VISJA STROKOVNA SOLA ACADEMIA

MARIBOR

Primerjava uCenja samostojne voznje v simulatorjih

CARLA in Udacity za zacCetnike

Kandidatka: Aspasija Cvetkoska
Vrsta Studija: Studentka izrednega Studija
Studijski program: Informatika
Mentor predavatelj: mag. Ervin Schaff
Mentor v podjetju: mag. Valneja Stojci¢ Erat, dipl. inz. rac. inf.

Lektor: Ljiljana Micovi¢ Struger, prof. slov. jez. in knjiz.

Maribor, 2024

IZJAVA O AVTORSTVU DIPLOMSKEGA DELA

Podpisana Aspasija Cvetkoska, sem avtorica diplomskega dela z naslovom Primerjava ucenja
samostojne voznje v simulatorjih CARLA in Udacity za zacetnike, ki sem ga napisala pod

mentorstvom mag. Ervina Schaffa.

S svojim podpisom zagotavljam, da:

je predlozeno delo izklju¢no rezultat mojega dela,

sem poskrbela, da so dela in mnenja drugih avtorjev, ki jih uporabljam v predlozeni nalogi,

navedena oz. citirana skladno s pravili Visje strokovne Sole Academia Maribor,

e se zavedam, da je plagiatorstvo — predstavljanje tujih del oz. misli kot moje lastne kaznivo
po Zakonu o avtorskih in sorodnih pravicah (Uradni list RS, §t. 16/07 — uradno prec¢is¢eno
besedilo, 68/08, 110/13, 56/15 in 63/16 — ZKUASP); prekrSek pa podleze tudi ukrepom

Visje strokovne Sole Academia Maribor skladno z njenimi pravili,

e skladno z 32.a ¢lenom ZASP dovoljujem Vi§ji strokovni Soli Academia Maribor objavo

diplomskega dela na spletnem portalu Sole.

Ljubljana, september 2024 Podpis Studentke:

ZAHVALA

Iskreno se zahvaljujem svojemu mentorju mag. Ervinu Schaffu za njegovo neprecenljivo
pomo¢ in mentorstvo med nastajanjem mojega diplomskega dela. Njegovo vodenje in podpora

sta bila klju¢nega pomena pri oblikovanju tega dela.

Globoko sem hvalezna tudi svoji druzini in prijateljem, katerih neomajna podpora in spodbuda

sta mi bili stalen vir motivacije.

Poleg tega bi se rada zahvalila podjetju, v katerem delam, za priloznosti in vire, ki so pomembno

prispevali k uspesnemu dokoncanju Studija.

Zahvaljujem se vsem za stalno podporo in zaupanje vame.

POVZETEK

Diplomsko delo primerja u¢inkovitost dveh priljubljenih simulacijskih platform, CARLA in
Udacity, s poudarkom na zacetnikih na tem podrocju, z namenom, da bi usposobili modele
umetne inteligence za aplikacije avtonomnih vozil. Ocenjena je tudi uporabnost Jupyter
Notebook in Google Colab, dveh znanih programskih okolij, za ustvarjanje in testiranje
algoritmov za samostojno voznjo. Glavni cilji naloge so ugotoviti, katera razvojna okolja in
simulacijska orodja so najboljSa za neizkuSene razvijalce ter kako optimizirati algoritme
samoucenja za izboljSanje ucinkovitosti in natan¢nosti modelov umetne inteligence v razmerah

avtonomne voznje.

Rezultati raziskave kazejo, da je bolj realistiCen, vendar zahtevnejSi simulator CARLA
primernejSi za izkuSene uporabnike in temeljite simulacije, medtem ko je zacletnikom
prijaznej$i simulator Udacity, ki je dostopnejSi zaradi preprostejSega vmesnika in manjSih
potreb po obdelavi. Podobno tudi Google Colab novim uporabnikom ponuja okolje, ki je
enostavno za uporabo in ucinkovito z viri, saj z uporabo infrastrukture v oblaku zagotavlja
zanesljive racunalniske vire, ne da bi bilo treba lokalno namestiti visokozmogljivo strojno
opremo. Po drugi strani pa velja, da je Jupyter Notebook bolj koristen za izkuSene razvijalce,

ki potrebujejo ve¢ svobode in nadzora pri vzpostavljanju svojega razvojnega okolja.

Poleg tega raziskava potrjuje, da povecanje Stevila iteracij v ciklu algoritma samoucenja do
doloCene mere poveca ucinkovitost modelov umetne inteligence. Vendar pa po tej tocki
nadaljnje iteracije vodijo k zmanjSevanju donosa, saj povecujejo porabo virov, ne da bi prinesle
obcutno izboljSanje u¢nih rezultatov. Ta opazanja izboljSujejo naSe razumevanje kompromisa

med ucinkovitostjo ucenja in ucinkovitostjo racunanja med u¢enjem modelov AV.

Glede na vse navedeno diplomsko delo ponuja pronicljive in koristne nasvete, ki bodo tako
zacCetnikom kot tudi izkuSenim uporabnikom pomagali pri izbiri najboljSih orodij in razvojnih
postopkov za avdiovizualne vsebine. Poleg tega podaja predloge za prihodnje Studije,
namenjene izboljSanju ucinkovitosti in odpornosti modelov umetne inteligence v avtonomni

vOZnji.

Kljuéne besede: avtonomna vozila, umetna inteligenca, CARLA, Udacity Simulator, Jupyter

Notebook, Python.

ABSTRACT

Comparison of Learning Autonomous Driving in CARLA and Udacity Simulators for

Beginners

In order to train artificial intelligence models for autonomous vehicle applications, this thesis
compares the performance of two popular simulation platforms, CARLA and Udacity, with a
focus on beginners in the field. This study also evaluates the usefulness of Jupyter Notebook
and Google Colab, two well-known software environments, for creating and testing self-driving
algorithms. The main objectives of this study are to identify which development environments
and simulation tools are best suited for inexperienced developers, and how to optimise self-
learning algorithms to improve the performance and accuracy of Ul models in autonomous

driving situations.

The results of the study show that the more realistic but more complex CARLA simulator is
more suitable for experienced users and in-depth simulations, while the more beginner-friendly
Udacity simulator is more accessible due to its simpler interface and lower processing
requirements. Similarly, Google Colab offers new users an easy-to-use and resource-efficient
environment, using cloud infrastructure to provide reliable computing resources without the
need to install high-performance hardware locally. On the other hand, Jupyter Notebook is
considered more useful for experienced developers who need more freedom and control in

setting up their development environment.

In addition, the study confirms that increasing the number of iterations in a self-learning
algorithm cycle increases the performance of AI models to a certain extent. However, beyond
this point, further iterations lead to diminishing returns, as they increase resource consumption
without significantly improving learning outcomes. These observations improve our
understanding of the trade-off between learning efficiency and computational efficiency during

the learning of AV models.

In view of all the above, the thesis offers insightful and useful advice that will help both
beginners and experienced users to choose the best tools and development processes for
audiovisual content. Furthermore, it provides suggestions for future studies aimed at improving

the performance and resilience of Al models in autonomous driving.

Keywords: autonomous vehicles, artificial intelligence, CARLA, Udacity Simulator, Jupyter
Notebook, Python.

Kazalo vsebine

1.1 OPIS PODROCIA IN OPREDELITEV PROBLEMAeesutteiteeniterieenteanieesseesseesseesssessseessseessaessesssesssseesssesssesssesssessssessseessees 11
1.2 NAMEN, CILJTIN OSNOVNE TRDITVE ...eeituuttteiuteeeruteesauteeaastesassseessstessssseessssessasseesssssesassseesssstessssseesssssessaseessssaessssees 12
1.3 PREDPOSTAVKE IN OMEJITVE ...uutttiitteeeauttesatteeesstessuteeesustessasseesaustessssesssssesssseeesanssessnssessasseessssseessssseesasseessnseessssnees 13
1.4 UPORABLJENE RAZISKOVALNE METODE ...ccutttittestteeteesteesiueenueesiseesseesisessseessessseessseensesssesssesssessseesssesssesssesssesssseensees 13

2 UMETNA INTELIGENCAuintennnsnnnnesncsnnnnesssssesssesssessesssessssssssssessasssessassase 14

2.1 GONILNE SILE IN TEHNOLOGIJE UMETNE INTELIGENCEuutttiittiteiiuieeestreeeseseeesseeessssessssssesssssessssssssssssesssssesessssssssssnees 14
2.2 UPORABA UMETNE INTELIGENCE V RAZLICNIH PANOGAH........uutteeeeeeeiuteteeeesasinsseeeeseasssssessessssassssssesssessssssessssssassssseees 15
2.3 UMETNA INTELIGENCA V AVTOMOBILSKI INDUSTRIITceeetteeeiureeesiureeesseeessseessseeessssesssssessssseesssssssssssesssssesssssssssssseees 16

3.1 CARLA (CAR LEARNING TO ACT) SIMULATOR — ODPRTOKODNI SIMULATOR ZA VOZNJO V MESTUecvverieenurenveenenes 19
3.1.1 Namestitev in KONfIQUIACTAcc.ooeueeeueeeeieiiriieeeeieeeeeeeetest ettt 21
3.2 UDACITY SIMULATOR ..c.vtiutitieutestesitesttestessesit et sstesesbeebesbt et esbeshsesasemte b e shs e b e e bt e b e s b e eabesb e et e sbesbnenb e ebte b e sbs et e sbeebesbeenne 23
3.2.1 Namestitev in KONfIQUIACTAcc.ooeeevueeeeeeiiriiseeeieeeeee ettt sttt 24
3.3 UDACITY SIMULATOR VS CARLAccuiiiiiititiiiiiitectt ettt st s bbb s b sne e 28

4 KNJIZNICE IN RAZVOJINA OKOLJA ...urrerrrerersressrssssssessssssssssssssssssssssssssesssenss 30

4.1 JUPYTER NOTEBOOKuutteiiuteeesitreeasuseeessseessssesassseeasssesssssssesssssssssssssssssssssssssssssesssnsssesssssssssssesssssssessssessssesssssssesnsees 30
N € 100 1€ 5 2 G0) 07N 2 J S USTN 31
4.3 GOOGLE COLAB VS JUPYTER INOTEBOOKuuvttteeeieiutreeeeeeaninsseeeeeeasassessessesassssssesssasasssssssssssassssssssssssssssssesssenssssssesas 32

5 UVOD V SAMOUCENJE ALGORITMAcoocesuenrnsurssessessssssssessssessssssessssessssssesse 35

5.1 STROJNO UCENIE ..utttiiutiteeureeesiseeeassseeesseessassesssssssesssseessssessssssssssssssssssssssssssessssessssssssssssssssssssssnssssasssssesssessssssssssssesss 35
5.2 (GLOBOKO UCENIEL...ccccuttteiittteesseeeassseeesiseesssssesasssssessssesssssessssssssssssesessssssssssssessssesssssssssssssssssssssssssasssssesssesssssssssssseess 36
5.3 DEFINICIJA SAMOUCENJA V KONTEKSTU AVTONOMNIH VOZIL ..cceeeeeiutrrreeeeesessseeeseesasssssseessssssssssesesesssssssssssessssssssssssnnns 36

6 ALGORITMI ZA SAMOSTOJINO VOZNJIO....cuorrerrrrrerressessssssessessessasssessssessssssesse 38

6.1 ALGORITMI ZAZNAVANIA ...ettiittteeiutteeauteesatteaatteeassteesauteeasstseesaseeesausaeeasseeessasteesseeeaaasteesasseeeassaeeasbeeesabeeesnseeeennsneens 38
6.2 ALGORITMI ZA LOKALIZACIIO ..eeeutteteesiteeueenuteesteesisessteesseesseesusesseesseesasesssesssseesssesusesnsessssessseessseenseesssessseesseesnsesssenns 38
6.3 ALGORITMI ZA NACRTOVANIE. ...ccuttesueerueesueenueeenteesisessseesseesseesseessseessesssesssessseesssesssessseesssessseessssenseesssessseessesssasssenns 39
6.4 INADZORNI ALGORITMI ...ccuuutteisutieeeutesesuteesaueeesasteeaauseesssaesaasseessssseesassassassseesasstessssesasssesesasseesasssesssssessssseessaseessssseeens 39
6.5 ALGORITMI ZA IZOGIBANJIE OVIRAM ...cetuteeruterueesueesiuessueesmseenseesssessseesssesssesssssenseesssessesssesssessssessseenseessessseessesnsaessesns 40
6.6 VARNOST IN VARNOSTNI MEHANIZMIuveevteeuteenteesuressseesueesseesssessseesssesssesssssesseesssesssesssesssessssesnseenseessessseesnseensaesosesns 40
6.7 ALGORITMI ZA SIMULACIO IN TESTIRANIEuttteutteeeuteesatteeatseeesutteesueeessusseesuseessastessssseessuseeesanseessssseesanseesssseessssseens 40
6.8 SIMULACIJA SAMOVOZECEGA AVTOMOBILA Z UPORABO GLOBOKEGA UCENTA......cciuttrieeniriaieenieerreenieesseenseesseesseesnens 41

6.8.1 Konvolucijsko nevronsko omreZje (CINN)......cccccueervueecieiesiesiieessiiesiieessieessieessitessieessieessiesssiaesasee s 41

6.8.2 ZDIFANTE POAAIROVc...veeeeeeeiiieieeee ettt ettt ettt s e st e st e st e st e s baasteessaessee s 41

6.8.3
6.8.4
6.8.5
6.8.6

OBAElAVA POAAKOV ...ttt st 41
USPOSADBIIANTE ...ttt sttt sttt 42
Model usposabljanja (Model NVIAIQ)coecueercuvieceeesieisiieesieesieesieesieesieesieesiteesieesiseesneens 44

Primerjava rezultatov pri razlicnem Stevilu ciklov SAMOUCENAcoeveeveeeeeniesiisieeene 48

7.1 VPLIV UGOTOVITEV

7.2 IZZIVIIN OMEJITVE eeeieeecutteeeeeeeiiutteeeeesasasssseeessasassssssessasassssssesssasassssssssassassssssssssssssssssssssassssssssessasasssssssssssasssssssessnnsnses

7.3 PRIPOROCILA ZA PRIHODNJE RAZISKAVE

9 LITERATURA ...tertennnentensnenssnsssssssnsssssssanssssssssssssssssasssssssssssssssssassssassssssssssssassss 57

KAZALO SLIK

SLIKA 1: ILUSTRACUJA ZEMLJEVIDOV BREZ PLASTI V SIMULATORJU CARLA ..ottt e 21
SLIKA 2: UDACITY SIMULATORccctttttttittttesiutteesateeeesteeessasseeesasseeesssseeessssssessasseeesssseeessssssessssseesssssseessssssesssseeen 24
SLIKA 3: OBRNJENA SLIKA (FLIPPED IMAGE) ...ccuuteeitteeuteeniteestesstteesieessseeesstessseeesseessseeesssesssesssssesssseesssesssssessesssees 42
SLIKA 4: AUGMENTIRANA SLIKA ...cciiutteeeiteeeesautteessueeesssteeessasseeesssteessssesessssssessassesssssseessssseessssseessssssessssssessssseees 43
SLIKA 5: PREPROCESTRANA SLIKAuutteeesutteeesuteeessuseeessteeessaueseessuseeesssseeesssssssssssseeessssseesassssessssseeessssseessssssessnseees 43
SLIKA 6: ZMANJSAN NIVO SVETLOSTISLIKEvteuvtetesstesseesseessesssesssessessseesseessesssesssesssssssssssessesssesssesssesssessesssesssesnes 44

SLIKA 7: ARHITEKTURA CNN (VIR: HTTPS://DEVELOPER.NVIDIA.COM/BLOG/DEEP-LEARNING-SELF-DRIVING-

... 47
SLIKA 9:SAMOVOZECI AVTOMOBIL V SIMULATORJU UDACITY. c.vvteiteeiuiiesieesireeseeessseesseesseesseesseesssesssseessssessses 47
SLIKA 10: SKUPNI GRAF RAZLICNIH CIKLUSOV UCENJA (VIR: LASTNI) c.eeevtveitieieerieeieseeeseeesteeseeeeesaessessseeseeensesnns 48
SLIKA 11: GRAF UCENJA EPOCH 10 (VIR: LASTNI) c.uveeuieitiertierieesieeteseeseeseeesseeseessesssesseesssessesssesssesssesseesseesseensesnes 49
SLIKA 12: GRAF UCENJA EPOCH 30 (VIR: LASTNI) 1evtiuiiiieiiiiniiite sttt sttt sresre st srenes 49
SLIKA 13: GRAF UCENJA EPOCH 50 (VIR: LASTNI) .vtiuiiiiiiiieniiiie sttt sttt snesre st srenes 50
KAZALO TABEL
TABELA 1: OPIS VSEH ZEMLJEVIDOV MEST BREZ PLASTI, KI SO NA VOLJO V SIMULATORJU CARLA..........cccvenee.e. 20
TABELA 2: SPECIFIKACIJE STROIJNE IN PROGRAMSKE OPREME ZA CARLAooiiiiiiiiiiieeec e 22
TABELA 3: SPECIFIKACIJE STROIJNE IN PROGRAMSKE OPREME ZA UDACITY SIMULATORcvveieriieeeriieeennineesnannes 26
TABELA 4: PRIMERJAVA SIMULATORJEV CARLA IN UDACITY SELF-DRIVING CAR SIMULATORcceeerveerveennnen 28
TABELA 5: PRIMERJAVA LASTNOSTI GOOGLE COLAB IN JUPYTER NOTEBOOKveevvieereeresereseeeeesseeseesseesseessennes 32

TABELA 6: SEKVENCIISKI MODEL PO NVIDIA STANDARDIH.......cccciiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee et 46

SEZNAM KRATIC

Kratica Pomen v slovens¢ini Pomen v angles¢ini
AV Avtonomno vozilo Autonomous Vehicle
ML Strojno ucenje Machine Learning
Konvolucijsko nevronsko | Convolutional Neural
CNN _
omre Z] e Network
UAV Brezpilotno letalo Unmanned Aerial Vehicle
Ul Umetna inteligenca Artificial Intelligence
VM Virtualni stroj Virtual Machine
TPU Procesna enota za tenzorje Tensor Processing Unit
GPU Grafi¢na procesna enota Graphics Processing Unit
o Natural Language
NLP Obdelava naravnega jezika .
Processing
Metoda podpornih '
SVM) Support Vector Machine
vektorjev
. . Principal Component
PCA Analiza glavnih komponent)
Analysis
PID Proporcionalno-integralno- | Proportional-Integral-
derivativni Derivative
Avtomobil, ki Ci, kak
CARLA vtomobil, ki se uéi, kakose | ., o Learning to Act

obnasati

Regijsko osnovana

Region-based

R-CNN konvolucijska nevronska Convolutional Neural
mreza Network
YOLO Pogledas le enkrat

You Only Look Once

1 UVOD

Hiter napredek na podrocju tehnologij avtonomnih vozil (AV) in strojnega ucenja je odprl
Stevilne moznosti za raziskave in razvoj. Namen tega diplomskega dela je prispevati k temu
rasto¢emu podrocju s poudarkom na posebnih hipotezah povezanih s simulacijami AV in okolji

za razvoj algoritmov.

