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POVZETEK 

Diplomsko delo primerja učinkovitost dveh priljubljenih simulacijskih platform, CARLA in 

Udacity, s poudarkom na začetnikih na tem področju, z namenom, da bi usposobili modele 

umetne inteligence za aplikacije avtonomnih vozil. Ocenjena je tudi uporabnost Jupyter 

Notebook in Google Colab, dveh znanih programskih okolij, za ustvarjanje in testiranje 

algoritmov za samostojno vožnjo. Glavni cilji naloge so ugotoviti, katera razvojna okolja in 

simulacijska orodja so najboljša za neizkušene razvijalce ter kako optimizirati algoritme 

samoučenja za izboljšanje učinkovitosti in natančnosti modelov umetne inteligence v razmerah 

avtonomne vožnje. 

Rezultati raziskave kažejo, da je bolj realističen, vendar zahtevnejši simulator CARLA 

primernejši za izkušene uporabnike in temeljite simulacije, medtem ko je začetnikom 

prijaznejši simulator Udacity, ki je dostopnejši zaradi preprostejšega vmesnika in manjših 

potreb po obdelavi. Podobno tudi Google Colab novim uporabnikom ponuja okolje, ki je 

enostavno za uporabo in učinkovito z viri, saj z uporabo infrastrukture v oblaku zagotavlja 

zanesljive računalniške vire, ne da bi bilo treba lokalno namestiti visokozmogljivo strojno 

opremo. Po drugi strani pa velja, da je Jupyter Notebook bolj koristen za izkušene razvijalce, 

ki potrebujejo več svobode in nadzora pri vzpostavljanju svojega razvojnega okolja. 

Poleg tega raziskava potrjuje, da povečanje števila iteracij v ciklu algoritma samoučenja do 

določene mere poveča učinkovitost modelov umetne inteligence. Vendar pa po tej točki 

nadaljnje iteracije vodijo k zmanjševanju donosa, saj povečujejo porabo virov, ne da bi prinesle 

občutno izboljšanje učnih rezultatov. Ta opažanja izboljšujejo naše razumevanje kompromisa 

med učinkovitostjo učenja in učinkovitostjo računanja med učenjem modelov AV. 

Glede na vse navedeno diplomsko delo ponuja pronicljive in koristne nasvete, ki bodo tako 

začetnikom kot tudi izkušenim uporabnikom pomagali pri izbiri najboljših orodij in razvojnih 

postopkov za avdiovizualne vsebine. Poleg tega podaja predloge za prihodnje študije, 

namenjene izboljšanju učinkovitosti in odpornosti modelov umetne inteligence v avtonomni 

vožnji. 

 

Ključne besede: avtonomna vozila, umetna inteligenca, CARLA, Udacity Simulator, Jupyter 

Notebook, Python. 

 



 

 

ABSTRACT  

Comparison of Learning Autonomous Driving in CARLA and Udacity Simulators for 

Beginners 

In order to train artificial intelligence models for autonomous vehicle applications, this thesis 

compares the performance of two popular simulation platforms, CARLA and Udacity, with a 

focus on beginners in the field. This study also evaluates the usefulness of Jupyter Notebook 

and Google Colab, two well-known software environments, for creating and testing self-driving 

algorithms. The main objectives of this study are to identify which development environments 

and simulation tools are best suited for inexperienced developers, and how to optimise self-

learning algorithms to improve the performance and accuracy of UI models in autonomous 

driving situations. 

The results of the study show that the more realistic but more complex CARLA simulator is 

more suitable for experienced users and in-depth simulations, while the more beginner-friendly 

Udacity simulator is more accessible due to its simpler interface and lower processing 

requirements. Similarly, Google Colab offers new users an easy-to-use and resource-efficient 

environment, using cloud infrastructure to provide reliable computing resources without the 

need to install high-performance hardware locally. On the other hand, Jupyter Notebook is 

considered more useful for experienced developers who need more freedom and control in 

setting up their development environment. 

In addition, the study confirms that increasing the number of iterations in a self-learning 

algorithm cycle increases the performance of AI models to a certain extent. However, beyond 

this point, further iterations lead to diminishing returns, as they increase resource consumption 

without significantly improving learning outcomes. These observations improve our 

understanding of the trade-off between learning efficiency and computational efficiency during 

the learning of AV models. 

In view of all the above, the thesis offers insightful and useful advice that will help both 

beginners and experienced users to choose the best tools and development processes for 

audiovisual content. Furthermore, it provides suggestions for future studies aimed at improving 

the performance and resilience of AI models in autonomous driving. 

Keywords: autonomous vehicles, artificial intelligence, CARLA, Udacity Simulator, Jupyter 

Notebook, Python.  
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1 UVOD 

Hiter napredek na področju tehnologij avtonomnih vozil (AV) in strojnega učenja je odprl 

številne možnosti za raziskave in razvoj. Namen tega diplomskega dela je prispevati k temu 

rastočemu področju s poudarkom na posebnih hipotezah povezanih s simulacijami AV in okolji 

za razvoj algoritmov.  

