyme.com/pir/PIRsfx.shtml
http://www.soundsnap.com/
http://amazingsounds.iespana.es/en/
http://www.pachd.com/sounds.html
http://www.mediacollege.com/downloads/sound-effects/

78

6 SLOVAR TUJIH BESED
Actions – akcije

ActionScript – skriptni jezik programa Adobe Flash

Align – poravnava

Bitmap – bitna slika

Button – grafični simbol Button

Classic Tween – klasična animacija gibanja

Collision Detection – preverjanje trka

Color – barva

Compiler Errors – napake prevajalnika

Drawing Object – risalni objekt

Dynamic Text – dinamični tekst

Fill – polnilo

Frame – okvir

Frame by Frame – okvir za okvirjem

Frames per Second – število okvirjev na sekundo

Graphic – grafični simbol Graphic

Graphic Symbol – grafični simbol

Height – višina

Hertz – herc

High – visoka kakovost

Info – informacije

Layer – plast

Library – knjižnica

Low – nizka kakovost

Medium – srednja kakovost

Morphing – učinek pri animaciji, kjer se slika skozi čas pretvori v drugo v obliki preobrazbe

Motion Guide – pot animacije

Motion Tween – animacija gibanja

MovieClip – grafični simbol MovieClip

Output – izpis

Pixel – slikovna pika

Position – pozicija

Properties – lastnosti

Rotation – rotacija

79

Shape Tween – animacija oblike

Swatches – odtenki

Stroke – obroba

Timeline – časovna linija

Tools – orodja

Width – širina

80

7 PRILOGE
Poleg tega dokumenta prilagam DVD z aplikacijo Interaktivni prikaz pravilne vožnje v

krožišču v Adobe Flash CS4. Vse datoteke, ki se nahajajo na DVD-ju, so prikazane v tabeli 7.

Ime datoteke Vrsta datoteke Razlaga
Diplomska naloga.pdf Dokument PDF Diplomska naloga v elektronski obliki

Krožišče.exe Program Izdelek v obliki programa (za
Windows)

Krožišče.fla Flash dokument Odprta izvorna datoteka Flash
Krožišče.html Dokument HTML Povezava do izdelka v SWF formatu
Krožišče.swf Shockwave datoteka Izdelek v SWF formatu (za splet)

Tabela 7: Datoteke na priloženem DVD-ju

Vir: Lasten

	1 UVOD
	1.1 Namen, cilji in osnovne trditve diplomskega dela
	1.1.1 Glavni cilji
	1.1.2 Dodatni cilji

	1.2 Predpostavke in omejitve
	1.3 Predvidene metode dela
	1.4 Uporabljene kratice

	2 ADOBE FLASH CS4
	2.1 Kratka zgodovina programa Flash
	2.2 ActionScript
	2.3 Orodja
	2.4 Objekti
	2.4.1 Risalni objekt (Drawing object)
	2.4.2 Grafični simboli (Graphic symbols)

	2.5 Načini animacije

	3 INTERAKTIVNO KROŽIŠČE
	3.1 Temelji
	3.1.1 Vektorske oblike ali bitne slike
	3.1.2 Dimenzije v slikovnih pikah
	3.1.3 Hitrost predvajanja animacije ali število slik na sekundo
	3.1.4 ActionScript
	3.1.5 Pravila vožnje v krožišču

	3.2 Krožišče
	3.2.1 Skica
	3.2.2 Videz krožišča
	3.2.3 Odvijanje v krožišču
	3.2.4 Logika

	3.3 Avtomobil
	3.3.1 Načrtovanje logike
	3.3.2 Videz avtomobila
	3.3.3 Različne preobleke
	3.3.4 Animacija
	3.3.5 Nastanek avtomobilov na različnih krakih
	3.3.6 Preverjanje trčenja (Collision Detection)
	3.3.7 Seznam avtomobilov
	3.3.8 Kolone
	3.3.9 Poenostavljen prikaz logike
	3.3.10 Interakcija
	3.3.11 Zajem gibov
	3.3.12 Dodaten avtomobil

	3.4 Pešec
	3.4.1 Logika peščevih poti
	3.4.2 Podrobneje o peščevi logiki
	3.4.3 Hoja proti cilju
	3.4.4 Prehod za pešce
	3.4.5 Poenostavljen prikaz logike

	3.5 Mačka
	3.5.1 Izmikanje
	3.5.2 Sledenje miškinemu kazalcu
	3.5.3 Težava z globino
	3.5.4 Logika

	3.6 Uporabniški vmesnik
	3.6.1 Meni in gumbi
	3.6.2 Menjava jezika
	3.6.3 Seštevanje prometa
	3.6.4 Izbira avtomobilove smeri z gumbi

	3.7 Zvok
	3.7.1 Zvok krožišča
	3.7.2 Zvok mačke

	3.8 Optimizacija
	3.8.1 Počasna grafika
	3.8.2 Lov za hrošči

	4 ZAKLJUČEK
	5 LITERATURA IN VIRI
	5.1 Literatura
	5.2 Spletni viri

	6 SLOVAR TUJIH BESED
	7 PRILOGE