Motivacija tega diplomskega dela je zagotoviti vpogled, ki bo zacetnikom v pomo¢ pri
premagovanju zapletenosti razvoja in simulacije AV. Ugotovitve bodo prispevale k SirSemu
razumevanju simulacijskih platform, okolij za razvoj algoritmov in tehnik optimizacije pri

raziskavah AV.

1.1 Opis podrodja in opredelitev problema

Avtonomna vozila vkljuc¢ujejo samovozece avtomobile in tehnologije, ki vozilom omogocajo
samostojno delovanje. To interdisciplinarno podro¢je zdruzuje strojno ucenje, umetno
inteligenco, racunalniski vid, senzorje in robotiko ter ustvarja sisteme, ki zaznavajo okolico,
sprejemajo odlocitve in nadzorujejo gibanje vozila. Kljucni izzivi vkljucujejo realisticno
simulacijo za urjenje modelov umetne inteligence v razli¢nih voznih razmerah ter ustvarjanje

robustnih, uporabniku prijaznih okolij za hitro izdelavo prototipov in testiranje algoritmov AV.
Problemi, ki jih obravnava to diplomsko delo, so naslednji:
e [zbira simulacijske platforme

Izbira simulacijske platforme za usposabljanje modelov umetne inteligence za zaCetnike.
Predvideva se, da je CARLA, simulator visoke verodostojnosti, zaradi svojega realisti¢nega
okolja in obseznih funkcij u€inkovitejsi od simulatorja Udacity, vendar bolj kompliciran in
zahtevnejSi. Razumevanje optimalne platforme je kljuno za zacetnike, ki potrebujejo

zanesljiva in dostopna orodja za razvoj svojih modelov.
e Razvojno okolje za algoritme

Primerjava ucinkovitosti Jupyter Notebook in Google Colab za razvoj in testiranje AV
algoritmov. Glede na njuno razSirjeno uporabo v skupnosti strojnega ucenja je bistveno
ugotoviti, katera platforma bolje podpira zacetnike pri pisanju, testiranju in odpravljanju napak

v kodi.
11

e Optimizacija algoritmov za samostojno ucenje

Ugotavljanje optimalnega Stevila zagonov za cikle algoritmov samoucenja v simulacijah AV.
To vkljucuje dolocitev ravnovesja med racunalniskimi viri in ucinkovitostjo ucenja, kar je
kljuénega pomena za zacetnike, ki morajo v okviru omejenih €asovnih in racunalniskih

proratunov povecati svoje rezultate.

1.2 Namen, cilji in osnovne trditve

Namen tega diplomskega dela je opredeliti naju¢inkovitejSa orodja in metode za zacetnike na
podrocju razvoja AV. Z vrednotenjem razli¢nih simulacijskih platform, razvojnih okolij in
optimizacijskih tehnik je namen tega diplomskega dela je zagotoviti prakticna spoznanja in

smernice, ki lahko novim razvijalcem/inzenirjem olaj$ajo vstop na podrocje AV.
Diplomsko delo se bo osredotocilo na tri glavne cilje:

(1) primerjava programa CARLA in simulatorja Udacity, da bi dolocili ucinkovitejSo

platformo za ucenje modelov umetne inteligence za zacetnike,

(2) vrednotenje Jupyter Notebook in Google Colab, da bi dolocili boljse okolje za razvoj in

testiranje algoritmov AV ter

(3) dolocitev optimalnega Stevila zagonov za cikle algoritmov za samoucenje v simulacijah

AV.

Osnovne trditve, ki jih je treba raziskati, vkljucujejo hipoteze, da je program CARLA bol;jsi od
simulatorja Udacity za usposabljanje modelov, da je beleznica Jupyter za razvoj algoritmov
ucinkovitejSa od programa Google Colab in da obstaja optimalno Stevilo iteracij za algoritme

samoucenja, ki uravnotezijo ucinkovitost in uporabo virov.
V tem diplomskem delu smo postavili naslednje hipoteze:

e HI: Udacity Simulator je bolj prijazen za zacletnike pri treniranju modelov umetne

inteligence za AV kot CARLA pri enostavnih samostojnih voznjah.
e H2: Google Colab ima vecjo podporo in je lazji za zacetnike kot Jupyter Notebook.

e H3: Povecanje Stevila ponovitev v ciklu samoucenja algoritma v simulaciji AV pri

enostavnih samostojnih voznjah vodi k izboljSanju u¢inkovitosti algoritma.

12

e H4: Jupyter Notebook je ucinkovitejsi za razvoj in testiranje algoritmov umetne inteligence

za AV pri enostavnih samostojnih voznjah v primerjavi z Google Colab za zacetnike.

1.3 Predpostavke in omejitve

To diplomsko delo temelji na klju¢nih predpostavkah: da bosta CARLA in simulator Udacity
dostopna in delujoca ter da bosta Jupyter in Google Colab ostala stabilna za dosledno
primerjavo. Predpostavlja tudi, da bodo podatkovne zbirke za usposabljanje in testiranje

algoritmov reprezentativne za scenarije iz resni¢nega sveta.

Vendar se raziskava sooca z omejitvami, ki lahko vplivajo na njene rezultate. RazpoloZzljivost
in velikost naborov podatkov lahko vplivata na celovitost simulacij in testiranja algoritmov.
Omejena ustrezna literatura bi lahko omejila teoretiéno raziskovanje. Casovne omejitve
zahtevajo zakljuek v doloCenem obdobju, kar omejuje Stevilo poskusov. Omejitve virov,
vklju¢no z racunalniSko mocjo in pomnilnikom, lahko omejijo obseg in zapletenost simulacij
in izvajanje algoritmov. Nazadnje je lahko velikost vzorca za testiranje Jupyter Notebook in

Google Colab omejena s ¢asom in viri, kar vpliva na §irino primerjalne analize.

1.4 Uporabljene raziskovalne metode

Diplomsko delo uporablja teoreticno analizo in aplikativno raziskavo, da bi odgovorilo na
zastavljena vprasSanja. Prvi del obsega teoreticno ozadje, ki raziskuje klju¢ne koncepte, modele
in metode pomembne za simulacijo in razvoj AV. Ta del vkljuuje pregled literature o

simulacijskih platformah, razvojnih okoljih in tehnikah optimizacije za samoucenje AV.

Aplikativna raziskava vkljucuje podrobne analize primerov, diagnostiko in predlagane posege.
V primerjalni analizi sta ocenjena simulator CARLA in simulator Udacity za usposabljanje
modelov AV na podlagi meril, kot je uporabnost. Eksperimentalno testiranje primerja Jupyter
Notebook in Google Colab s prakti¢nimi primeri, pri ¢emer se osredotoCa na uporabnost,
funkcionalnost in zmogljivost. Optimizacijske Studije dolocajo optimalno Stevilo zagonov za
algoritme za samostojno ucenje, pri ¢emer je treba uravnoteziti ucinkovitost ucenja in
racunalniske vire. Prakticni prikazi potrjujejo ugotovitve s scenariji iz resni¢nega sveta in

ponujajo konkretne primere, ki podpirajo predlagane hipoteze.

13

2 UMETNA INTELIGENCA

Umetna inteligenca (UI) je podrocje, ki proucuje, kako omogociti racunalnikom izvajanje
inteligentnih nalog, ki jih je v preteklosti lahko izvajal le ¢lovek (Huang, Huan, Xu, Zheng, &
Zou, 2019).

Razvoj se je zacel Ze vec kot pred 70 leti. Zacel se je leta 1943 z modelom umetnega nevrona,
kar je privedlo do uradne predstavitve Ul na konferenci v Dartmouthu leta 1956. V Sestdesetih
letih prejSnjega stoletja je zanimanje zanjo upadlo, vendar je v sedemdesetih letih prejSnjega
stoletja z algoritmi povratnega Sirjenja in izboljSano racunalnisko moc¢jo ponovno napredovala.
Osemdeseta leta so prinesla sploSno priznanje nevronskih mrez ter napredek na podrocju strojne
opreme in interneta. V 21. stoletju se je uporaba Ul razsirila z mobilnim internetom, vrhunec
paje dosegla leta 2012 z globokim ucenjem, ki je bistveno izboljsalo tehnologije prepoznavanja

govora in vida (Zeng, Li, & Duan, 2012).

Umetna inteligenca se v zadnjih letih hitro razvija, zaradi Cesar so Stevilna podjetja in
organizacije optimisti¢ne, da jim lahko ta tehnologija pomaga pri reSevanju Stevilnih tezav, ki
so se do zdaj izkazale za neresljive (Yogesh, in drugi, 2021). Zato naj bi obstajale neprimerljive
priloZnosti za Stevilna podrocja uporabe in domene, zlasti sposobnost prepoznavanja vzorcev
in korelacij v ogromnih koli¢inah podatkov na ravni kompleksnosti, ki je za cCloveka

nedoumljiva (Hu, Lu, Pan, Gong, & Yang, 2021).

Postala je vroca tocka za znanstvene in tehnoloske Studije; velika podjetja, kot so Google,

Microsoft in IBM, se posvecajo Ul in jo uporabljajo na vse ve¢ podrocjih (Shi, in drugi, 2007).

2.1 Gonilne sile in tehnologije umetne inteligence

e Big Data — veliki podatki so bistveni za Ul, saj znatno povecujejo stopnjo prepoznavanja in
natancnost. Eksponentna rast podatkov, ki jo spodbuja internet stvari, zagotavlja obsezne,
visoko-dimenzionalne podatkovne nize, potrebne za napreden razvoj Ul (Chen & Lin,

2014).

e Algoritmi — tradicionalne metode prepoznavanja vzorcev so bile omejene z abstraktnostjo
in natancnostjo. Algoritmi strojnega ucenja, kot so nevronske mreze, so se zgledovali po
¢loveskem ucenju in lahko samodejno prepoznavajo vzorce v velikih zbirkah podatkov. Ti

algoritmi omogocajo napredek v razlicnih aplikacijah umetne inteligence, vklju¢no s

14

prepoznavanjem govora in slik (Zhang & Fu, Optimal Model for Patrols of UAVs in Power
Grid under Time Constraints, 2021).

e Strojno uenje — izboljSuje zmogljivost z algoritmi, ki temeljijo na podatkih, in reSuje
tezave, kot so napovedovanje, grozdenje, razvr$€anje in zmanjSevanje razseZnosti.
Vkljuc€uje nadzorovano ucenje (npr. SVM in regresija), nenadzorovano ucenje (npr. k-
clustering in PCA), delno nadzorovano ucenje (meSanica oznacenih in neoznacenih
podatkov) in okrepljeno ucenje (u¢enje z nagradami in dejanji) (Erhan, in drugi, 2010; Bose,

2017),

e Obdelava naravnega jezika (NLP — angl. Natural Language Processing) — NLP omogoca
racunalnikom, da razumejo in obdelujejo Cloveski jezik. Vklju€uje naloge, kot so slovni¢na
in semanti¢na analiza, iskanje besedil, strojno prevajanje in pogovorni sistemi, ki
racunalnikom omogocajo uc¢inkovito razumevanje in ustvarjanje ¢loveskega jezika (Zhang,
Xu, & Chen , Theoretical foundations and applications of cyber-physical systems: a

literature review, 2020).

e Strojna oprema — globoko ucenje (angl. Deep Learning), podmnoZica strojnega ucenja,
temelji na zmogljivi strojni opremi, kot so graficni procesorji. Grafi¢ni procesorji NVIDIA
pospesujejo globinsko ucenje z obseznimi vzporednimi izracuni, kar v primerjavi s
klasi¢nimi procesorji znatno pospesi postopke usposabljanja (Makkar, in drugi, 2020; Zhao,

in drugi, 2019).

e Racunalniski vid — raCunalniski vid omogoca racunalnikom, da interpretirajo in analizirajo
vizualne informacije. Tehnike, kot so globoko ucenje in konvolucijske nevronske mreze
(CNN), se uporabljajo za naloge, kot je prepoznavanje obrazov in slik. Napredni modeli,
kot sta Faster R-CNN in YOLO, ponujajo visoko natan¢nost in hitrost za analizo slik v

realnem ¢asu in semanti¢no segmentacijo (Tan, Hu, & Hanzo, 2019).

2.2 Uporaba umetne inteligence v razlicnih panogah

e Avtomobilska industrija — avtonomna voznja je primer integracije umetne inteligence v
avtomobilsko industrijo, ki uporablja senzorje in algoritme umetne inteligence za
optimizacijo navigacije vozila (Li & Xu, 2001). Kitajska na tem podro¢ju napreduje

vzporedno z razvojem v Evropi in ZDA. Pomembna mejnika sta Googlov prvi prototip

15

avtomobila brez voznika iz leta 2014 in Audijeve izboljSave Ul iz leta 2017 (Dosilovi¢,

Brci¢, & Hlupi¢, 2018; Wang, Ma, Zhang, Gao, & Wu, 2018).

Finan¢ni trgi (»Trading«) — Ul spreminja finance, saj se uporablja pri nadzoru tveganja,
svetovanju, napovedovanju in bonitetnem ocenjevanju (Wu, Han, Wang, & Sun, 2020).
Strojno ucenje pomaga upravljati financ¢na tveganja, slediti potrebam strank in optimizirati
naloZzbene strategije. Podjetja, kot je Alpaca, uporabljajo Ul za ucinkovito analizo grafov

forex trgovanja (Khalaf, Mostafa, Mustapha, Mohammed, & Abduallah, 2019).

Zdravstvo — UI pomaga pri medicinski diagnostiki, razvoju zdravil in odkrivanju raka
(Ravi, in drugi, 2016). IBM-ov Watson na primer uporablja obsezne zbirke medicinskih
podatkov za zagotavljanje natan¢nih diagnoz in zdravstvene pomoci (Esteva, in drugi,

2019).

Trgovina na drobno — UI povecuje ucinkovitost maloprodaje s tehnologijami, kot je "Just
Walk Out" podjetja AmazonGo, ki uporablja senzorje in ra¢unalniski vid za upravljanje
zalog in racionalizacijo nakupovalne izku$nje (Lu, in drugi, 2013). Umetna inteligenca

izboljSuje tudi spletno prodajo in upravljanje zalog s priporo¢ilnimi sistemi (Erokhin, 2019).

Medijska industrija — platforme za ustvarjanje vsebin, ki jih poganja Ul, hitro pripravljajo
¢lanke in upravljajo komunikacijo blagovnih znamk (Misra, in drugi, 2020). Ti sistemi
analizirajo trende in javno mnenje ter tako ucinkovito ustvarjajo in razSirjajo vsebine

(Haenlein & Kaplan, 2019).