Motivacija tega diplomskega dela je zagotoviti vpogled, ki bo začetnikom v pomoč pri 

premagovanju zapletenosti razvoja in simulacije AV. Ugotovitve bodo prispevale k širšemu 

razumevanju simulacijskih platform, okolij za razvoj algoritmov in tehnik optimizacije pri 

raziskavah AV. 

1.1 Opis področja in opredelitev problema 

Avtonomna vozila vključujejo samovozeče avtomobile in tehnologije, ki vozilom omogočajo 

samostojno delovanje. To interdisciplinarno področje združuje strojno učenje, umetno 

inteligenco, računalniški vid, senzorje in robotiko ter ustvarja sisteme, ki zaznavajo okolico, 

sprejemajo odločitve in nadzorujejo gibanje vozila. Ključni izzivi vključujejo realistično 

simulacijo za urjenje modelov umetne inteligence v različnih voznih razmerah ter ustvarjanje 

robustnih, uporabniku prijaznih okolij za hitro izdelavo prototipov in testiranje algoritmov AV. 

Problemi, ki jih obravnava to diplomsko delo, so naslednji: 

• Izbira simulacijske platforme 

Izbira simulacijske platforme za usposabljanje modelov umetne inteligence za začetnike. 

Predvideva se, da je CARLA, simulator visoke verodostojnosti, zaradi svojega realističnega 

okolja in obsežnih funkcij učinkovitejši od simulatorja Udacity, vendar bolj kompliciran in 

zahtevnejši. Razumevanje optimalne platforme je ključno za začetnike, ki potrebujejo 

zanesljiva in dostopna orodja za razvoj svojih modelov. 

• Razvojno okolje za algoritme  

Primerjava učinkovitosti Jupyter Notebook in Google Colab za razvoj in testiranje AV 

algoritmov. Glede na njuno razširjeno uporabo v skupnosti strojnega učenja je bistveno 

ugotoviti, katera platforma bolje podpira začetnike pri pisanju, testiranju in odpravljanju napak 

v kodi. 
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• Optimizacija algoritmov za samostojno učenje  

Ugotavljanje optimalnega števila zagonov za cikle algoritmov samoučenja v simulacijah AV. 

To vključuje določitev ravnovesja med računalniškimi viri in učinkovitostjo učenja, kar je 

ključnega pomena za začetnike, ki morajo v okviru omejenih časovnih in računalniških 

proračunov povečati svoje rezultate. 

1.2 Namen, cilji in osnovne trditve 

Namen tega diplomskega dela je opredeliti najučinkovitejša orodja in metode za začetnike na 

področju razvoja AV. Z vrednotenjem različnih simulacijskih platform, razvojnih okolij in 

optimizacijskih tehnik je namen tega diplomskega dela je zagotoviti praktična spoznanja in 

smernice, ki lahko novim razvijalcem/inženirjem olajšajo vstop na področje AV.  

Diplomsko delo se bo osredotočilo na tri glavne cilje:  

(1) primerjava programa CARLA in simulatorja Udacity, da bi določili učinkovitejšo 

platformo za učenje modelov umetne inteligence za začetnike,  

(2) vrednotenje Jupyter Notebook in Google Colab, da bi določili boljše okolje za razvoj in 

testiranje algoritmov AV ter  

(3) določitev optimalnega števila zagonov za cikle algoritmov za samoučenje v simulacijah 

AV.  

Osnovne trditve, ki jih je treba raziskati, vključujejo hipoteze, da je program CARLA boljši od 

simulatorja Udacity za usposabljanje modelov, da je beležnica Jupyter za razvoj algoritmov 

učinkovitejša od programa Google Colab in da obstaja optimalno število iteracij za algoritme 

samoučenja, ki uravnotežijo učinkovitost in uporabo virov. 

V tem diplomskem delu smo postavili naslednje hipoteze: 

• H1: Udacity Simulator je bolj prijazen za začetnike pri treniranju modelov umetne 

inteligence za AV kot CARLA pri enostavnih samostojnih vožnjah. 

• H2: Google Colab ima večjo podporo in je lažji za začetnike kot Jupyter Notebook. 

• H3: Povečanje števila ponovitev v ciklu samoučenja algoritma v simulaciji AV pri 

enostavnih samostojnih vožnjah vodi k izboljšanju učinkovitosti algoritma. 
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• H4: Jupyter Notebook je učinkovitejši za razvoj in testiranje algoritmov umetne inteligence 

za AV pri enostavnih samostojnih vožnjah v primerjavi z Google Colab za začetnike. 