Pametna placila — Ul omogoca inovativne nacine placevanja, kot sta prepoznavanje glasu
in obraza, kar zmanjSuje potrebo po fizicnih denarnicah (Farivar, Haghighi, Jolfaei, &
Alazab, 2019). Tehnologije, kot je prepoznavanje obraza podjetja Alipay, izboljSujejo

hitrost in varnost transakcij (Swamy & Sarojamma, 2020).

Pametni domovi — sistemi pametnih domov zdruzujejo razli¢ne gospodinjske naprave za
nemoteno upravljanje in vecje udobje. Glasovni pomocniki, kot so pametni zvoc¢niki, imajo
kljucno vlogo pri upravljanju teh sistemov z glasovnimi ukazi, zaradi ¢esar so pametni

domovi uporabniku prijaznejsi (Qela & Mouftah, 2012).

2.3 Umetna inteligenca v avtomobilski industriji

Avtomobilski sektor dozivlja pomembne spremembe zaradi UI. Ko se govori o Ul v povezavi

z vozili, jo ljudje pogosto takoj povezejo s samovoze€imi avtomobili, pri tem pa spregledajo,

16

da ima UI v resnici veliko globlji in §irsi vpliv na osnove avtomobilskega sektorja (Chai &

Nizam, 2021).

Osnovna opredelitev AV pove, da gre za osebno vozilo, ki deluje samostojno brez ¢loveske
pomoc¢i. AV, znana tudi kot samodejno vodena vozila, avtomobili brez voznika, vozila z
avtopilotom ali vozila naslednje generacije, poganjajo avtomatizirani sistemi, ki lahko
spremenijo prometni sistem z zmanj$anjem emisij in prometa ter s tem prihranijo gorivo,
starejSim in invalidom omogocijo mobilnost ter s preprecevanjem nesre¢ preprecijo trke s
smrtnim izidom. Standard SAE J3016 Zdruzenja avtomobilskih inzenirjev opredeljuje 6 ravni

AV (Chai & Nizam, 2021).

Stopnja 0 je brez avtomatizacije in zahteva simulacije prometa in senzorskih sistemov. Stopnja
1 vkljucuje nadzor krmiljenja ali pospeSevanja ter dodaja simulacije dinamike vozila in
ultrazvo¢nih senzorjev. Stopnja 2 vkljucuje tako krmiljenje kot pospeSevanje z dodatnim
preskusanjem nadzora voznika in vmesnikov c¢lovek-stroj. Raven 3 omogoca pogojno
avtonomno voznjo in zahteva simulacije prometne infrastrukture in dinami¢nih predmetov.
Raven 4 vkljucuje visoko stopnjo avtomatizacije pod posebnimi pogoji, pri c¢emer so potrebne
simulacije vremena, lidarja, kamere, radarja in kartiranja. Raven 5 pomeni popolno

avtomatizacijo v vseh pogojih (Kaur, Taghavi, Tian, & Shi, 2021).

Glavni cilj AV je opravljati Stevilne naloge, ki jih ¢loveski voznik ne more opravljati, na primer
ohranjanje zbranosti med utrujenostjo ali spanjem in natan¢nejSe nacrtovanje potovanj (Chai &

Nizam, 2021).

Algoritmi, kot so globoke nevronske mreze, so zasnovani tako, da posnemajo nac¢ela mozganov
in se usposabljajo na obseznih naborih podatkov za izvajanje razli¢nih funkcij. Da bi omogocili
inteligentno odlocanje, inteligentni avtomobili zdruzujejo tehnike umetne inteligence, kot so
zaznavanje okolja, izdelava zemljevidov in nacrtovanje poti z vec¢plastnimi pomoznimi voznimi
storitvami in drugimi funkcijami. Osredotoa se na to, kako se Ul, strojno ucenje in

avtomatizirano krmiljenje uporabljajo v avtomobilih (Li, Cheng, Guo, & Qiu, 2018).

Potreba po inteligentnih avtomobilih zaradi gospodarskega razvoja hitro naras¢a. Skoraj vse
drzave se poleg stalnega in hitrega povecevanja Stevila lastnikov vozil sooCajo z resnimi
tezavami povezanimi z varnostjo v cestnem prometu, onesnazevanjem okolja in prometnimi
zastoji. Med tem se letno Stevilo prometnih nesre¢ s smrtnim izidom povecuje, pri cemer vecino
teh nesre¢ povzrocijo ¢loveske napake. Predvideva se, da se bo Stevilo prometnih nesre¢ s

smrtnim izidom povecalo, saj se bo Stevilo lastnikov avtomobilov Se naprej povecevalo. Z
17

uporabo najsodobnejsih metod UI lahko reSimo zgoraj opisane tezave (Li, Cheng, Guo, & Qiu,

2018).

Poleg tehnoloskih tezav so med glavnimi ovirami za Siroko uporabo AV tudi spori glede
odgovornosti. Cas, potreben za preusmeritev trenutnega voznega parka iz neavtonomnega v
avtonomni sistem, odpor potroSnikov do predaje nadzora nad vozili, zaskrbljenost potro$nikov
glede varnosti avtomobilov brez voznika, izvajanje pravnih okvirov in vladnih predpisov za
avtomobile brez voznika, zaskrbljenost zaradi izgube delovnih mest v industriji cestnega
prometa zaradi voznje ter tveganje vecje suburbanizacije zaradi lazje in hitrejSe voznje brez

ustreznih javnih politik za prepreCevanje Sirjenja mest (Li, Cheng, Guo, & Qiu, 2018).

Sedanja revolucija v informacijski tehnologiji spreminja zasnovo avtomobilov; tehnologija
inteligentnih vozil spreminja vedenje ljudi pri voznji, hkrati pa poveCuje prometno varnost,
zmanjSuje emisije in varcuje z energijo. To na novo opredeljuje nacrtovanje prometa v obCinah.
Prihodnji inteligentni avtomobili bodo osredotoceni na energetsko ucinkovitost, ohranjanje
okolja, inteligenco, personalizacijo, varnost in udobje. Rast vgrajenih sistemov
komunikacijskih tehnologij in zaznavanja bodo pomembni dejavniki napredka inteligentnih
avtomobilov. Trenutno je asisten¢na voznja Se vedno v ospredju razvoja tehnologije
inteligentnih vozil. Ceprav bo trajalo nekaj ¢asa, da bo dosegla najvisjo raven polavtomatske in
popolnoma samodejne faze, bo tehnologija inteligentnih vozil hitro rasla in s¢asoma povecala
priljubljenost inteligentnih avtomobilov zaradi povecCevanja inteligentne tehnologije,
oblikovanja ustreznih zakonov in predpisov ter sprejemanja javnosti (Li, Cheng, Guo, & Qiu,

2018).

18

3 SIMULATORJI

Da bi samovozece avtomobile usposobili za obvladovanje razli¢nih pogojev, s katerimi se bodo
verjetno srecali na javnih cestah, je nujno obsezno in strogo testiranje. Na javnih cestah je
fizino testiranje tvegano, drago in ga obicajno ni mogoce ponoviti. Za testiranje programske
opreme za samovozece avtomobile je na voljo veliko simulatorjev, ki imajo svoje prednosti in

slabosti (Kaur, Taghavi, Tian, & Shi, 2021).

Najbolj realisticen simulator je tisti, ki se najbolj pribliza resni¢nosti. To pa pomeni, da mora
biti izredno natancen, ko gre za izracune na niZji ravni, kot je fizika avtomobila, in izredno
celovit, ko gre za 3D virtualno okolje. Zato moramo najti ravnovesje med pristnostjo 3D prizora

in preprostostjo dinamike vozila (Figueiredo, Rossett, Braga, & Reis, 2009).

Tezava pri simulacijskem testiranju je, da je njegova ucinkovitost odvisna od kakovosti
uporabljenega simulatorja in stopnje, do katere simulirane okolis¢ine natan¢no odrazajo

dejanski svet (Kaur, Taghavi, Tian, & Shi, 2021).

3.1 CARLA (Car Learning to Act) Simulator — odprtokodni simulator za

vozinjo v mestu

Simulator CARLA je bil od samega zacetka razvit, da bi podpiral usposabljanje, izdelavo
prototipov in potrjevanje modelov avtonomne voznje, vklju¢no z zaznavanjem in nadzorom.
Edinstveno je, da je vsebina mestnih okolij, ki jo ponuja CARLA, tudi brezplac¢na. Vsebino je
od zacetka ustvarila posebna ekipa digitalnih umetnikov, ki so bili zaposleni v ta namen.
Vkljucuje urbane nacrte, Stevilne modele vozil, stavbe, pesce, ulicne znake itd. Simulacijska
platforma podpira prilagodljivo nastavitev sklopov senzorjev in zagotavlja signale, ki jih je
mogoce uporabiti za urjenje strategij voznje, kot so koordinate GPS, hitrost, pospesek ter
podrobni podatki o trkih in drugih prekrskih (Dosovitskiy, Ros, Codevilla, Lopez, & Koltun,
2017). Dolociti je mogoce Stevilne okoljske pogoje, vkljuéno z vremenom in dnevnim ¢asom.

Stevilni okoljski pogoji so prikazani na sliki 1.

Za prilagodljivost in realisti¢nost grafike in fizikalnega modeliranja je bila razvita aplikacija
CARLA. V pogonu Unreal Engine 4 je izveden kot odprtokodni sloj (Epic Games, brez
datuma), ki omogoca razsiritve skupnosti v prihodnosti. Pogon ponuja sodobno kakovost
upodabljanja, realisti¢no fiziko, temeljno razmisljanje NPC in mrezo zdruzljivih vti¢nikov.

Pogon lahko brezpla¢no uporabljamo v nekomercialne namene. CARLA je simulacijski sistem
19

streznik-odjemalec, kjer streznik izvaja simulacijo in upodablja prizor, medtem ko client — API
v Python upravlja interakcije prek vticnic. Odjemalec strezniku poSilja ukaze (krmiljenje,
pospeSevanje, zaviranje) in meta ukaze (ponastavitev, spreminjanje nastavitev okolja,
spreminjanje senzorjev). Okolje vkljucuje podrobne 3D-modele staticnih in dinamic¢nih
predmetov, pri ¢emer je poudarek na uravnoteZenju vizualne kakovosti in hitrosti upodabljanja
z ucinkovitimi geometrijskimi modeli in teksturami (Dosovitskiy, Ros, Codevilla, Lopez, &

Koltun, 2017).

Knjiznica digitalnih vsebin vkljucuje Stirideset vrst stavb, Sestnajst modelov vozil in petdeset
modelov pescev. Urbana okolja v sistemu CARLA so ustvarjena z risanjem cest in plo¢nikov,
ro¢nim postavljanjem staticnih objektov (kot so stavbe in prometni znaki) ter dolocanjem
lokacij dinamic¢nih objektov. CARLA vsebuje osem mest, vsako z ne- in vecplastnimi
zemljevidi. Podpira tudi realisticne ne-igralske akterje, saj uporabnikom omogoca nastavljanje
kinemati¢nih parametrov in izvajanje krmilnikov za obnaSanje vozil, vklju¢no s sledenjem
drugemu, uporabniki pa lahko vkljucijo napredne krmilnike za vozila (Malik, Khan, & ElI-

Sayed, 2021).

Tabela 1: Opis vseh zemljevidov mest brez plasti, ki so na voljo v simulatorju CARLA

Mesto Znacilnosti.

Mesto — 01 Osnovni nacrt mesta s krizis¢i v obliki ¢rke "T".

Mesto — 02 Podobno mestu 01, vendar manjse.

Mesto — 03 Najbolj zapleteno mesto s petpasovnim krizis¢em, kroziScem,

neravninami, predorom in drugimi elementi.

Mesto — 04 Neskonc¢na zanka z avtocesto in majhnim mestom.

Mesto — 05 Mesto s kvadratno mrezo, kriziS¢em in mostom ter veC voznimi

pasovi v vsako smer.

Mesto — 06 Dolge avtoceste z veliko vhodi in izhodi z avtoceste.

Mesto — 07 Podezelsko okolje z ozkimi cestami, skednji in skoraj nobenim
semaforjem.

Mesto — 10 Mestno okolje z razli¢nimi okolji in bolj realisticnimi teksturami.

Vir: (Lastni vir)
20

Mesto - 01 Mesto - 02 Mesto - 03 Mesto - 04
Mesto - 05 Mesto - 06 Mesto - 07 Mesto - 10

Slika 1: Ilustracija zemljevidov brez plasti v simulatorju CARLA

Vir: (Lastni vir)

3.1.1 Namestitev in konfiguracija

CARLA je prenosna in jo je mogoce namestiti v operacijska sistema Linux in Windows, saj
deluje v pogonu Unreal Engine 4. Za optimalno delovanje zahteva posebne specifikacije strojne
in programske opreme, ¢eprav lahko deluje tudi na nizjih specifikacijah z manj$o zmogljivostjo.
Program CARLA lahko namestimo tako, da ga sestavimo iz izvorne kode ali z uporabo
enostavnejSe namestitve paketa, ki je na voljo v repozitoriju za izdajo, ki vkljucuje vse izdaje
in digitalna sredstva. Po namestitvi lahko sistem CARLA deluje v dveh nacinih: Samostojni

nacin in Strezniski na¢in. Koraki so opisani spodaj (Malik, Khan, & El-Sayed, 2021).

Postopek:

1. # Kloniranje repozitorija CARLA iz GitHuba
2. git clone https://github.com/carla-simulator/carla cd carla

Gradnja programa CARLA iz izvorne kode (opcijsko):

1. # Poskrbimo, da smo v direktoriju Carla
2. make PythonAPI

21

Namestitev odvisnosti za Python API:

1. pip install - r PythonAPI/Carla/dist/requirements.txt

Zagon sistema CARLA v samostojnem nacinu:

. # Navigacija v imenik CARLA

. cd Carla

1
2
3. # Zagon samostojnega nacina
4

./CarlaUE4. sh

Po mestu se premikamo s tipkovnico: Za voznjo in raziskovanje simulacijskega okolja

uporabljamo tipkovnico (na primer puscicne tipke ali WASD).

Prilagodimo lahko nastavitve za CARLA:

1. nano CarlaSettings.ini

Zagon sistema CARLA v strezniSkem nacinu:

. # Zagon streznika CARLA

1
2
3
4
5.
6.
7
8
9. cd PythonClient
0
1

1
11. python example.py

. # Namestimo odvisnosti odjemalca Python
. pip install -r PythonClient/requirements.txt
./CarlaUE4.sh -carla-server

. # Zazenemo skripto primera odjemalca
. # Navigiramo v direktorij PythonClient

. # Zazenemo skripto primera odjemalca

Tabela 2: Specifikacije strojne in programske opreme za CARLA

Zahteve

Strojna in programska oprema

Upostevani stroski

Sistemske zahteve

CARLA lahko deluje v katerem
koli 64-bitnem operacijskem

sistemu

Linux — brezpla¢no

Windows — 140 €-200

€/licenca

macOS — stroSki so
samo za mac

rac¢unalnike

Ustrezen grafi¢ni procesor

Streznik zahteva vsaj 6 GB
grafiCnega procesorja, ceprav je
priporocljiv. 8 GB graficni

procesor

Priblizno 100 € za 8 GB

grafini procesor

22

Prostor na disku CARLA potrebuje priblizno 20 | 90 — 150 € (16 GB + 4

GB prostora GB ali 2 x 8 GB)
Python CARLA za pisanje skript | Brezplacno
podpira program Python 3.5.x in
Python 3.6.x
Python module Modula Pygame za ustvarjanje | Brezplacno

grafike neposredno s Pythonom

in Numpy za odli¢no racunanje

Porti TCP Zahtevana sta porta 2000 in | Brezplacno
2001
Ogrodje Unreal CARLA je open-source

in je brezplacna

Ubuntu Windows Docker Ker so vse te stvarl

Ubuntu 16.04 ali | Windows 7 ali 8 Docker vkljucene v racunalnik,

18.04 bo edini strosek

odvisen od tega, ali bo

Grafiéni gonilniki | Update ~ Graphics | NVIDIA-Docker2
NVIDIA >361.93 Drivers

potrebna nadgradnja.
Zato je edini pogojni
OpenGL 3.3 Visual Studio NVIDIA Driver >= | strosek licenca za
390 Windows.

Dodatne odvisnosti | OpenGL 3.3 ali ve¢ | CARLA Simulator
ali DirectX 10 ali

vel

Dodatne odvisnosti

Vir: (Malik, Khan, & El-Sayed, 2021)

3.2 Udacity Simulator

Udacity ponuja spletni tecaj, ki z uporabo globokega ucenja usposablja agenta za avtonomno
voznjo in vkljucuje odprtokodni tridimenzionalni simulator voZnje z enojnim prikazom. Pogled

na zbiranje podatkov je z zadnjega dela vozila, fotografije z opombami pa so ustvarjene z

23

voznikovega zornega kota. Projekt poleg dveh vnaprej namesScenih skladb vkljucuje tudi
edinstven modul za ustvarjanje skladb. Ta simulator nima dodatnih avtomobilov, ima bolj

zapletene vizualne podobe in je manj prilagodljiv (Hsieh, 2017).

Simulator olaj$a naloge s svojo arhitekturo odjemalec-streznik, uporabniku pa s prijaznim
vmesnikom API za zbiranje in prenos podatkov. Deluje v dveh nacinih: nacin usposabljanja in
avtonomni na¢in. V nacinu usposabljanja simulator snema posnetke iz treh kamer (leva,
srednja, desna) in jih povezuje s parametri, kot so hitrost, plin, kot krmiljenja in zaviranje. V
avtonomnem nacinu nastavitev odjemalec-streznik omogoc¢a komunikacijo podatkov v realnem

casu prek vmesnika API, kar usposobljenemu modelu omogoca uporabo podatkovnih tokov v

zivo za posodabljanje parametrov in odzivov vozila (Gupta, Upadhyay , Kumar, & Al-Turjman,

2021).

Slika 2: Udacity Simulator

3.2.1 Namestitev in konfiguracija

3.2.1.1 Ubuntu
Ce ga Zelimo uporabljati, najprej namestimo razli¢ico Unity3D 5.5.1fl, saj je simulator

ustvarjen s to razli¢ico. Prenesemo Unity3D in sledimo korakom:

Namestimo zahtevane odvisnosti:

1. sudo apt install gconf-service lib32gccl 1ib32stdc++6 1ibc6-i386 libgconf-2-4
npm

Namestimo paket Unity3D:

1. sudo dpkg -i ~/Downloads/unity-editor_amd64-5.5.1xflLinux.deb

Odpravimo vse manjkajo¢e odvisnosti:

24

1. sudo apt --fix-broken install

Omogocamo shranjevanje velikih datotek (LFS) za sistem Git:

1. curl -s https://packagecloud.io/install/repositories/github/git-
1fs/script.deb.sh | sudo bash

Kloniramo repozitorij simulatorja:

1. git clone https://github.com/udacity/self-driving-car-sim.git

e Zagon simulatorja:

Simulator naredimo izvrsljiv:

‘1. sudo chmod +x ~/Downloads/beta_simulator_linux/beta_simulator.x86_64

Simulator zazenemo z mesta prenosa:

‘1. ~/Downloads/beta_simulator_linux/beta_simulator.x86_64

Za namenski grafi¢ni nacin zazenemo simulator z:

‘1. RUN_GRAPH=true ~/Downloads/beta_simulator_linux/beta_simulator.x86_64

Iz simulatorja izstopimo z Alt + F4.

3.2.1.2 Windows
Ce Zelimo namestiti simulator v operacijskem sistemu Windows, prenesemo datoteko zip iz
github-a z razpolozljivimi datotekami, jo razSirimo in zazenemo izvrSilni program. Za

namestitev sledimo korakom:

Repozitorij kloniramo s sistemom Git LFS:

1. git 1fs install

Kloniramo repozitorij:

1. git clone https://github.com/udacity/self-driving-car-sim.git

Namestimo program Unity (Ce Se ni namescen):
e Delo s skriptami in gradnja skladb:

Najdemo skripte za uporabniski vmesnik in vti¢nike:

1. Assets/1_SelfDrivingCar/Scripts

Najdemo skripte za interakcije z avtomobili:

1. Assets/Standard Assets/Vehicle/Car/Scripts

Zgradimo novo progo:

1. Assets/RoadKit/Prefabs

25

Tabela 3: Specifikacije strojne in programske opreme za Udacity Simulator

Zahteve Windows minimum | Windows Ubuntu minimum Ubuntu maximum Upostevani stroski
maximum
Operacijski | Windows 7/8/10 Windows 10 | Ubuntu 16.04 ali novejsi | Ubuntu 18.04 ali novejsi | Win — 140 €- 200 €/licenca
sistem (OS) Lin — brezplacno
macOS — stroski racunalnika
Procesor Intel Core i5- Intel Core 17 | Intel Core 15 ali | Intel Core 17 ali AMD | Intel Core i5 — od 230 € napre;.
2500K ali ali AMD | enakovreden procesor | Ryzen 7 Intel Core i7 — od 250 € naprej.
enakovreden Ryzen 7 AMD
procesor AMD
Spomin 8 GB RAM 16 GBRAM | 8 GB RAM 16 GB RAM 8GB RAM - od 20 € napre;.
16GB RAM — od 50 € napre;.
Grafika NVIDIA GeForce | NVIDIA NVIDIA GeForce GTX | NVIDIA GeForce GTX | NVIDIA GeForce GTX 670 —
GTX 670 ali AMD | GeForce 670 ali AMD Radeon | 1060 ali AMD Radeon | 415 €
Radeon HD 7870 GTX 1060 ali | HD 7870 RX 580 AMD Radeon HD 7870 — 240 €
AMD Radeon
NVIDIA GeForce GTX 1060 —
RX 580

500 €

AMD Radeon RX 580 — 350 €

26

DirectX Version 11 Version 12 N/A N/A
Pomnilnik | 10 GB 10 GB 10 GB razpolozljivega | 10 GB razpolozljivega Cena je odvisna od izbrane
razpolozljivega razpolozljive | prostora prostora grafi¢ne kartice
prostora ga prostora
Unity Unity 5.5.1f1 Unity 5.5.1f1 | Unity 5.5.1f1 Unity 5.5.1f1 Personal — brezplacno
razlicica Pro — od 2,040.00 $/leto
Industry — od 4,950.00 $ /leto
Dodatno Git LFS za velike | Posodobljeni | Git LFS za velike Posodobljeni graficni | Ni dodatnih stroSkov
vrednosti grafi¢ni vrednosti gonilniki
gonilniki

Vir: (Lastni vir)

27

3.3 Udacity Simulator vs CARLA

CARLA je primerna za napredne raziskave in razvoj, saj omogoca zelo natan¢no simulacijo
kompleksnih metropolitanskih obmocij, razli¢nih vremenskih razmer in dinami¢nih predmetov.
Zagotavlja zelo prilagodljivo in vsestransko platformo, vendar zahteva veliko racunalnisSke
moc¢i. Omogoca Siroko interakcijo s Stevilnimi ogrodji za robotiko in strojno ucenje. Za
programom CARLA stoji zivahna skupnost, ki zagotavlja bogato dokumentacijo in pomoc.
Zaradi svoje fine vizualne podobe in zapletenih tekstur, ki povecujejo vizualni realizem, je kot

nalas¢ za zapleteno testiranje algoritmov in potrjevanje sistemov (Li, in drugi, 2024).

Simulator samovozecega avtomobila Udacity pa je namenjen predvsem za izobrazevalne
namene. V primerjavi s simulatorjem CARLA ima preprostejSa okolja in manj dinamic¢nih
elementov. Simulator je enostavne;jsi za vzpostavitev in uporabo, saj se osredotoca na preprosto
interakcijo in osnovne koncepte samovozecega avtomobila. Ima bolj omejene moZznosti
integracije in je manj zahteven z vidika racunalniskih virov. Ceprav so njegova podpora
skupnosti in posodobitve bolj omejene, je simulator Udacity primeren za uvodno ucenje in
izobrazevalne vaje s poenostavljeno grafiko in teksturo. Njegova prilagodljivost je prav tako
omejena, saj se osredotoca na vnaprej doloc¢ene scenarije in ne na obsezno prilagajanje (Li, in

drugi, 2024).

Glede na vse to je simulator CARLA zaradi velike natan¢nosti in Stevilnih funkcij primerne;jsi
za napredne Studije, medtem ko je simulator Udacity zasnovan z mislijo na poucevanje in

poudarja preprostost uporabe in osnovne ideje.

Tabela 4: Primerjava simulatorjev CARLA in Udacity Self-Driving Car Simulator

Aspekt CARLA Udacity Simulator
Link na install page CARLA Quick Start Udacity Installation

Verodostojnost simulacije Visok realizem s podrobnimi | V primerjavi z igro CARLA
mestnimi okolji, vkljuéno z | je manj podrobna, z
razli¢nimi vremenskimi | enostavnejSimi okolji in manj

razmerami in dinami¢nimi | dinami¢nimi elementi.

predmeti.
Enostavno vkljucevanje Podpira integracijo z | Osnovne moznosti
razliénimi okvirji za strojno | integracije, osredotocen

28

https://carla.readthedocs.io/en/latest/start_quickstart/
https://github.com/udacity/self-driving-car-sim

ucenje in robotiko. Dobro
dokumentirani ~ API-ji in

mocna skupnost za podporo.

predvsem na izobrazevalno
uporabo z omejeno

razs$irljivostjo.

Uporabnost Bolj zapletena nastavitev in | Lazje ga je nastaviti in
konfiguracija, vendar ponuja | uporabljati, zasnovan je za
obsezno prilagajanje in | izobrazevalne namene s
napredne funkcije. poudarkom na enostavni
interakciji.
Podpora skupnosti Aktivna in dobro podprta | Omejena podpora skupnosti

skupnost z obseznimi viri in
dokumentacijo. Redne

posodobitve in izboljsave.

in manj posodobitev,

vzdrzuje se predvsem V

1izobrazevalne namene.

Zmogljivost in sistemske

Zahteva znatne racunalniSke

Na splosno so manj zahtevni;

zahteve vire, zlasti za simulacije | primerni so za izobraZevalne
visoke verodostojnosti s | namene in simulacije, ki
podrobnimi okolji. zahtevajo manj virov.

Aplikacije Primeren je za Siroko paleto | Zasnovan je predvsem za

raziskovalnih in razvojnih
aplikacij, vklju¢no z
naprednim testiranjem

algoritmov in potrjevanjem

sistemov.

izobrazevalne in uvodne
namene s poudarkom na
osnovnih konceptih
samovozecega avtomobila in

simulacij.

Grafika in vizualna podoba

Visokokakovostna grafika s

Poenostavljena grafika in

podrobnimi teksturami in | teksture z manjS$im
realisticnimi vizualnimi | poudarkom na vizualnem
elementi. realizmu.
Prilagodljivost in Zelo prilagodljiv, saj | Omejena prilagodljivost,
razsirljivost uporabnikom omogoca | osredotoCeno na vnaprej
ustvarjanje prilagojenih | doloc¢ene scenarije in

okolij in scenarijev.

izobrazevalne vaje.

Vir: (Lastni vir)

29

4 KNJIZNICE IN RAZVOJNA OKOLJA

Beleznica Jupyter zagotavlja interaktivno programsko okolje, ki zdruzuje kodo z besedilom
markdown, kar pomaga pri u¢enju in poucevanju. Zmoznost izvajanja kode v kosih in takojs$nje
povratne informacije omogocajo lajSanje napak in razumevanje zapletenih konceptov, kot so

nevronske mreze (Menke, Homberg, & Koch, 2023).

Beleznico je mogoce gostiti na GitHubu, kar omogoca enostaven dostop in sodelovanje.
Uporabniki lahko klonirajo repozitorije, jih prilagajajo in ponovno vkljucujejo spremembe, kar
omogoc¢a nenehne izboljSave in sodelovanje skupnosti. Funkcije GitHuba, kot je ,,Issue

Tracker®, dodatno izboljsSujejo interakcijo in povratne informacije uporabnikov (Taieb, 2018).

Google Colaboratory (Colab) platforma je dostopen nacin za zagon beleznic Jupyter brez
potrebe po lokalni namestitvi. Ponuja raCunalniske vire v oblaku, vklju¢no z grafi¢nimi
procesorji in procesorji TPU, zaradi Cesar je primerna za umetno inteligenco in globoko ucenje.
Glavna pomanjkljivost je, da podatkov in nastavitev ni mogoce shraniti, ko se primerek

streznika zapre (Nelson & Hoover, 2020).

4.1 Jupyter Notebook

Najbolj priljubljena platforma za interaktivno pismeno programiranje je beleznica Jupyter
(Shen, 2014). Njen namen je bil olajSati dokumentiranje, izmenjavo in ponovitev analize
podatkov. Od leta 2013, ko je sistem zacel delovati, je bilo v GitHubu zbranih ve¢ kot 9

milijonov beleznic (Parente, 2020).

Jupyter izhaja iz [Pythona in poleg Pythona podpira razlicne programske jezike, kot so Julia,
R, JavaScript in C. Poleg kode in besedila omogoca tudi prepletanje razli¢nih vrst bogatih
medijev, vkljuéno s slikami, videom in celo interaktivnimi gradniki, ki zdruzujejo HTML in

JavaScript (Perez & Granger, 2007).

Odprtokodna aplikacija Jupyter Notebook sluzi kot virtualni laboratorijski zvezek za podporo
podatkov, kode, delovnih postopkov in vizualizacij raziskovalnega procesa. Njena strojno in
¢lovesko berljiva narava spodbuja znanstveno sodelovanje in interoperabilnost. Te beleZnice je
mogoce shraniti v spletnih skladis¢ih in jih povezati z drugimi raziskovalnimi artefakti,
vklju¢no s kodo, ¢lanki, delovnimi tokovi, priro¢niki za tehnike in podatkovnimi zbirkami

(Randles, Pasquetto, Golshan, & Borgman, 2017).

30

Vendar je ta oblika vse bolj tarca kritik zaradi spodbujanja nezazelenih navad, ki povzro¢ajo
nepredvideno vedenje in jih ni mogoce ponoviti (Xie, 2018). Med glavnimi kritikami so skrita
stanja, nepri¢akovan vrstni red izvajanja z razdrobljeno kodo ter slabe prakse pri poimenovanju,
razli¢icah, testiranju in modularizaciji kode. Poleg tega oblika beleznice ne kodira odvisnosti
knjiznic s pripetimi razli¢icami, zaradi Cesar je tezko (in vcasih nemogoce) reproducirati
beleznico. Te kritike potrjujejo prejSnje delo, ki je poudarilo negativen vpliv pomanjkanja
najboljSih praks programskega inzenirstva (Wilson, in drugi, 2014) v programski opremi za
znanstveno racunalniStvo glede lo¢evanja skrbi (Hursch & Lopes, 1995), testov in vzdrzevanja

(Neglectos, 2018).

4.2 Google Colab

Ceprav je bil program Colab ustvarjen za laZjo izmenjavo ponovljivih poskusov in opisov
tehnik med raziskovalci na podro¢ju umetne inteligence in znanosti o podatkih, so ugotovili, da
je odli¢no orodje tudi za izobrazevalne namene. Glavna prednost je v tem, da lahko ucenci z
dovolj procesorske moci interaktivno izvajajo napredne pristope umetne inteligence, saj lahko
uporabljajo inStruktorjeve delovne zvezke v skupni rabi. Tako uporabnikom ni treba

individualno konfigurirati programskih paketov in odvisnosti (Nelson & Hoover, 2020).

Notebooke delujejo v virtualnih strojih (VM — Virtual Machine), ki temeljijo na operacijskem
sistemu Linux in jih vzdrzuje in zagotavlja Google. Ti VM omogocajo izvajanje izracunov s
centralnimi procesnimi enotami (CPU — Central Processing Unit) ali pospeSeno z uporabo
specializiranih grafi¢nih procesorjev in tenzorskih procesnih enot (TPU — Tensor Processing
Unit). Vsak VM ima za posamezno sejo na voljo razlicno strojno opremo, ¢eprav so obicajno
na voljo vrhunski grafi¢ni procesorji NVIDIA (K80, T4 ali P100), 8-12 GB pomnilnika RAM
in 50-70 GB prostega prostora na trdem disku VM. Notebooke Colab so zasnovani za
interaktivno uporabo in ne za daljSe preiskave. Zato se VM po izteku ¢asa mirovanja prekinejo

in imajo 12-urno omejitev seje (Nelson & Hoover, 2020).

Google Colab deluje kot npr. Google Docs in omogoca uporabnikom, da skupaj delajo na istem
Notebook-u. TensorFlow, Matplotlib in Keras so le nekatere od klju¢nih knjiznic za strojno
ucenje in umetno inteligenco, s katerimi je program Colaboratory predhodno konfiguriral
izvajalne sisteme Python 2 in 3. Po dolocenem ¢asu se VM pod izvajalnim casom zapre, vse
uporabniske nastavitve in podatki pa izginejo. Kljub temu pa beleznica ostane nedotaknjena,

informacije pa se lahko s trdega diska virtualnega stroja prenesejo na uporabnikov racun Google

31

Drive. Nazadnje, ob popolni konfiguraciji prej omenjene programske opreme, ta Googlova
storitev ponuja izvajanje s pospesevanjem z graficnim procesorjem. Google Cloud sluzi kot

gostiteljska platforma za infrastrukturo Google Colaboratory (CARNEIRO, in drugi, 2018).