1.3 Predpostavke in omejitve 

To diplomsko delo temelji na ključnih predpostavkah: da bosta CARLA in simulator Udacity 

dostopna in delujoča ter da bosta Jupyter in Google Colab ostala stabilna za dosledno 

primerjavo. Predpostavlja tudi, da bodo podatkovne zbirke za usposabljanje in testiranje 

algoritmov reprezentativne za scenarije iz resničnega sveta. 

Vendar se raziskava sooča z omejitvami, ki lahko vplivajo na njene rezultate. Razpoložljivost 

in velikost naborov podatkov lahko vplivata na celovitost simulacij in testiranja algoritmov. 

Omejena ustrezna literatura bi lahko omejila teoretično raziskovanje. Časovne omejitve 

zahtevajo zaključek v določenem obdobju, kar omejuje število poskusov. Omejitve virov, 

vključno z računalniško močjo in pomnilnikom, lahko omejijo obseg in zapletenost simulacij 

in izvajanje algoritmov. Nazadnje je lahko velikost vzorca za testiranje Jupyter Notebook in 

Google Colab omejena s časom in viri, kar vpliva na širino primerjalne analize. 

1.4 Uporabljene raziskovalne metode 

Diplomsko delo uporablja teoretično analizo in aplikativno raziskavo, da bi odgovorilo na 

zastavljena vprašanja. Prvi del obsega teoretično ozadje, ki raziskuje ključne koncepte, modele 

in metode pomembne za simulacijo in razvoj AV. Ta del vključuje pregled literature o 

simulacijskih platformah, razvojnih okoljih in tehnikah optimizacije za samoučenje AV. 

Aplikativna raziskava vključuje podrobne analize primerov, diagnostiko in predlagane posege. 

V primerjalni analizi sta ocenjena simulator CARLA in simulator Udacity za usposabljanje 

modelov AV na podlagi meril, kot je uporabnost. Eksperimentalno testiranje primerja Jupyter 

Notebook in Google Colab s praktičnimi primeri, pri čemer se osredotoča na uporabnost, 

funkcionalnost in zmogljivost. Optimizacijske študije določajo optimalno število zagonov za 

algoritme za samostojno učenje, pri čemer je treba uravnotežiti učinkovitost učenja in 

računalniške vire. Praktični prikazi potrjujejo ugotovitve s scenariji iz resničnega sveta in 

ponujajo konkretne primere, ki podpirajo predlagane hipoteze. 
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2 UMETNA INTELIGENCA 

Umetna inteligenca (UI) je področje, ki proučuje, kako omogočiti računalnikom izvajanje 

inteligentnih nalog, ki jih je v preteklosti lahko izvajal le človek (Huang, Huan, Xu, Zheng, & 

Zou, 2019). 

Razvoj se je začel že več kot pred 70 leti. Začel se je leta 1943 z modelom umetnega nevrona, 

kar je privedlo do uradne predstavitve UI na konferenci v Dartmouthu leta 1956. V šestdesetih 

letih prejšnjega stoletja je zanimanje zanjo upadlo, vendar je v sedemdesetih letih prejšnjega 

stoletja z algoritmi povratnega širjenja in izboljšano računalniško močjo ponovno napredovala. 

Osemdeseta leta so prinesla splošno priznanje nevronskih mrež ter napredek na področju strojne 

opreme in interneta. V 21. stoletju se je uporaba UI razširila z mobilnim internetom, vrhunec 

pa je dosegla leta 2012 z globokim učenjem, ki je bistveno izboljšalo tehnologije prepoznavanja 

govora in vida (Zeng, Li , & Duan, 2012). 

Umetna inteligenca se v zadnjih letih hitro razvija, zaradi česar so številna podjetja in 

organizacije optimistične, da jim lahko ta tehnologija pomaga pri reševanju številnih težav, ki 

so se do zdaj izkazale za nerešljive (Yogesh, in drugi, 2021). Zato naj bi obstajale neprimerljive 

priložnosti za številna področja uporabe in domene, zlasti sposobnost prepoznavanja vzorcev 

in korelacij v ogromnih količinah podatkov na ravni kompleksnosti, ki je za človeka 

nedoumljiva (Hu, Lu, Pan, Gong, & Yang, 2021).  

Postala je vroča točka za znanstvene in tehnološke študije; velika podjetja, kot so Google, 

Microsoft in IBM, se posvečajo UI in jo uporabljajo na vse več področjih (Shi, in drugi, 2007). 

2.1 Gonilne sile in tehnologije umetne inteligence 

• Big Data – veliki podatki so bistveni za UI, saj znatno povečujejo stopnjo prepoznavanja in 

natančnost. Eksponentna rast podatkov, ki jo spodbuja internet stvari, zagotavlja obsežne, 

visoko-dimenzionalne podatkovne nize, potrebne za napreden razvoj UI (Chen & Lin, 

2014). 