4.3 Google Colab vs Jupyter Notebook

Jupyter Notebook in Google Colab sta priljubljeni interaktivni programski orodji, ki imata
vsaka svoje prednosti in slabosti. Ker Jupyter Notebook uporabnikom omogoca, da popolnoma
prilagodijo svoj delovni prostor, je odlicno orodje za lokalno delo. To vklju¢uje moznost
ohranjanja in spreminjanja dolocenih parametrov, kar olajSa preprosto repliciranje operacij.
Poleg tega se Jupyter povezuje s Stevilnimi platformami, kot je GitHub, in ponuja Siroko
podporo za veC programskih jezikov, kar spodbuja sodelovanje in izmenjavo raziskovalnih

dosezkov.

Nasprotno pa je Google Colab odli¢en vir za vse, ki zelijo izkoristiti zmogljivosti v oblaku, ne
da bi za to potrebovali zapletene lokalne nastavitve. V Colabu so na voljo mo¢ni racunski viri,
kot so enote za obdelavo tenzorjev (TPU) in grafi¢ne procesne enote (GPU), kar je zelo koristno
za globoko ucenje in druge najsodobnejse tehnike umetne inteligence. Uporabnikom se ni treba

ukvarjati z nameS¢anjem potrebnih knjiznic ali skrbeti za strojno opremo, saj deluje v oblaku.

Google Colab prinasa veliko prednosti, vendar ima tudi slabosti. Glavna je, da se ob zaprtju
navideznega stroja izgubijo podatki in nastavitve, saj okolja ni mogoce shraniti med sejami.
DolgotrajnejSe raziskave lahko zaradi tega postanejo zahtevne, zato bodo potrebne pogoste
varnostne kopije na Googlovem disku ali v drugi spletni shrambi. Za izboljSanje ponovljivosti
in dolgorocnega vodenja projektov ponuja beleznica Jupyter popoln nadzor nad delovnim

okoljem vklju¢no z razli¢icami knjiznic in drugimi spremenljivkami.

Medtem ko se Google Colab odlikuje po dostopnosti, enostavnosti uporabe in mocnih virih v
oblaku, zaradi Cesar je idealen za hitro testiranje in izdelavo prototipov, beleznica Jupyter
ponuja vecjo prilagodljivost in vzdrZljivost za dolgoro¢ne projekte. Posebne zahteve
uporabnika, vklju¢no s tistimi povezanimi z racunsko mocjo, ponovljivostjo, sodelovanjem in

zelenim okoljem pogosto doloc¢ajo, katera moznost je najboljsa.

Tabela 5: Primerjava lastnosti Google Colab in Jupyter Notebook

Lastnost Google Colab Jupyter Notebook

32

Okolje

Storitev v oblaku

Lokalno ali na strezniku

Dostop

Zahteva internetno povezavo

Lahko se uporablja brez

povezave

Racunalniski viri

Zagotavlja brezplacen
dostop do grafi¢nih
procesorjev in procesorjev

TPU

Zanasa se na lokalno ali

streznisko strojno opremo

Nastavitev in konfiguracija

Nastavitev ni potrebna, na
voljo so vnaprej

konfigurirane knjiznice

Zahteva ro¢no nastavitev in

konfiguracijo

Sodelovanje

Sodelovanje v realnem casu,
podobno kot v Googlovih

dokumentih

Sodelovanje prek skupnih
datotek ali nadzora razli¢ic

(npr. GitHub)

Trajanje seje

Omejeno na 12-urne seje,
ponastavitev VM izgubi
podatke

Trajne seje s popolnim

nadzorom nad okoljem

Podprti jeziki

Predvsem Python (podpira
druge z dodatnimi

nastavitvami)

Podpira vec jezikov,
vkljucno z jeziki Python, R,
Julia itd.

Shranjevanje podatkov

Zacasno, podatke je treba
roc¢no shraniti v Google
Drive ali druge storitve v

oblaku

Lokalno shranjevanje s

trajnimi datoteCnimi sistemi

Reproduktibilnost

Omejeno zaradi ponastavitve
VM, potrebna je ponovna

namestitev paketov

Visoka, saj je mogoce okolja
v celoti nadzorovati in

reproducirati

Idealni primer uporabe

Hitro prototipiranje, poskusi
globokega ucenja,

1zobrazevalni nameni

Dolgoroc¢ni projekti,
zapleteni delovni tokovi,

popoln nadzor nad okoljem

33

Upostevani stroski

V brezplacni razlicici
programa Colab je dostop do
grafi¢nih procesorjev zelo

omejen
Colab Pro — 11,28 €/mesec
Colab Pro+ — 51,54 €/mesec

Colab Enterprise — Placilo

po uporabi

Uporaba je prosto dostopna

Vir: (Lastni vir)

34

5 UVOD V SAMOUCENJE ALGORITMA

5.1 Strojno ucenje

Znanstveno preucevanje statisticnih modelov in tehnik, ki jih racunalniSki sistemi uporabljajo
za izvajanje dolocenih nalog brez izrecnega programiranja, je znano kot strojno ucenje ali krajse
ML (Machine Learning). Eden od razlogov, zakaj je spletni iskalnik, kot je Google, tako dober
vsaki¢, ko ga uporabimo za iskanje po internetu, je, da ima algoritem, ki se nenehno uci, kako
razvrScati spletna mesta. Prediktivna analitika, obdelava slik, podatkovno rudarjenje in druge
uporabe teh algoritmov so le nekatere. Glavna prednost strojnega ucenja je sposobnost
algoritmov, da samodejno opravljajo naloge, ko se naucijo, kako ravnati s podatki (Mahesh,
2018). Na kratko si oglejmo nekaj najpogosteje uporabljenih algoritmov v ML (Nasteski,
2017):

e Nadzorovano ucenje (Supervised Learning): vkljucuje algoritme, ki se ucijo iz oznacenih
podatkov za napovedovanje rezultatov. Razli¢ni algoritmi ustvarijo funkcijo, ki preslika
vhodne podatke v Zelene izhodne podatke. Ena od standardnih formulacij naloge
nadzorovanega ucenja je problem klasifikacije: uporabnik se mora nauciti (priblizati
obnasanje) funkcije, ki prikazuje vektor v enega od veC razredov, tako da preuci vec

vhodno-izhodnih primerov funkcije.

e Nenadzorovano ucenje (Unsupervised Learning): pri tem se osredotoCa na algoritme, ki

delajo z neoznacenimi podatki in i8¢ejo skrite vzorce.

e Delno nadzorovano ucenje (Semi-Supervised Learning): zdruzuje tako oznacene kot

neoznacene podatke.

e Ucenje z okrepitvijo (Reinforcement Learning): algoritem se nauci, kako naj ravna glede
na opazovanje sveta. Vsako dejanje ima dolocen vpliv na okolje, okolje pa zagotavlja

povratne informacije, ki usmerjajo u¢ni algoritem.

e Vecopravilno ucenje (Multitask Learning): cilj je soCasno reSevanje veC nalog z

izkoriS¢anjem podobnosti med njimi.

e Ucenje v skupinah (Ensemble Learning): vkljucuje zdruZzevanje ve¢ modelov za izboljSanje

splosne uc¢inkovitosti, pri ¢emer se preucujejo metode, kot sta Boosting in Bagging.

35

5.2 Globoko ucenje

Globoko u¢enje omogoca racunalniSkim modelom, ki so sestavljeni iz vec¢ slojev obdelave, da
se naucijo predstavitev podatkov z ve¢ ravnmi abstrakcije. Te metode so bistveno izboljsale
stanje na podro¢ju prepoznavanja govora, vizualnega prepoznavanja predmetov, zaznavanja
predmetov in Stevilnih drugih podrocjih, kot sta odkrivanje zdravil in genomika. Z uporabo
tehnike povratnega Sirjenja, s katero se predlagajo spremembe notranjih parametrov stroja, ki
se uporabljajo za izracun predstavitve v vsaki plasti na podlagi predstavitve v prejsSnji plasti.
Globinsko ucenje odkriva kompleksno strukturo znotraj obseznih podatkovnih nizov.
Rekurentne mreZe so osvetlile zaporedne podatke, kot sta besedilo in glas, medtem ko so
globoke konvolucijske mreze pomembno napredovale pri obdelavi slik, videa, govora in zvoka
(Lecun, Bengio, & Hinton, 2015). V nasprotju s sploSnim strojnim u¢enjem se pri globokem
ucenju uporablja kaskada slojev nelinearnih procesnih enot za ekstrakcijo in spreminjanje
funkcij. S hierarhi¢no predstavitvijo podatkov, kjer se znacilnosti vi§je ravni ustvarjajo iz

informacij nizje ravni, omogoca racunalnikom ucenje (Hao, Zhang, & Ma, 2016).

Globoke arhitekture so na voljo v Stevilnih razli¢icah, za predstavitev razlicnih virov podatkov
pa se lahko uporabljajo razlicne strukture. Predstavljajo nabor modelov nevronskih omrezij,
zasnovan za samodejno ucenje in pridobivanje lastnosti iz podatkov prek ve¢ plasti, ki omogoca
naloge, kot so prepoznavanje slik, obdelava naravnega jezika in kompleksno odlo¢anje. Klju¢ne
arhitekture vkljucujejo konvolucijske nevronske mreze za prostorske podatke, rekurentne
nevronske mreZe in transformatorje za zaporedne podatke ter generativne adverzijske mreze za
generiranje novih vzorcev podatkov. Konvolucijske nevronske mreze se na primer najpogosteje
uporabljajo za prepoznavanje slik, rekurentne nevronske mreze pa bolje delujejo pri zaporednih

aplikacijah, kot je prepoznavanje glasu ali rokopisa (Hao, Zhang, & Ma, 2016).

5.3 Definicija samoucenja v kontekstu avtonomnih vozil

Aplikacije UI v avtomobilskem sektorju segajo precej dlje od razvoja, inzeniringa, logistike,
proizvodnje, oskrbovalne verige, uporabniske izkusnje, trzenja, prodaje, poprodajnih storitev
in storitev mobilnosti. UI je klju¢ do nove prihodnosti glede vrednosti za avtomobilsko

industrijo (Hofmann, Neukart, & Béck, 2017).

V zadnjem casu so bili predstavljeni Stevilni testni projekti s samovozecimi avtomobili. Vsem
tem eksperimentalnim projektom je skupno, da se pri nekaterih nalogah voznje, kot so

nacrtovanje poti, zavedanje okolja in celo upravljanje volana, uporabljajo metode, ki temeljijo
36

na globokem ucenju. Z uspesno predstavitvijo avtonomnih prototipov, ki jih poganja globoko
ucenje, se avtomobilska industrija postopoma preusmerja od izdelave in predstavitve
prototipnih vozil k serijski proizvodnji. Danes je glavni izziv, kako nevronske mreze spraviti v
serijsko proizvodnjo avtomobilov na nacin, ki bo skladen z varnostnimi zahtevami (Rao &

Frtunikj, 2018).

Natan¢no zaznavanje drugih avtomobilov na cesti z uporabo rac¢unalniskega vida je zahtevna
tema, ki je v zadnjih dvajsetih letih pritegnila veliko pozornosti (Sun, Bebis, & Miller, 2006).
Ceste, po katerih vozijo avtomobili, so dinami¢ne, z nenehno spreminjajoco se osvetlitvijo in
ozadjem. Ker vsak avtomobil na cesti pogosto vozi v istem trenutku, se velikost in lokacija
vozila v slikovni ravnini, ki jo zajame fotoaparat, razlikujeta. Velikost, barva in oblika vozila
se lahko v vsakdanjih voznih razmerah zelo razlikujejo. V literaturi je Ze vec kot deset let veliko
raziskav o sledenju in zaznavanju vozil. V prejsnjih raziskavah je bilo za odkrivanje vozil

uporabljenih ve¢ umetno ustvarjenih znacilnosti (Capparuccia, Renato, & Marchitto, 2007).

37

6 ALGORITMI ZA SAMOSTOJNO VOZNJO

Razvoj algoritmov za samovozece avtomobile je Ze na najosnovnejsi ravni zahteven podvig, ki
vkljucuje vrsto senzorjev, nadzornih shem in racunalniskih pristopov. Poudarek pri
»enostavnih« ali vstopnih samovozecih avtomobilih bi bil verjetno na nadzorovanih poteh,

v

2021).

6.1 Algoritmi zaznavanja

Zajemanje pomeni razumevanje okolja okoli avtomobila s pomocjo razlicnih senzorjev. Pri
osnovnem samovozecem avtomobilu se algoritmi zaznavanja lahko osredotocijo na zaznavanje

preprostih ovir in oznak voznega pasu (Rosique, Navarro, Fernandez, & Padilla, 2019).

e Fuzija senzorjev: zdruzitev podatkov iz ve¢ senzorjev (npr. kamer, LIDAR, ultrazvo¢nih
senzorjev) za ustvarjanje celovitega pogleda na okolje. Pri preprostejsih aplikacijah lahko
to vkljucuje le kamero in nekaj ultrazvocnih senzorjev (Rosique, Navarro, Ferndndez, &

Padilla, 2019).

e Zaznavanje predmetov: uporaba osnovnih tehnik racunalniSkega vida ali predhodno
usposobljenih modelov strojnega ucenja za zaznavanje predmetov, kot so pesci, druga
vozila ali staticne ovire. Tehnike vkljucujejo zaznavanje robov, zaznavanje madezev in
naprednejSe metode, kot so konvolucijske nevronske mreze (Rosique, Navarro, Fernandez,

& Padilla, 2019).

e Zaznavanje voznih pasov: algoritmi za zaznavanje oznak voznih pasov na cesti, pri ¢emer
se pogosto uporabljajo tehnike racunalniskega vida, kot je Houghova transformacija za

prepoznavanje ravnih Crt ali krivulj (Rosique, Navarro, Fernandez, & Padilla, 2019).

6.2 Algoritmi za lokalizacijo

Pri lokalizaciji gre za dolo¢anje natan¢nega polozaja avtomobila v danem okolju (Lu, Ma,

Smart, & Yu, 2021).

e [okalizacija na podlagi GPS: pri osnovnih samovozecih avtomobilih lahko GPS zagotovi
grobo oceno lokacije avtomobila. Vendar je to morda treba dopolniti z drugimi metodami
zaradi nenatanc¢nosti GPS, zlasti v mestnih okoljih (Lu, Ma, Smart, & Yu, 2021).

38

Mrtvo dolocanje: ta tehnika ocenjuje trenutni polozaj avtomobila na podlagi njegovega
prejSnjega polozaja, smeri in hitrosti. Pogosto se uporablja v povezavi s podatki GPS (Lu,

Ma, Smart, & Yu, 2021).

Hkratna lokalizacija in kartiranje: Ceprav je ta tehnika naprednejSa, jo je mogoce
poenostaviti za enostavne aplikacije za samovozece avtomobile. Vkljucuje izdelavo
zemljevida neznanega okolja in hkratno spremljanje lokacije avtomobila v tem okolju, pri
¢emer se obiCajno uporabljajo metode LIDAR ali metode, ki temeljijo na vidu (Lu, Ma,

Smart, & Yu, 2021).

6.3 Algoritmi za nacrtovanje

Nacrtovanje vkljucuje dolocitev poti, ki naj jo vozilo opravi od trenutnega polozaja do cilja

(Ming, Y., Li, Y., Zhang, Z., & Yan, W, 2021).

Nacrtovanje poti: pri enostavnih samovozecih avtomobilih lahko nacrtovanje poti vkljucuje
preproste algoritme, kot sta A* ali Dijkstrov algoritem za iskanje najkrajSe poti na vnaprej

zartanem obmocju (Ming, Y., Li, Y., Zhang, Z., & Yan, W., 2021).

Nacrtovanje obnasanja: to vkljuCuje odlocanje o tem, katera dejanja naj vozilo izvede, na
primer upocasnitev, ustavitev ali prehitevanje. Pri osnovnih aplikacijah lahko preproste
scenarije obravnavajo sistemi, ki temeljijo na pravilih (npr. stroji koncnih stanj) (Ming, Y.,

Li, Y., Zhang, Z., & Yan, W., 2021).

Nacrtovanje poti: ko je pot doloCena, nacrtovanje trajektorije vkljucuje ustvarjanje gladke
vozne poti, ki se izogne oviram in uposteva cestne predpise. V ta namen se lahko uporabijo

polinomske metode (Ming, Y., Li, Y., Zhang, Z., & Yan, W., 2021).

6.4 Nadzorni algoritmi

Algoritmi za nadzor upravljajo gibanje vozila in zagotavljajo, da vozilo nemoteno in varno sledi

nacrtovani poti (Zulu & John, 2014).

Proporcionalno-integralno-derivativni (PID — Proportional-Integral-Derivative) krmilniki:
ti se obiCajno uporabljajo za krmiljenje, pospeSevanje in zaviranje v enostavnejSih
aplikacijah za samovozece voznike. Krmilnik PID nenehno izracunava vrednost napake in
prilagaja krmilne vhode, da bi to napako ¢im bolj zmanjsal, s ¢imer pomaga vzdrzevati

zeleno pot (Zulu & John, 2014).
39

e Modelno napovedno krmiljenje (MPC — Model Predictive Control): pri naprednejsi metodi
gre za napovedovanje prihodnjega obnaSanja vozila in ustrezno optimizacijo njegove
trajektorije. Ceprav je MPC bolj zapleten, ga je mogo&e prilagoditi za preprostejsa, omejena

okolja (Zulu & John, 2014).