• Algoritmi – tradicionalne metode prepoznavanja vzorcev so bile omejene z abstraktnostjo 

in natančnostjo. Algoritmi strojnega učenja, kot so nevronske mreže, so se zgledovali po 

človeškem učenju in lahko samodejno prepoznavajo vzorce v velikih zbirkah podatkov. Ti 

algoritmi omogočajo napredek v različnih aplikacijah umetne inteligence, vključno s 
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prepoznavanjem govora in slik (Zhang & Fu, Optimal Model for Patrols of UAVs in Power 

Grid under Time Constraints, 2021). 

• Strojno učenje – izboljšuje zmogljivost z algoritmi, ki temeljijo na podatkih, in rešuje 

težave, kot so napovedovanje, grozdenje, razvrščanje in zmanjševanje razsežnosti. 

Vključuje nadzorovano učenje (npr. SVM in regresija), nenadzorovano učenje (npr. k-

clustering in PCA), delno nadzorovano učenje (mešanica označenih in neoznačenih 

podatkov) in okrepljeno učenje (učenje z nagradami in dejanji) (Erhan, in drugi, 2010; Bose, 

2017),. 

• Obdelava naravnega jezika (NLP – angl. Natural Language Processing) – NLP omogoča 

računalnikom, da razumejo in obdelujejo človeški jezik. Vključuje naloge, kot so slovnična 

in semantična analiza, iskanje besedil, strojno prevajanje in pogovorni sistemi, ki 

računalnikom omogočajo učinkovito razumevanje in ustvarjanje človeškega jezika (Zhang, 

Xu, & Chen , Theoretical foundations and applications of cyber-physical systems: a 

literature review, 2020). 

• Strojna oprema – globoko učenje (angl. Deep Learning), podmnožica strojnega učenja, 

temelji na zmogljivi strojni opremi, kot so grafični procesorji. Grafični procesorji NVIDIA 

pospešujejo globinsko učenje z obsežnimi vzporednimi izračuni, kar v primerjavi s 

klasičnimi procesorji znatno pospeši postopke usposabljanja (Makkar, in drugi, 2020; Zhao, 

in drugi, 2019). 

• Računalniški vid – računalniški vid omogoča računalnikom, da interpretirajo in analizirajo 

vizualne informacije. Tehnike, kot so globoko učenje in konvolucijske nevronske mreže 

(CNN), se uporabljajo za naloge, kot je prepoznavanje obrazov in slik. Napredni modeli, 

kot sta Faster R-CNN in YOLO, ponujajo visoko natančnost in hitrost za analizo slik v 

realnem času in semantično segmentacijo (Tan, Hu, & Hanzo, 2019). 

2.2 Uporaba umetne inteligence v različnih panogah 

• Avtomobilska industrija – avtonomna vožnja je primer integracije umetne inteligence v 

avtomobilsko industrijo, ki uporablja senzorje in algoritme umetne inteligence za 

optimizacijo navigacije vozila (Li & Xu, 2001). Kitajska na tem področju napreduje 

vzporedno z razvojem v Evropi in ZDA. Pomembna mejnika sta Googlov prvi prototip 
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avtomobila brez voznika iz leta 2014 in Audijeve izboljšave UI iz leta 2017 (Došilović, 

Brčić, & Hlupić, 2018; Wang, Ma, Zhang, Gao, & Wu, 2018). 

• Finančni trgi (»Trading«) – UI spreminja finance, saj se uporablja pri nadzoru tveganja, 

svetovanju, napovedovanju in bonitetnem ocenjevanju (Wu, Han, Wang, & Sun, 2020). 

Strojno učenje pomaga upravljati finančna tveganja, slediti potrebam strank in optimizirati 

naložbene strategije. Podjetja, kot je Alpaca, uporabljajo UI za učinkovito analizo grafov 

forex trgovanja (Khalaf, Mostafa, Mustapha, Mohammed, & Abduallah, 2019). 

• Zdravstvo – UI pomaga pri medicinski diagnostiki, razvoju zdravil in odkrivanju raka 

(Ravì, in drugi, 2016). IBM-ov Watson na primer uporablja obsežne zbirke medicinskih 

podatkov za zagotavljanje natančnih diagnoz in zdravstvene pomoči (Esteva, in drugi, 

2019). 

• Trgovina na drobno – UI povečuje učinkovitost maloprodaje s tehnologijami, kot je "Just 

Walk Out" podjetja AmazonGo, ki uporablja senzorje in računalniški vid za upravljanje 

zalog in racionalizacijo nakupovalne izkušnje (Lu, in drugi, 2013). Umetna inteligenca 

izboljšuje tudi spletno prodajo in upravljanje zalog s priporočilnimi sistemi (Erokhin, 2019). 

• Medijska industrija – platforme za ustvarjanje vsebin, ki jih poganja UI, hitro pripravljajo 

članke in upravljajo komunikacijo blagovnih znamk (Misra, in drugi, 2020). Ti sistemi 

analizirajo trende in javno mnenje ter tako učinkovito ustvarjajo in razširjajo vsebine 

(Haenlein & Kaplan, 2019). 

• Pametna plačila – UI omogoča inovativne načine plačevanja, kot sta prepoznavanje glasu 

in obraza, kar zmanjšuje potrebo po fizičnih denarnicah (Farivar, Haghighi, Jolfaei, & 

Alazab, 2019). Tehnologije, kot je prepoznavanje obraza podjetja Alipay, izboljšujejo 

hitrost in varnost transakcij ( Swamy & Sarojamma, 2020). 

• Pametni domovi – sistemi pametnih domov združujejo različne gospodinjske naprave za 

nemoteno upravljanje in večje udobje. Glasovni pomočniki, kot so pametni zvočniki, imajo 

ključno vlogo pri upravljanju teh sistemov z glasovnimi ukazi, zaradi česar so pametni 

domovi uporabniku prijaznejši (Qela & Mouftah, 2012). 

2.3 Umetna inteligenca v avtomobilski industriji 

Avtomobilski sektor doživlja pomembne spremembe zaradi UI. Ko se govori o UI v povezavi 

z vozili, jo ljudje pogosto takoj povežejo s samovozečimi avtomobili, pri tem pa spregledajo, 
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da ima UI v resnici veliko globlji in širši vpliv na osnove avtomobilskega sektorja (Chai & 

Nizam, 2021).  

Osnovna opredelitev AV pove, da gre za osebno vozilo, ki deluje samostojno brez človeške 

pomoči. AV, znana tudi kot samodejno vodena vozila, avtomobili brez voznika, vozila z 

avtopilotom ali vozila naslednje generacije, poganjajo avtomatizirani sistemi, ki lahko 

spremenijo prometni sistem z zmanjšanjem emisij in prometa ter s tem prihranijo gorivo, 

starejšim in invalidom omogočijo mobilnost ter s preprečevanjem nesreč preprečijo trke s 

smrtnim izidom. Standard SAE J3016 Združenja avtomobilskih inženirjev opredeljuje 6 ravni 

AV (Chai & Nizam, 2021). 

Stopnja 0 je brez avtomatizacije in zahteva simulacije prometa in senzorskih sistemov. Stopnja 

1 vključuje nadzor krmiljenja ali pospeševanja ter dodaja simulacije dinamike vozila in 

ultrazvočnih senzorjev. Stopnja 2 vključuje tako krmiljenje kot pospeševanje z dodatnim 

preskušanjem nadzora voznika in vmesnikov človek-stroj. Raven 3 omogoča pogojno 

avtonomno vožnjo in zahteva simulacije prometne infrastrukture in dinamičnih predmetov. 

Raven 4 vključuje visoko stopnjo avtomatizacije pod posebnimi pogoji, pri čemer so potrebne 

simulacije vremena, lidarja, kamere, radarja in kartiranja. Raven 5 pomeni popolno 

avtomatizacijo v vseh pogojih (Kaur, Taghavi, Tian, & Shi, 2021). 

Glavni cilj AV je opravljati številne naloge, ki jih človeški voznik ne more opravljati, na primer 

ohranjanje zbranosti med utrujenostjo ali spanjem in natančnejše načrtovanje potovanj (Chai & 

Nizam, 2021).  

Algoritmi, kot so globoke nevronske mreže, so zasnovani tako, da posnemajo načela možganov 

in se usposabljajo na obsežnih naborih podatkov za izvajanje različnih funkcij. Da bi omogočili 

inteligentno odločanje, inteligentni avtomobili združujejo tehnike umetne inteligence, kot so 

zaznavanje okolja, izdelava zemljevidov in načrtovanje poti z večplastnimi pomožnimi voznimi 

storitvami in drugimi funkcijami. Osredotoča se na to, kako se UI, strojno učenje in 

avtomatizirano krmiljenje uporabljajo v avtomobilih (Li, Cheng, Guo, & Qiu, 2018). 

Potreba po inteligentnih avtomobilih zaradi gospodarskega razvoja hitro narašča. Skoraj vse 

države se poleg stalnega in hitrega povečevanja števila lastnikov vozil soočajo z resnimi 

težavami povezanimi z varnostjo v cestnem prometu, onesnaževanjem okolja in prometnimi 

zastoji. Med tem se letno število prometnih nesreč s smrtnim izidom povečuje, pri čemer večino 

teh nesreč povzročijo človeške napake. Predvideva se, da se bo število prometnih nesreč s 

smrtnim izidom povečalo, saj se bo število lastnikov avtomobilov še naprej povečevalo. Z 
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uporabo najsodobnejših metod UI lahko rešimo zgoraj opisane težave (Li, Cheng, Guo, & Qiu, 

2018). 