6.5 Algoritmi za izogibanje oviram

Izogibanje oviram zagotavlja, da vozilo ne tr¢i v predmete na svoji poti (Chen, Peng, & Grizzle,

2018).

e Potencialna podro¢ja: ta tehnika vkljucuje ustvarjanje ,,potencialnega polja“, v katerem
ovire vozilo odbijajo, cilj pa ga privlaci, kar vozilu omogoca nemoteno navigacijo okoli

ovir (Chen, Peng, & Grizzle, 2018).

e Reaktivne metode: za lazja okolja je mogoce uporabiti preproste reaktivne metode, kot je
,Ustavi in pocakaj* (ustavi se, ko zazna oviro, in poc¢akaj, dokler se ta ne odstrani) (Chen,

Peng, & Grizzle, 2018).

6.6 Varnostin varnostni mehanizmi

Varnost je najpomembnejsa pri vsakem sistemu za samovozece voznike. Tudi preprosti sistemi

potrebujejo osnovna varovala pred okvarami (Patel, 2021).

e Zaviranje v sili: osnovno zaznavanje ovir v kombinaciji z enostavnim zavornim sistemom

lahko pomaga prepreciti trke (Patel, 2021).

e Redundanca: ve€ senzorjev za isto funkcijo (npr. dve kameri za zaznavanje voznega pasu)

poveca zanesljivost (Patel, 2021).

6.7 Algoritmi za simulacijo in testiranje

Pred uvedbo algoritma za samovozeco voznjo v resni¢nem svetu se opravi obsezno testiranje v

simulacijskih okoljih (Schoner, 2018).

e Simulatorji: programsko opremo, kot so CARLA, Gazebo, Udacity ali celo preprostejsi po
meri izdelani simulatorji, je mogocCe uporabiti za testiranje algoritmov v razlicnih

nadzorovanih okoljih (Schoner, 2018).

40

6.8 Simulacija samovozecega avtomobila 7 uporabo globokega ucenja

6.8.1 Konvolucijsko nevronsko omreZje (CNN)

Samovozeci avtomobil v tem diplomskem delu je bil opremljen s tehnologijo CNN zaradi
njenih dobrih zmogljivosti prepoznavanja slik in vzorcev. Poleg u€enja upravljanja avtomobila
se je CNN naucil tudi, v kaksSni situaciji je treba uporabiti dolocen kot krmiljenja. CNN je
potreboval izjemno dolgo obdobje, da je koncal svoje usposabljanje. Nevronska mreza v tej
Studiji je za vsako epoho potrebovala od tri do Stiri minute, da se je usposobila v desetih epohah.
1 hza 30 epoh in 2 h za 50 epoh. Metodologija omrezja, znana kot model usposabljanja Nvidia,

je podrobneje pojasnjena v nadaljevanju.

6.8.2 Zbiranje podatkov

Zbrati moramo dovolj podatkov za usposabljanje predlaganega modela. Simulator Udacity
ponuja moznost, da v nacinu simulacijskega usposabljanja ustvarimo lasten nabor podatkov.
Kote krmiljenja posname simulator, slike leve, desne in sredinske strani pa leva, desna oziroma
sredinska kamera. S puS¢icami se uravnava hitrost vozila. Ustvarita se datoteka csv in mapa z

vsemi slikami, ki se pozneje uporabita za usposabljanje.

Kot obracanja je pozitivno Stevilo med 0 in 1, ¢e se avtomobil obraca v desno, in negativno
Stevilo med 0 in -1, ¢e se obraca v levo. Ko vozilo vozi naravnost, je kot zavijanja enak nic.
Avtomobil ima najvecjo hitrost 30 in lahko doseze katero koli Stevilo med 0 in 30 (simulator

nima enote).

6.8.3 Obdelava podatkov

Zbrane podatke, tj. fotografije, pred u¢enjem modela predhodno obdelamo. Med predobdelavo
se slike obrezejo, da se odstranita nebo in sprednji del avtomobila. Slike se nato pretvorijo iz
RGB v YUV in pomanjsajo, da ustrezajo vhodni obliki modela. To se izvede, ker RGB ni
najboljsa preslikava za ¢utno zaznavanje. Ko gre za kodiranje in zmanjSanje pasovne $irine, so

barvni prostori YUV bistveno ucinkovitej$i od RGB.

41

6.8.4 Usposabljanje

Pri usposabljanju omrezja so bili upostevani Stevilni vidiki. Ti so vkljucevali strukturo modela,
vrsto razsiritve, ki se je uporabila v uénem nizu in nepristranski kot obracanja. Za usposabljanje
omrezja je bilo uporabljenih 10, 30 in 50 vadbenih epoh, podatki pa so bili naklju¢no razdeljeni
na vadbene in validacijske mnozice. Izguba pri potrjevanju se izracuna na koncu epohe, medtem
ko se izguba pri usposabljanju izracuna med epoho. Manjsa validacijska izguba bi pomenila
izboljSano delovanje vozila, kar bi privedlo do daljsih potovalnih razdalj in manjSega Stevila

trkov, Ce sploh.

Da bi razumeli vpliv razli¢nih razsiritev in kako lahko te povzrocijo pretirano ali premajhno
prilagajanje ali razkrijejo, da je nabor podatkov nereprezentativen, je bil ustvarjen tudi graf, ki
prikazuje izgube pri usposabljanju in potrjevanju za vsako omrezje. PreuCene so bile razsiritve
slik z obra¢anjem, pomikanjem, povecavo, svetlostjo, brez razsiritve, nakljucno razsiritvijo ter

kombinacijo razsiritve z obracanjem in svetlostjo.

6.8.4.1 Obrnjena slika (flipped image)

Pri razsiritvi s flipom se slika obrne ¢ez os Y, kot obrata pa spremeni znak iz ,,+“ v ,,-* in
obratno. Na sliki 3 je primer, ki prikazuje kot zasuka 0,05154746, ki na spremenjeni sliki

postane - 0,05154746.

Original Image - Steering Angle: -0.05 Flipped Image - Steering Angle: 0.05

v] 50 100 150 200 250 300 0 50 100 150 200 250 300

Slika 3: Obrnjena slika (flipped image)
(Vir: Lasten)
6.8.4.2 Augmentirana slika
Povecanje s panoramo je neke vrste fina transformacija. V Studiji sta bila kot argumenta za

afinno funkcijo uporabljena 10-odstotni translacijski premik v levo in desno, naklju¢no. Na sliki

4 je primer.

42

Original Image Augmented Image

100 100

120 P 120

Slika 4: Augmentirana slika

(Vir: Lasten)

6.8.4.3 Preprocesirana slika

Izvirna slika se nalozi s poti do datoteke, nato pa se uporabi funkcija predobdelave za
spremembo slike, na primer za spremembo velikosti, normalizacijo ali zmanjSanje Suma. Obe
sliki se nato prikazeta na eni sliki z dvema podpoglavjema: prvo podpoglavje prikazuje izvirno
sliko, drugo podpoglavje pa predobdelano sliko. Ta vizualna primerjava pomaga oceniti ucinke

korakov predobdelave na neobdelane vhodne slike.

Original Image

Preprocessed Image

20
40

120 ‘ 60

140 3 0 25 50 75 100 125 150 175

Slika 5: Preprocesirana slika

(Vir: Lasten)

6.8.4.4 Povecanje in/ali zmanjSevanje svetlosti
Povecanje svetlosti izvirno sliko nakljucno osvetli ali zatemni in omrezje ustrezno izpostavi

povecani sliki. Na sliki 6 je primer povecanja svetlosti, kjer je spremenjena slika temnejsa.

43

Augmented Image

Slika 6: ZmanjS$an nivo svetlosti slike

(Vir: Lasten).

6.8.4.5 Brez povecanja

Originalne fotografije, ki jih je posnel simulator Udacity, so edine, ki so bile uporabljene za
ucenje algoritma, ki je bil ucen brez kakrSne koli razsiritve. Po razSiritvah so fotografije
podvrzene predobdelavi za zmanjSanje nezelenih popacenj in izboljSanje atributov slike.
Obrezani so odvecni elementi, kot so pokrov motorja avtomobila in obmocja slike, ki ne
vkljucujejo ceste. Na sliki 5 je izvirna slika obrezana na osi Y od 135 do 160 in od vrednosti 0

do 60. Poleg obrezovanja je bilo opravljenih Se nekaj sprememb za izboljSanje slike.

Slike YUV so bile poslane v omrezje v modelu Nvidia. Zato je bil v tej preiskavi uporabljen
tudi sistem barvnega kodiranja YUV. Za glajenje slike in zmanjSanje Suma je bila uporabljena
Gaussova zameglitev. Kot je razvidno iz predobdelane slike na sliki 5, je bila velikost slike nato

zmanjSana za 66 na 200, da je ustrezala velikosti vhoda v modelu Nvidia.

6.8.5 Model usposabljanja (Model Nvidia)

Pri tem je bil uporabljen model Nvidia, ki je uporaben model za kloniranje vedenja. Arhitektura
modela je bila pridobljena iz publikacije ,,End to End Learning for Self-Driving Car* (Bojarski,
in drugi, 2016).

44

?
["S0meurons)

[100 neurons |

z: 3x3 kernel

3x3 kernel

§ 5x5 kernel

As kernel

/)xﬁ kernel

P A
[Normalization]
——

Output: vehicle control

Fully-connected layer
Fully-connected layer
Fully-connected layer

Convolutional
feature map
64@1x18

Convolutional
feature map
64@3x20

Convolutional
feature map
48@5x22

Convolutional
feature map
36@14x47

Convolutional
feature map
24@31x98

Normalized
input planes
3@66x200

Input planes
3@66x200

Slika 7: Arhitektura CNN

(Vir: https://developer.nvidia.com/blog/deep-learning-self-driving-cars/)

Ker so bili podatki Zze normalizirani, normalizacija pri ustvarjanju modela ni bila potrebna. Prvi
sloj konvolucije prejme normalizirane podatke. Slika 7 prikazuje, da ima prva konvolucijska
plast velikost jedra 5 x 5 in 24 filtrov. Pri velikosti jedra 5 x 5 ima druga konvolucijska plast 36
filtrov. Tretja plast ima jedro velikosti 3 x 3 in 48 filtrov. Pri 64 plasteh in velikosti jedra 3 x 3
sta Cetrta in peta plast enaki. Dolzina koraka jedra med premikanjem po sliki se imenuje
podvzorec. Za pospesitev izracuna so bili prvi trije sloji izvedeni z dolZzino koraka 2 x 2, nato
pa je bila uporabljena aktivacijska funkcija ,,elu* (eksponentna linearna enota). Izbrana je bila
dolzina koraka enega piksla, saj Cetrta in peta raven ne zahtevata izpus¢anja pikslov. Izhod iz
prejsnje konvolucijske plasti prejme raven ,flatten”, ki ga pretvori v eno samo
enodimenzionalno polje. Za izravnalnim slojem so namesSc¢ene Stiri debele plasti s 100, 50, 10

in 1. Zadnji sloj zagotavlja predvideni kot krmiljenja za samovozec¢i avtomobil, medtem ko

imajo prejsnji trije sloji enako aktivacijsko funkcijo kot ,,elu®.

https://developer.nvidia.com/blog/deep-learning-self-driving-cars/

Tabela 6: Sekvencijski model po Nvidia standardih

Model: "sequential”

Layer (type) output Shape Param #
conv2d (Conv2D) (, 31, 98, 24) 1,824
conv2d_1 (Conv2D) (s 14, 47, 36) 21,636
conv2d 2 (Conv2D) (s 5, 22, 48) 43,248
conv2d 3 (Conv2D) (» 1, 18, 64) 76,864
flatten (Flatten) (,» 1152) %]
dense (Dense) (, 1ee) 115,300
dense_1 (Dense) (s 508) 5,050
dense_2 (Dense) (s 18) 510
dense_3 (Dense) (> 1) 11

Total params: 264,443 (1.91 MB)
Trainable params: 264,443 (1.81 MB)
Non-trainable params: @ (9.00 B)

None
(Vir: Lasten).

Model je sekvencijski, kar pomeni, da se vsak sloj linearno navezuje na naslednjega. Model je
sestavljen iz ve¢ konvolucijskih slojev, ki jim sledijo popolnoma povezani (gosti) sloji, kar je

znacilna arhitektura za CNN, ki se uporabljajo pri nalogah prepoznavanja ali razvrs¢anja slik.

Sestavljajo ga Stiri plasti Conv2D, ki postopoma zmanjSujejo prostorske dimenzije vhoda,
hkrati pa povecujejo Stevilo zemljevidov funkcij. Temu sledi plast Flatten, ki pretvori 2D
zemljevide znacilk v 1D vektor, ki se nato prenese skozi vrsto popolnoma povezanih plasti
Dense. Ti gosti sloji postopoma zmanjsujejo razseznost podatkov, kar vodi do enega samega
izhodnega nevrona, kar nakazuje, da je model zasnovan za naloge binarne klasifikacije ali

regresije.

Povzetek modela vsebuje informacije o izhodni obliki in Stevilu parametrov, ki jih je mogoce

trenirati za vsako plast. Skupaj je 264 443 parametri, ki jih je mogoce natrenirati.

6.8.5.1 Usposabljanje in testiranje modelov
Za ucenje smo uporabili ve¢ kot 3751 slik, za testiranje nasega modela pa manj kot polovico

slik. Slika 8 prikazuje stevilo kotov krmiljenja v naboru podatkov za usposabljanje.

46

Training set Validation set

600 175 4
500 150 4
125

400 A
100 -

300 1
75 A

200 1
50 4
100 - 25 4
0- = 0-

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Slika 8: Stevilo kotov krmiljenja v naboru podatkov za usposabljanje (usposabljanje in validacija)

(Vir: Lasten)

Z uporabo Pythonovega modula matplotlib smo izdelali graf, kot je prikazan na sliki 8. Stevilo

krmilnih stopinj v testni zbirki podatkov je prikazano vizualno.

Pri usposabljanju modelov smo uporabili vrednosti 10, 30 in 50 za epohe (epochs),
epohe na_korak (epochs per step) in korake preverjanja (validation_ steps). Rezultati ucenja

so navedeni v poglavju » 6.8.6. Primerjava rezultatov pri razlicnem Stevilu ciklov samoucenja«.

6.8.5.2 Rezultati
Simulacija in konzola s predhodno predvidenim kotom krmiljenja sta prikazani na sliki 9.
Vecina kotov krmiljenja, ki jih je napovedal nas model, je bila to¢na. Vozilo je samostojno

koncalo progo.

elf Driving Car Nanodegree Program
€ self Driving Car Nanodegree P X
. . . -

Slika 9:Samovozeéi avtomobil v simulatorju Udacity.

(Vir: Lasten).

47

6.8.6 Primerjava rezultatov pri razlicnem Stevilu ciklov samoucenja

Postopek usposabljanja modela lahko izvedemo veckrat z razlicnim Stevilom epoh
usposabljanja, da preverimo hipotezo, ki primerja rezultate za razlicno Stevilo ciklov
samoucenja. Za vsako izvedbo bo predstavljeno loc¢eno Stevilo ciklov samoucenja. Ko je teh
ve¢ izvedb koncanih, lahko primerjamo merila uspesnosti (kot sta izguba in natan¢nost), da

preverimo, kako je Stevilo epoh uc¢enja vplivalo na splosno uspesnost modela.

V nasem primeru seznam epochs_list doloca razli¢na Stevila epoh, ki se uporabijo za ucenje, na
primer [10, 30, 50], kar pomeni, da bo model ucen trikrat z 10, 30 in 50 epohami. Seznam,
imenovan histories, je ustvarjen za shranjevanje objektov zgodovine, ki jih je vrnila metoda
model.fit() za vsako izvedbo usposabljanja. Ti objekti zgodovine vsebujejo podrobne
informacije o postopku usposabljanja, vklju¢no z izgubo pri usposabljanju in potrjevanju ter

natancnostjo za vsako epoho.

V zanki for se iterira nad vsako vrednostjo v seznamu epochs_list in za vsako iteracijo se model
usposobi z dolocenim Stevilom epoh. Po vsakem usposabljanju se objekt zgodovine doda na
seznam zgodovine, kar omogoca enostaven dostop in primerjavo rezultatov vseh usposabljanj,

da se oceni vpliv razli¢nega Stevila epoh na uspesnost modela.