Poleg tehnoloških težav so med glavnimi ovirami za široko uporabo AV tudi spori glede 

odgovornosti. Čas, potreben za preusmeritev trenutnega voznega parka iz neavtonomnega v 

avtonomni sistem, odpor potrošnikov do predaje nadzora nad vozili, zaskrbljenost potrošnikov 

glede varnosti avtomobilov brez voznika, izvajanje pravnih okvirov in vladnih predpisov za 

avtomobile brez voznika, zaskrbljenost zaradi izgube delovnih mest v industriji cestnega 

prometa zaradi vožnje ter tveganje večje suburbanizacije zaradi lažje in hitrejše vožnje brez 

ustreznih javnih politik za preprečevanje širjenja mest (Li, Cheng, Guo, & Qiu, 2018). 

Sedanja revolucija v informacijski tehnologiji spreminja zasnovo avtomobilov; tehnologija 

inteligentnih vozil spreminja vedenje ljudi pri vožnji, hkrati pa povečuje prometno varnost, 

zmanjšuje emisije in varčuje z energijo. To na novo opredeljuje načrtovanje prometa v občinah. 

Prihodnji inteligentni avtomobili bodo osredotočeni na energetsko učinkovitost, ohranjanje 

okolja, inteligenco, personalizacijo, varnost in udobje. Rast vgrajenih sistemov 

komunikacijskih tehnologij in zaznavanja bodo pomembni dejavniki napredka inteligentnih 

avtomobilov. Trenutno je asistenčna vožnja še vedno v ospredju razvoja tehnologije 

inteligentnih vozil. Čeprav bo trajalo nekaj časa, da bo dosegla najvišjo raven polavtomatske in 

popolnoma samodejne faze, bo tehnologija inteligentnih vozil hitro rasla in sčasoma povečala 

priljubljenost inteligentnih avtomobilov zaradi povečevanja inteligentne tehnologije, 

oblikovanja ustreznih zakonov in predpisov ter sprejemanja javnosti (Li, Cheng, Guo, & Qiu, 

2018). 
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3 SIMULATORJI 

Da bi samovozeče avtomobile usposobili za obvladovanje različnih pogojev, s katerimi se bodo 

verjetno srečali na javnih cestah, je nujno obsežno in strogo testiranje. Na javnih cestah je 

fizično testiranje tvegano, drago in ga običajno ni mogoče ponoviti. Za testiranje programske 

opreme za samovozeče avtomobile je na voljo veliko simulatorjev, ki imajo svoje prednosti in 

slabosti (Kaur, Taghavi, Tian, & Shi, 2021). 

Najbolj realističen simulator je tisti, ki se najbolj približa resničnosti. To pa pomeni, da mora 

biti izredno natančen, ko gre za izračune na nižji ravni, kot je fizika avtomobila, in izredno 

celovit, ko gre za 3D virtualno okolje. Zato moramo najti ravnovesje med pristnostjo 3D prizora 

in preprostostjo dinamike vozila (Figueiredo, Rossett, Braga, & Reis, 2009). 

Težava pri simulacijskem testiranju je, da je njegova učinkovitost odvisna od kakovosti 

uporabljenega simulatorja in stopnje, do katere simulirane okoliščine natančno odražajo 

dejanski svet (Kaur, Taghavi, Tian, & Shi, 2021). 

3.1  CARLA (Car Learning to Act) Simulator – odprtokodni simulator za 

vožnjo v mestu 

Simulator CARLA je bil od samega začetka razvit, da bi podpiral usposabljanje, izdelavo 

prototipov in potrjevanje modelov avtonomne vožnje, vključno z zaznavanjem in nadzorom. 

Edinstveno je, da je vsebina mestnih okolij, ki jo ponuja CARLA, tudi brezplačna. Vsebino je 

od začetka ustvarila posebna ekipa digitalnih umetnikov, ki so bili zaposleni v ta namen. 

Vključuje urbane načrte, številne modele vozil, stavbe, pešce, ulične znake itd. Simulacijska 

platforma podpira prilagodljivo nastavitev sklopov senzorjev in zagotavlja signale, ki jih je 

mogoče uporabiti za urjenje strategij vožnje, kot so koordinate GPS, hitrost, pospešek ter 

podrobni podatki o trkih in drugih prekrških (Dosovitskiy, Ros, Codevilla, Lopez, & Koltun, 

2017). Določiti je mogoče številne okoljske pogoje, vključno z vremenom in dnevnim časom. 

Številni okoljski pogoji so prikazani na sliki 1. 

Za prilagodljivost in realističnost grafike in fizikalnega modeliranja je bila razvita aplikacija 

CARLA. V pogonu Unreal Engine 4 je izveden kot odprtokodni sloj (Epic Games, brez 

datuma), ki omogoča razširitve skupnosti v prihodnosti. Pogon ponuja sodobno kakovost 

upodabljanja, realistično fiziko, temeljno razmišljanje NPC in mrežo združljivih vtičnikov. 

Pogon lahko brezplačno uporabljamo v nekomercialne namene. CARLA je simulacijski sistem 
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strežnik-odjemalec, kjer strežnik izvaja simulacijo in upodablja prizor, medtem ko client – API 

v Python upravlja interakcije prek vtičnic. Odjemalec strežniku pošilja ukaze (krmiljenje, 

pospeševanje, zaviranje) in meta ukaze (ponastavitev, spreminjanje nastavitev okolja, 

spreminjanje senzorjev). Okolje vključuje podrobne 3D-modele statičnih in dinamičnih 

predmetov, pri čemer je poudarek na uravnoteženju vizualne kakovosti in hitrosti upodabljanja 

z učinkovitimi geometrijskimi modeli in teksturami (Dosovitskiy, Ros, Codevilla, Lopez, & 

Koltun, 2017). 

Knjižnica digitalnih vsebin vključuje štirideset vrst stavb, šestnajst modelov vozil in petdeset 

modelov pešcev. Urbana okolja v sistemu CARLA so ustvarjena z risanjem cest in pločnikov, 

ročnim postavljanjem statičnih objektov (kot so stavbe in prometni znaki) ter določanjem 

lokacij dinamičnih objektov. CARLA vsebuje osem mest, vsako z ne- in večplastnimi 

zemljevidi. Podpira tudi realistične ne-igralske akterje, saj uporabnikom omogoča nastavljanje 

kinematičnih parametrov in izvajanje krmilnikov za obnašanje vozil, vključno s sledenjem 

voznemu pasu in odločanjem v križiščih. Vozila in pešci lahko zaznajo in se izogibajo drug 

drugemu, uporabniki pa lahko vključijo napredne krmilnike za vozila (Malik, Khan, & El-

Sayed, 2021).  

Tabela 1: Opis vseh zemljevidov mest brez plasti, ki so na voljo v simulatorju CARLA 

Mesto Značilnosti. 

Mesto – 01 Osnovni načrt mesta s križišči v obliki črke "T". 

Mesto – 02 Podobno mestu 01, vendar manjše. 

Mesto – 03 Najbolj zapleteno mesto s petpasovnim križiščem, krožiščem, 

neravninami, predorom in drugimi elementi. 

Mesto – 04 Neskončna zanka z avtocesto in majhnim mestom. 

Mesto – 05 Mesto s kvadratno mrežo, križiščem in mostom ter več voznimi 

pasovi v vsako smer. 

Mesto – 06 Dolge avtoceste z veliko vhodi in izhodi z avtoceste. 

Mesto – 07 Podeželsko okolje z ozkimi cestami, skednji in skoraj nobenim 

semaforjem. 

Mesto – 10 Mestno okolje z različnimi okolji in bolj realističnimi teksturami. 

Vir: (Lastni vir) 
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Slika 1: Ilustracija zemljevidov brez plasti v simulatorju CARLA 

Vir: (Lastni vir) 

3.1.1 Namestitev in konfiguracija 

CARLA je prenosna in jo je mogoče namestiti v operacijska sistema Linux in Windows, saj 

deluje v pogonu Unreal Engine 4. Za optimalno delovanje zahteva posebne specifikacije strojne 

in programske opreme, čeprav lahko deluje tudi na nižjih specifikacijah z manjšo zmogljivostjo. 

Program CARLA lahko namestimo tako, da ga sestavimo iz izvorne kode ali z uporabo 

enostavnejše namestitve paketa, ki je na voljo v repozitoriju za izdajo, ki vključuje vse izdaje 

in digitalna sredstva. Po namestitvi lahko sistem CARLA deluje v dveh načinih: Samostojni 

način in Strežniški način. Koraki so opisani spodaj (Malik, Khan, & El-Sayed, 2021). 

Postopek: 

1. # Kloniranje repozitorija CARLA iz GitHuba 
2.  git clone https://github.com/carla-simulator/carla cd carla 

Gradnja programa CARLA iz izvorne kode (opcijsko): 

1. # Poskrbimo, da smo v direktoriju Carla 
2.  make PythonAPI 
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Namestitev odvisnosti za Python API: 

1. pip install - r PythonAPI/Carla/dist/requirements.txt 

Zagon sistema CARLA v samostojnem načinu: 

1. # Navigacija v imenik CARLA 
2. cd Carla 
3.  # Zagon samostojnega načina 
4. ./CarlaUE4.sh 

Po mestu se premikamo s tipkovnico: Za vožnjo in raziskovanje simulacijskega okolja 

uporabljamo tipkovnico (na primer puščične tipke ali WASD). 