Training and Validation Loss for Different Numbers of Epochs

2.3 —— Train Loss (epochs=10)
Val Loss (epochs=10)
—— Train Loss (epochs=30)
—— Val Loss (epochs=30)
2.0 —— Train Loss (epochs=50)
—— Val Loss (epochs=50)
1.5 4
7
g
1.0 1
0.5 1
AN
— g
0.0 A
0 10 20 30 40 50

Epoch

Slika 10: Skupni graf razli¢nih ciklusov ucenja
(Vir: Lastni)
48

Loss

Loss

Training and Validation Loss (epochs=10)

0.18 A

0.16

0.14

0.12

0.10 A

0.08 1

0.06

0.04

— Training Loss
— Validation Loss

Epoch

Slika 11: Graf u¢enja epoch 10
(Vir: Lastni)

Training and Validation Loss (epochs=30)

2.5

2.0

151

1.0 1

0.5

0.0

—— Training Loss
— Validation Loss

10 15 20
Epoch

Slika 12: Graf uéenja epoch 30
(Vir: Lastni)

49

25 30

Training and Validation Loss (epochs=50)

0.116

0.114 4

0.112 A

0.110

Loss
S
—=
N
S

0.108

0.106 - —— Training Loss
Validation Loss

0 10 20 30 40 50
Epoch

Slika 13: Graf u¢enja epoch 50
(Vir: Lastni)

Hipoteza tega poskusa je primerjava rezultatov za razli¢no Stevilo ciklov samoucenja (epoch),
da bi ugotovili, kako Stevilo iteracij usposabljanja vpliva na uspeSnost in sposobnost

posploSevanja modela namenjenega uporabi v avtonomnih vozilih.
Analiza rezultatov:
e Epohe=10:

Model izkazuje stalno zmanjSevanje izgub pri usposabljanju in potrjevanju, kar pomeni, da se
ucinkovito uci iz podatkov. Obstaja dobro ravnovesje med zmanjSanjem izgube pri

usposabljanju in ohranjanjem nizke izgube pri potrjevanju.

To nakazuje, da z 10 epohami model ni pretirano opremljen in je sposoben dobro posplositi na
neznane podatke. Hipoteza, da lahko doloceno Stevilo ciklov usposabljanja zagotovi optimalno

delovanje, je tu podprta, saj model kaze dobro delovanje z minimalnim usposabljanjem.
e Epohe =30:

Model se sprva Se naprej izboljsuje, kot kazejo padajoCe vrednosti izgube, vendar pa se okoli
12. epohe pojavi mocan skok v izgubi pri usposabljanju, ki povzroc¢i nestabilnost. Po tem skoku
se izgube pri ucenju in potrjevanju ponovno stabilizirajo, vendar proces ucenja kaze znake

morebitne nestabilnosti ali obcutljivosti na nekatere vidike podatkov za ucenje.

50

Ta rezultat kaze, da lahko razsiritev stevila ciklov samoucenja na 30 v proces ucenja vnese
nepri¢akovano vedenje ali anomalije. Izbruh lahko pomeni, da je model naletel na tezave z

dolo¢enimi podatki ali hiperparametri, kar je zaCasno vplivalo na izgubo.

Vendar model sCasoma ponovno pridobi stabilnost, kar pomeni, da lahko podaljSanje Stevila
epoh sicer povea moznosti ucenja, vendar lahko privede tudi do nestabilnosti. To delno

podpira hipotezo, saj kaze, da ima lahko ve¢ epoh razli¢ne ucinke na ucenje modela.
e Epohe =50:

Pri 50 epohah izgube pri ucenju in potrjevanju moc¢no nihajo, kar pomeni, da model tezko
vzdrzuje stalno u¢inkovitost. Povecano nihanje, zlasti pri izgubi potrjevanja, kaze, da se model

verjetno preveC prilagaja u¢nim podatkom, saj jih veckrat vidi v Stevilnih epohah.

Ta nihanja izgub kazejo na zmanjSevanje donosnosti povecanja Stevila ciklov samoucenja po
doloceni tocki. Model ne kaZe stalnega izboljSanja, temve¢ postane bolj nestabilen in deluje

nedosledno na podatkih za preverjanje.

Ta rezultat kaze, da lahko preveliko Stevilo epoh Skoduje sposobnosti posploSevanja modela,
kar potrjuje hipotezo, da obstaja optimalno Stevilo ciklov samoucenja, nad katerim se uspesnost

ne izboljsa in se lahko celo poslabsa.
e Zakljucek v povezavi s hipotezo:

Hipoteza je bila primerjati uspesnost pri razlicnem Stevilu ciklov samoucenja in dolociti

optimalno Stevilo za usposabljanje modela. Rezultati podpirajo hipotezo, saj kazejo, da:

e spodnje epohe (10): vodijo do stabilnega in uc¢inkovitega ucenja, kar nakazuje, da bi manjse

Stevilo epoh lahko zadostovalo za optimalno delovanje;

e srednje Stevilo epoh (30): povzrocijo nekaj nestabilnosti, vendar lahko Se vedno privedejo
do uc¢inkovitega ucenja. To pomeni, da lahko modelu koristi zmerno povecanje Stevila epoh,

vendar obstaja tveganje nestabilnosti;

e vecje Stevilo epoh (50): povzrocijo znatno pretirano prilagajanje in nestabilno ucenje, kar
potrjuje, da preveliko Stevilo epoh vodi v zmanjSevanje donosnosti in lahko poslabsa

ucinkovitost modela na nevidnih podatkih.

51

7 RAZPRAVA

Raziskava, predstavljena v tem delu, se osredotoca na primerjavo dveh priljubljenih
simulacijskih platform - CARLA in Udacity - za usposabljanje modelov Ul v aplikacijah AV,
zlasti za zacCetnike. Raziskava ocenjuje tudi ucinkovitost dveh razvojnih okolij, Jupyter
Notebook in Google Colab, za razvoj in testiranje algoritmov AV, hkrati pa optimizira
algoritme samoucenja za aplikacije AV. V poglavju o razpravi bodo obravnavane posledice teh

ugotovitev, izzivi, na katere smo naleteli in morebitna podrocja za prihodnje raziskovanje.

7.1 Vpliv ugotovitev

O prednostih in slabostih simulatorjev CARLA in Udacity za usposabljanje modelov umetne
inteligence v avtonomnih vozilih je mogoce pridobiti veliko informacij. Simulator CARLA kot
zelo bogat s funkcijami in realistiCen simulator zagotavlja stabilno okolje za oblikovanje in
preskusanje modelov umetne inteligence v razli¢nih voznih scenarijih. Za zacetnike pa bi lahko
bila njegova zapletenost in ve¢je zahteve glede obdelave podatkov tezavna. Simulator Udacity
pa, kljub temu da je manj realisti¢en, ponuja bolj dostopno okolje z manj vstopnimi ovirami,

zaradi Cesar je primeren za zacCetnike, ki se Sele spoznavajo z izdelavo AV.

Ugotovitve kazejo, da bi bil za izobrazevalne namene ali zacCetne faze razvoja modela zaradi
svoje preprostosti in enostavne uporabe koristnejsi simulator Udacity. Nasprotno pa je lahko
simulator CARLA primernejsi za napredne uporabnike ali za faze, v katerih sta podrobno

testiranje in realizem klju¢nega pomena.

Kontrast med Google Colabom in beleznico Jupyter v smislu razvojnih okolij pokaze na
kompromise med dostopnostjo in vsestranskostjo. Ker je Jupyter Notebook lokalno okolje,
omogoca uporabnikom vecje moznosti prilagajanja, vendar zahteva lokalno procesorsko moc.
Google Colab pa ponuja brezplacen dostop do zmogljivih grafi¢nih procesorjev v oblaku, ki
lahko mocno izboljSajo razvojni proces — zlasti pri ratunsko zahtevnih dejavnostih, kot je

usposabljanje modelov globokega ucenja.

V delu je bilo ugotovljeno, da bi lahko zacetnikom bolj koristila uporaba storitve Google Colab
zaradi njene dostopnosti in razpolozljivosti racunalniskih virov, ki zmanjSujejo potrebo po
lokalnih visokozmogljivih racunalniSkih napravah. Ko pa razvijalci pridobijo ve¢ izkuSen;,
lahko postaneta prilagodljivost in nadzor, ki ju zagotavlja beleznica Jupyter, bolj dragocena,

zlasti v strokovnih ali raziskovalnih okoljih.
52

7.2 Izzivi in omejitve

Studija je vkljuéevala §tevilne tezave, ki jih je treba upostevati pri prihodnjih raziskavah. Ena
glavnih pomanjkljivosti je bila razpoloZzljivost in obseg naborov podatkov uporabljenih za
usposabljanje in ocenjevanje modelov umetne inteligence. Zanesljivi modeli AV in natan¢na
simulacija voznih okolis¢in v resnicnem svetu so odvisni od realisti¢nih in obseznih zbirk
podatkov. Na posplosljivost ugotovitev bi lahko vplivala odvisnost Studije od majhnih naborov

podatkov.

Dodatno tezavo predstavljajo racunalniski viri, ki so potrebni za izvajanje modelov globokega
ucenja in zahtevnih simulacij, zlasti v okolju CARLA. Raziskovalci in razvijalci, ki nimajo
dostopa do visokozmogljivih racunalnisSkih virov, lahko pri svojem delu naletijo na omejitve

zaradi vse vecjih potreb po grafi¢nih procesorjih in pomnilniskih virih.

Poleg tega so Casovne omejitve omejile Stevilo poskusov in iteracij, ki jih je bilo mogoce izvesti
med raziskavo. Ta omejitev je morda vplivala na zanesljivost rezultatov optimizacije, ki se

nanasajo na algoritme samoucenja.

7.3 Priporocila za prihodnje raziskave

Za temeljitejSo primerjavo bi bilo treba v prihodnjih Studijah razmisliti o raziskavi SirSega
nabora razvojnih okolij in simulacijskih platform. Poleg tega so potrebna bolj realisti¢na, a
hkrati dostopna simulacijska okolja, ki lahko povezejo vrzel med obseznimi zmogljivostmi za

izkuSene razvijalce in uporabnostjo za zacetnike.

Prihodnje raziskave se lahko osredotocijo tudi na oblikovanje in izboljSanje algoritmov za
samoucenje, ki so izdelani posebej za aplikacije AV. Pri¢ujoce delo predlaga idealno Stevilo
iteracij za cikle samoucenja; vendar pa bi lahko z ve¢ raziskavami raziskali prilagodljive
algoritme, ki dinami¢no spreminjajo parametre ucenja kot odziv na povratne informacije in

delovanje v realnem casu.

Razsiritev obsega zbirk podatkov na bolj raznolike scenarije voznje, vremenske razmere in
geografske lokacije bi povecala zanesljivost modelov umetne inteligence, razvitih s temi
simulacijskimi platformami. To ne bi izboljSalo le natan¢nosti in zanesljivosti modelov, temve¢
bi pomagalo tudi pri razvoju sistemov AV, ki so bolj prilagodljivi razlicnim okoljem v

resni¢nem svetu.

53

8 SKLEP

V tem diplomskem delu smo se osredotocili na oceno, kako dobro simulacijski platformi -
CARLA in Udacity - usposabljata modele umetne inteligence za aplikacije AV, zlasti za
uporabnike zacetnike. Namen te Studije je bil tudi oceniti uporabnost dveh razvojnih platform
za testiranje in razvoj algoritmov AV: Jupyter Notebook in Google Colab. Drugi cilj Studije je
bil poiskati najboljSe konfiguracije za algoritme samoucenja v simulacijah AV. Na podlagi
temeljitega pregleda in testiranja ugotavljamo, da so bili cilji, ki smo si jih zastavili na zacetku,

v bistvu dosezeni.

Zacetni cilj je bil najti boljSo simulacijsko platformo med CARLA in Udacity za usposabljanje
zacetnih modelov umetne inteligence. Glede na to analizo ima vsaka platforma edinstvene
prednosti in slabosti. Platforma CARLA je zaradi svoje velike realistiCnosti in Sirokih
zmogljivosti primernejsa za zapletene simulacije in zahtevno testiranje modelov. Vendar zaradi
svoje zapletenosti in visokih zahtev glede obdelave morda ni najboljSa moznost za zacCetnike.
Po drugi strani pa simulator Udacity, ¢eprav manj realistien, ponuja bolj dostopen in intuitiven
vmesnik, zaradi Cesar je boljSa moznost za zacetnike, ki se ucijo osnov AV ustvarjanja. Tako

je bil dosezZen cilj primerjave teh platform in ugotavljanja, ali so primerne za zacetnike ali ne.

Drugi cilj je bil ugotoviti, katero okolje - beleznica Jupyter ali Google Colab - bolje omogoca
ustvarjanje in testiranje algoritmov AV. Studija je pokazala, da je Google Colab zaradi svoje
zasnove v oblaku in lahko dostopnih racunalniskih virov boljSa moznost za zacetnike, zlasti
tiste, ki nimajo dostopa do visoko zmogljive lokalne strojne opreme. Ceprav beleznica Jupyter
Notebook ponuja ve¢ svobode in nadzora, bi bila za zahtevnejSe uporabnike, ki potrebujejo
posebne nastavitve, lahko primernejSa. Tako je bil z ugotavljanjem prednosti in slabosti

posameznih nastavitev dosezen tudi ta cilj.

Tretji cilj je bila optimizacija algoritmov samoucenja za aplikacije AV — natan¢neje ugotoviti,
koliko iteracij ucnih ciklov je idealnih. Raziskava je potrdila, da povecanje Stevila iteracij
poveca ucinkovitost ucnih algoritmov do dolofenega praga, po katerem omejitve virov

povzrocijo zmanjSanje donosnosti. Ta rezultat prispeva k cilju optimizacije ciklov samoucenja

z uravnotezZenjem uporabe raunalniskih virov z u€inkovitostjo ucenja.

Raziskava je temeljila na Stirih osnovnih hipotezah:

54

H1: Udacity Simulator je bolj prijazen za zaCetnike pri treniranju modelov umetne inteligence

za AV kot CARLA pri enostavnih samostojnih voznjah.

Ta hipoteza je bila potrjena. Simulator Udacity se je zaradi preprostejSega vmesnika in manjSih
racunalniskih zahtev izkazal za uporabniku prijaznejSega in dostopnejSega za zacetnike. Model

CARLA je sicer zmogljivejsi, vendar je bolj primeren za napredne uporabnike.
H2: Google Colab ima vecjo podporo in je lazji za zacetnike kot Jupyter Notebook.

Tudi ta hipoteza je bila potrjena. Google Colab je zaradi svoje postavitve v oblaku in
razpolozljivosti zmogljivih raCunalniskih virov bolj prakti¢na izbira za zacetnike, zlasti za tiste,

ki nimajo lokalnih rac¢unalniskih virov.

H3: Povecanje Stevila ponovitev v ciklu samoucenja algoritma v simulaciji AV pri enostavnih

samostojnih voznjah vodi k izboljSanju ucinkovitosti algoritma.

Ta hipoteza je bila delno potrjena. V studiji je bilo ugotovljeno, da se s povecevanjem Stevila
iteracij sicer sprva izboljSa ucinkovitost, vendar obstaja optimalna tocka, po kateri dodatne
iteracije ne povecajo bistveno ucinkovitosti in lahko namesto tega povzro¢ijo neucinkovitost

zaradi omejenih virov.

H4: Jupyter Notebook je ucinkovitejsi za razvoj in testiranje algoritmov umetne inteligence za

AV pri enostavnih samostojnih voznjah v primerjavi z Google Colab.

Ta hipoteza je bila zavrnjena. Ugotovitve kazejo, da ima Google Colab za zacetnike vec
prednosti zaradi infrastrukture v oblaku in enostavne uporabe, zato je primernejsi za zacetne

faze razvoja.

Raziskava je privedla do vec klju¢nih ugotovitev, ki so dragocene tako za zacetnike kot za

izkusene strokovnjake na podrocju razvoja AV:

Primernost platforme: V tem primeru je platforma Udacity zaradi svoje preprostosti primernejSa
za zacetnike, medtem ko je CARLA primernejSa za napredne uporabnike, ki zahtevajo visoko

stopnjo realizma in podrobne simulacije.

Razvojna okolja: Google Colab je ugodnejsi za zacetnike, saj ponuja preprosto uporabo in
zmogljive vire v oblaku, medtem ko beleznica Jupyter zagotavlja ve¢ nadzora in

prilagodljivosti, kar lahko koristi izkusenim uporabnikom.

55

Optimizacija u¢nih algoritmov: Obstaja optimalno Stevilo iteracij za algoritme za samostojno
ucenje, ki uravnotezi racunsko ucinkovitost in uporabo virov. Nad to optimalno tocko se

povecanje ucinkovitosti zmanjSa, kar poudarja pomen upravljanja virov v simulacijah AV.
Na podlagi ugotovitev raziskave so predlagani naslednji predlogi:

Za zacetnike: Priporocljivo je zaCeti s simulatorjem Udacity in okoljem Google Colab. Ti orodji
zagotavljata manj zapleteno in bolj dostopno vstopno tocko v razvoj AV, kar zacetnikom

omogoca, da se osredotoc¢ijo na temeljno ucenje, ne da bi jih preobremenili s tehni¢nimi zapleti.

Za napredne uporabnike: Napredni uporabniki naj razmislijo o prehodu na simulator CARLA
in beleznico Jupyter, ko se njihove spretnosti in potrebe razvijajo. Realisticno okolje v
simulatorju CARLA in prilagodljiva nastavitev Jupytra ponujata robustnejSo platformo za

testiranje zapletenih scenarijev in razvoj naprednih algoritmov.

Optimizacija algoritmov: Nadaljnje raziskave bi morale raziskati prilagodljive algoritme
samoucenja, ki dinamic¢no prilagajajo svoje parametre glede na uspe$nost v realnem casu, kar

zagotavlja optimalno uporabo racunalniSkih virov in povecuje u€inkovitost ucenja.

Razsiritev podatkov: Prihodnje Studije bi morale vkljucevati §irSi nabor podatkovnih nizov, ki
odrazajo razlicne vozne pogoje in okolja. To bo povecalo robustnost in posplosljivost modelov

umetne inteligence usposobljenih s temi simulatorji.

Cilji tega diplomskega dela so bili u¢inkovito dosezeni, ve€ina postavljenih teorij pa je bila
preverjena. Rezultati zagotavljajo pomembne nove informacije o tem, kako dobro delujejo
razvojna okolja in simulacijske platforme za aplikacije AV, zlasti za zaCetnike. Ta raziskava
omogoca bolj premisljeno odlo¢anje na tem podroc¢ju, saj zagotavlja uporabne nasvete, ki
pomagajo tako neizkuSenim kot izkuSenim razvijalcem pri premagovanju izzivov, povezanih z
razvojem AV tehnologije. Prihodnje Studije bi morale temeljiti na teh odkritjih, da bi izboljSale
instrumente in tehnike, ki so na voljo za ustvarjanje avtonomnih vozil, kar bi zagotovilo

nenehne inovacije in napredek v tem hitro razvijajo¢em se sektorju.

56

9 LITERATURA

Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., ... F. De
Souza, A. (2021). Self-driving cars: A survey.

Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., . . . Zieba, K.
(2016). End to End Learning for Self-Driving Cars. arXiv.

Bose, B. K. (2017). Artificial Intelligence Techniques in Smart Grid and Renewable Energy
Systems—Some Example Applications. Proceedings of the IEEE, 2262-2273.

Bostrom, N., & Yudkowsky, E. (2014). The ethics of artificial intelligence. V K. Frankish, &
W. M. Ramsey, The Cambridge Handbook of Artificial Intelligence (str. 316-344).
Cambridge: Cambridge.

Bucar, F. (2012). Rojstvo drzave. Ljubljana: Didakta.

Capparuccia, R., Renato, D., & Marchitto, E. (2007). Integrating support vector machines and
neural networks. Neural Networks, 590-597.

CARNEIRO, T., DA NOBREGA, R. V., NEPOMUCENO, T., BIAN, G.-B., DE
ALBUQUERQUE, V. H., & FILHO, P. P. (2018). Performance Analysis of Google
Colaboratory as a Tool for Accelerating Deep Learning Applications. /[EEE Xplore,
61677-61685.

Chai, T. Y., & Nizam, . (2021). IMPACT OF ARTIFICIAL INTELLIGENCE IN
AUTOMOTIVE INDUSTRIES TRANSFORMATION. International Journal of

Information System and Engineering.

Chen, X. W., & Lin, X. (2014). Big Data Deep Learning: Challenges and Perspectives. /[EEE
Access 2, 514-525.

Chen, Y., Peng, H., & Grizzle, J. (2018). Obstacle Avoidance for Low-Speed Autonomous
Vehicles With Barrier Function. /EEE Transactions on Control Systems Technology,
194-206.

Dosilovi¢, F. K., Bréi¢, M., & Hlupi¢, N. (2018). Explainable artificial intelligence: A survey.
IEEE, 210-215.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An Open

Urban Driving Simulator. Proceedings of Machine Learning.
57

Epic Games. (brez datuma). Pridobljeno iz Unreal Engine 4: https://www.unrealengine.com.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., Vincent, P., & Bengio, S. (2010). Why
Does Unsupervised Pre-training Help Deep Learning? Journal of Machine Learning

Research, 625-660.

Erokhin, S. D. (2019). A review of scientific research on artificial intelligence. Systems of

Signals Generating and Processing in the Field of on Board Communications, 1-4.

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., . . . Dean, J.
(2019). A guide to deep learning in healthcare. Nature Medicine, 24-29.

Farivar, F., Haghighi, M. S., Jolfaei, A., & Alazab, M. (2019). Artificial Intelligence for
Detection, Estimation, and Compensation of Malicious Attacks in Nonlinear Cyber-
Physical Systems and Industrial IoT. IEEE transactions on industrial informatics, 2716-

2725.

Figueiredo, M. C., Rossett, R. J., Braga, R., & Reis, L. P. (2009). An Approach to Simulate
Autonomous Vehicles in Urban Traffic Scenarios. IEEE Xplore, 1-6.

Gupta, M., Upadhyay, V., Kumar, P., & Al-Turjman, F. (2021). Deep Learning Implementation

of Autonomous. Research Square.

Haenlein , M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past,

Present, and Future of Artificial Intelligence. California Management Review, 5-14.

Hao, X., Zhang, G., & Ma, S. (2016). Deep Learning. International Journal of Semantic
Computing, 417-439.

Hofmann, M., Neukart, F., & Béck, T. (2017). Artificial Intelligence and Data Science in the

Automotive Industry. arXiv.
Hsieh, W. (2017). First Order Driving Simulator. Berkeley: University of California.

Hu, Q., Lu, Y., Pan, Z., Gong, Y., & Yang, Z. (2021). Can AI artifacts influence human
cognition? The effects of artificial autonomy in intelligent personal assistants.

International Journal of Information Management, 56.

Huang, B., Huan, Y., Xu, L. D., Zheng, L., & Zou, Z. (2019). Automated trading systems
statistical and machine learning methods and hardware implementation: a survey.

Enterprise Information Systems, 132-144.

58

Hursch, W., & Lopes, C. (1995). Separation of concerns. Boston, Massachusetts: Northeastern

University.

Kaur, P., Taghavi, S., Tian, Z., & Shi, W. (2021). A Survey on Simulators for Testing Self-
Driving Cars. IEEE, 2021 Fourth International Conference on Connected and
Autonomous Driving (MetroCAD), 62-70.

Khalaf, B. A., Mostafa, S. A., Mustapha, A., Mohammed, M. A., & Abduallah, W. M. (2019).
Comprehensive Review of Artificial Intelligence and Statistical Approaches in

Distributed Denial of Service Attack and Defense Methods. IEEE Access, 51691-51713.
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 436-444.

Li, H. X., & Xu, L. D. (2001). Feature space theory — a mathematical foundation for data
mining. Knowledge-Based Systems, 253-257.

Li, J., Cheng, H., Guo, H., & Qiu, S. (2018). Survey on Artificial Intelligence for Vehicles.

Automotive Innovation, 2-14.

Li, Y., Yuan, W., Zhang, S., Yan, W., Shen, Q., Wang, C., & Yang, M. (2024). Choose Your
Simulator Wisely: A Review on Open-source Simulators for Autonomous Driving.

IEEE Transactions on Intelligent Vehicles, 4861 - 4876.

Lu, F., Yamamoto, K., Nomura, L. H., Mizuno, S., Lee, Y., & Thawonmas, R. (2013). Fighting
game artificial intelligence competition platform. IEEE 2nd Global Conference on

Consumer Electronics (GCCE), 320-323.

Lu, Y., Ma, H., Smart, E., & Yu, H. (2021). Real-Time Performance-Focused Localization
Techniques for Autonomous Vehicle: A Review. IEEE Transactions on Intelligent

Transportation Systems, 6082-6100.

Mahesh, B. (2018). Machine Learning Algorithms - A Review. International Journal of Science
and Research (IJSR), 381-386.

Makkar, A., Garg, S., Kumar, N., Hossain, S. M., Ghoneim, A., & Alrashoud, M. (2020). An
Efficient Spam Detection Technique for IoT Devices Using Machine Learning. /EEE

Transactions on Industrial Informatics, 903-912.

Malik, S., Khan, M. A., & El-Sayed, H. (2021). CARLA: Car Learning to Act — An Inside
Out. International Workshop on Smart Communication and Autonomous Driving, 742-

749.
59

Menke, J., Homberg, S., & Koch, O. (2023). Introduction to artificial intelligence and deep

learning using interactive electronic programming notebooks. ARCH Pharm, 1-10.

Ming, Y., Li, Y., Zhang, Z., & Yan, W. (2021). A Survey of Path Planning Algorithms for
Autonomous Vehicles. SAE Int. J. Commer. Veh., 97-109.

Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A.
(2020). IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry.
IEEE Internet of Things Journal, 6305-6324.

Myers, G., Badgett, T., & Sandler, C. (2011). The Art of Software Testing. Hoboken: Wiley
Online Library.

Nasteski, V. (2017). An overview of the supervised machine learning methods. Horizons, 51-

62.

Neglectos. (02. 04 2018). A Preliminary Analysis on the Use of Python Notebooks. Pridobljeno
iz Bitergia: https://bitergia.com/blog/opensource/a-preliminary-analysis-on-the-use-of-

python-notebooks/

Nelson, M. J., & Hoover, A. K. (2020). Notes on Using Google Colaboratory in Al Education.
Association for Computing Machinery, 533—-534.

Parente, P. (2020). parente/nbestimate. Pridobljeno iz GitHub:
https://github.com/parente/nbestimate

Patel, A. H. (2021). Exploiting Adaptation Behavior of an Autonomous Vehicle to Achieve
Fail-Safe Reconfiguration. V K. D. Berns, Commercial Vehicle Technology.
Wiesbaden: Springer Vieweg.

Perez, F., & Granger, B. E. (2007). [Python: A System for Interactive Scientific Computing.
Computing in Science & Engineering, 21-29.

Perkel, J. M. (30. 10 2018). Nature. Pridobljeno iz Why Jupyter is data scientists’ computational
notebook of choice: https://www.nature.com/articles/d41586-018-07196-1

Qela, B., & Mouftah, H. T. (2012). Observe, Learn, and Adapt (OLA)—An Algorithm for
Energy Management in Smart Homes Using Wireless Sensors and Artificial

Intelligence. IEEE Trans. Smart Grid, 2262-2272.

60

Randles, B. M., Pasquetto, I. V., Golshan, M. S., & Borgman, C. L. (2017). Using the Jupyter
Notebook as a Tool for Open Science: An Empirical Study. 2017 ACM/IEEE Joint
Conference on Digital Libraries (JCDL), 1-2.

Rao, Q., & Frtunikj, J. (2018). Deep learning for self-driving cars: chances and challenges.
Association for Computing Machinery, 35-38.

Ravi, D., Wong, C., Deligianni, F., Berthelot, M., Perez, J. A., Lo, B., & Yang, G. Z. (2016).
Deep Learning for Health Informatics. IEEE journal of biomedical and health
informatics, 4-21.

Rosique, F., Navarro, P. J., Fernandez, C., & Padilla, A. (2019). A Systematic Review of

Perception System and Simulators for Autonomous Vehicles Research. Sensors.

Schoner, H. (2018). Simulation in development and testing of autonomous vehicles. V M. R.

Bargende, Internationales Stuttgarter Symposium. Wiesbaden: Springer Vieweg.
Shen, H. (2014). Interactive notebooks: Sharing the code. Nature , 515(7525):151-2.

Shi, Z., Huang, Y., He, Q., Xu , L., Liu, S., Qin, L., . . . Zhao, L. (2007). MSMiner—a
developing platform for OLAP. Decision Support Systems, 2016-2028.

Sun, Z., Bebis, G., & Miller, R. (2006). Monocular Precrash Vehicle Detection: Features and
Classifiers. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019-2034.

Swamy, A. K., & Sarojamma, B. (2020). Bank transaction data modeling by optimized hybrid
machine learning merged with ARIMA. Journal of Management Analytics, 624-648.

Taieb, D. (2018). Thoughtful Data Science: A Programmer's Toolset for Data Analysis and
Artificial Intelligence with Python, Jupyter Notebook, and PixieDust. Packt Publishing.

Tan, L. T., Hu, R. Q., & Hanzo, L. (2019). Twin-Timescale Artificial Intelligence Aided
Mobility-Aware Edge Caching and Computing in Vehicular Networks. [EEE
Transactions on Vehicular Technology, 3086-3099.

Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart
manufacturing: Methods and applications. Journal of Manufacturing Systems, 144-156.

Wilson, G., Aruliah, D., Brown, C., Hong, N., Davis, M., Guy, R., . . . Wilson, P. (2014). Best
Practices for Scientific Computing. PLOS Biology, 1-7.

61

Wu, H., Han, H., Wang, X., & Sun, S. (2020). Research on Artificial Intelligence Enhancing
Internet of Things Security: A Survey. IEEE Access, 153826-153848.

Xie, Y. (10. 09 2018). The First Notebook War. Pridobljeno iz Yihui.org:
https://yihui.org/en/2018/09/notebook-war/

Yogesh, K. D., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... Lal, B. (2021).
Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges,
opportunities, and agenda for research, practice and policy. International Journal of

Information Management, 55.

Zeng, L., Li, L., & Duan, L. (2012). Business intelligence in enterprise computing environment.

Information Technology and Management, 297-310.

Zhang, C. (2020). Research on the Economical Influence of the Difference of Regional
Logistics Developing Level in China. Journal of Industrial Integration and

Management, 205-223.

Zhang, C., Xu, X., & Chen , H. (2020). Theoretical foundations and applications of cyber-
physical systems: a literature review. Library Hi Tech, 95-104.

Zhang, C., & Fu, W. (2021). Optimal Model for Patrols of UAVs in Power Grid under Time

Constraints. International Journal of Performability Engineering, 103-113.

Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its
applications to machine health monitoring. Mechanical Systems and Signal Processing,

213-237.

Zulu, A., & John, S. (2014). A Review of Control Algorithms for Autonomous Quadrotors.
Open Journal of Applied Sciences, 547-556.

62

10 PRILOGE

Vse potrebne kode, ki sem jih naredila za to diplomsko delo in analizo, so vklju€ene in oddane

na USB kljucku.

63

	1 UVOD
	1.1 Opis področja in opredelitev problema
	1.2 Namen, cilji in osnovne trditve
	1.3 Predpostavke in omejitve
	1.4 Uporabljene raziskovalne metode

	2 umetna inteligenca
	2.1 Gonilne sile in tehnologije umetne inteligence
	2.2 Uporaba umetne inteligence v različnih panogah
	2.3 Umetna inteligenca v avtomobilski industriji

	3 SIMULATORJI
	3.1 CARLA (Car Learning to Act) Simulator – odprtokodni simulator za vožnjo v mestu
	3.1.1 Namestitev in konfiguracija

	3.2 Udacity Simulator
	3.2.1 Namestitev in konfiguracija
	3.2.1.1 Ubuntu
	3.2.1.2 Windows

	3.3 Udacity Simulator vs CARLA

	4 Knjižnice in razvojna okolja
	4.1 Jupyter Notebook
	4.2 Google Colab
	4.3 Google Colab vs Jupyter Notebook

	5 Uvod v samoučenje algoritma
	5.1 Strojno učenje
	5.2 Globoko učenje
	5.3 Definicija samoučenja v kontekstu avtonomnih vozil

	6 Algoritmi za SAMOSTOJNO vožnjo
	6.1 Algoritmi zaznavanja
	6.2 Algoritmi za lokalizacijo
	6.3 Algoritmi za načrtovanje
	6.4 Nadzorni algoritmi
	6.5 Algoritmi za izogibanje oviram
	6.6 Varnost in varnostni mehanizmi
	6.7 Algoritmi za simulacijo in testiranje
	6.8 Simulacija samovozečega avtomobila z uporabo globokega učenja
	6.8.1 Konvolucijsko nevronsko omrežje (CNN)
	6.8.2 Zbiranje podatkov
	6.8.3 Obdelava podatkov
	6.8.4 Usposabljanje
	6.8.4.1 Obrnjena slika (flipped image)
	6.8.4.2 Augmentirana slika
	6.8.4.3 Preprocesirana slika
	6.8.4.4 Povečanje in/ali zmanjševanje svetlosti
	6.8.4.5 Brez povečanja

	6.8.5 Model usposabljanja (Model Nvidia)
	6.8.5.1 Usposabljanje in testiranje modelov
	6.8.5.2 Rezultati

	6.8.6 Primerjava rezultatov pri različnem številu ciklov samoučenja

	7 Razprava
	7.1 Vpliv ugotovitev
	7.2 Izzivi in omejitve
	7.3 Priporočila za prihodnje raziskave

	8 Sklep
	9 Literatura
	10 Priloge