Prilagodimo lahko nastavitve za CARLA: 

1. nano CarlaSettings.ini 

Zagon sistema CARLA v strežniškem načinu: 

 1. # Namestimo odvisnosti odjemalca Python 
 2. pip install -r PythonClient/requirements.txt 
 3.   
 4. # Zagon strežnika CARLA 
 5. ./CarlaUE4.sh -carla-server 
 6.   
 7. # Zaženemo skripto primera odjemalca 
 8. # Navigiramo v direktorij PythonClient 
 9. cd PythonClient  
10. # Zaženemo skripto primera odjemalca 
11. python example.py 

Tabela 2: Specifikacije strojne in programske opreme za CARLA 

Zahteve Strojna in programska oprema Upoštevani stroški 

Sistemske zahteve CARLA lahko deluje v katerem 

koli 64-bitnem operacijskem 

sistemu 

Linux – brezplačno 

Windows – 140 €–200  

€/licenca 

macOS – stroški so 

samo za mac 

računalnike 

Ustrezen grafični procesor Strežnik zahteva vsaj 6 GB 

grafičnega procesorja, čeprav je 

priporočljiv 8 GB grafični 

procesor 

Približno 100 € za 8 GB 

grafični procesor 
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Prostor na disku CARLA potrebuje približno 20 

GB prostora 

90 – 150 € (16 GB + 4 

GB ali 2 x 8 GB) 

Python CARLA za pisanje skript 

podpira program Python 3.5.x in 

Python 3.6.x 

Brezplačno 

Python module Modula Pygame za ustvarjanje 

grafike neposredno s Pythonom 

in Numpy za odlično računanje 

Brezplačno 

Porti TCP Zahtevana sta porta 2000 in 

2001 

Brezplačno 

Ogrodje Unreal CARLA je open-source 

in je brezplačna 

Ubuntu Windows Docker Ker so vse te stvari 

vključene v računalnik, 

bo edini strošek 

odvisen od tega, ali bo 

potrebna nadgradnja. 

Zato je edini pogojni 

strošek licenca za 

Windows. 

Ubuntu 16.04 ali 

18.04 

Windows 7 ali 8 Docker 

Grafični gonilniki 

NVIDIA >361.93 

Update Graphics 

Drivers 

NVIDIA-Docker2 

OpenGL 3.3 Visual Studio NVIDIA Driver >= 

390 

Dodatne odvisnosti OpenGL 3.3 ali več 

ali DirectX 10 ali 

več 

CARLA Simulator 

 Dodatne odvisnosti  

Vir: (Malik, Khan, & El-Sayed, 2021) 

3.2 Udacity Simulator 

Udacity ponuja spletni tečaj, ki z uporabo globokega učenja usposablja agenta za avtonomno 

vožnjo in vključuje odprtokodni tridimenzionalni simulator vožnje z enojnim prikazom. Pogled 

na zbiranje podatkov je z zadnjega dela vozila, fotografije z opombami pa so ustvarjene z 
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voznikovega zornega kota. Projekt poleg dveh vnaprej nameščenih skladb vključuje tudi 

edinstven modul za ustvarjanje skladb. Ta simulator nima dodatnih avtomobilov, ima bolj 

zapletene vizualne podobe in je manj prilagodljiv (Hsieh, 2017). 

Simulator olajša naloge s svojo arhitekturo odjemalec-strežnik, uporabniku pa s prijaznim 

vmesnikom API za zbiranje in prenos podatkov. Deluje v dveh načinih: način usposabljanja in 

avtonomni način. V načinu usposabljanja simulator snema posnetke iz treh kamer (leva, 

srednja, desna) in jih povezuje s parametri, kot so hitrost, plin, kot krmiljenja in zaviranje. V 

avtonomnem načinu nastavitev odjemalec-strežnik omogoča komunikacijo podatkov v realnem 

času prek vmesnika API, kar usposobljenemu modelu omogoča uporabo podatkovnih tokov v 

živo za posodabljanje parametrov in odzivov vozila (Gupta, Upadhyay , Kumar, & Al-Turjman, 

2021). 

 

Slika 2: Udacity Simulator 

3.2.1 Namestitev in konfiguracija 

3.2.1.1 Ubuntu 

Če ga želimo uporabljati, najprej namestimo različico Unity3D 5.5.1f1, saj je simulator 

ustvarjen s to različico. Prenesemo Unity3D in sledimo korakom: 

Namestimo zahtevane odvisnosti: 

1. sudo apt install gconf-service lib32gcc1 lib32stdc++6 libc6-i386 libgconf-2-4 
npm  

Namestimo paket Unity3D: 

1. sudo dpkg -i ~/Downloads/unity-editor_amd64-5.5.1xf1Linux.deb 

Odpravimo vse manjkajoče odvisnosti: 
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1. sudo apt --fix-broken install 

Omogočamo shranjevanje velikih datotek (LFS) za sistem Git: 

1. curl -s https://packagecloud.io/install/repositories/github/git-
lfs/script.deb.sh | sudo bash 

Kloniramo repozitorij simulatorja: 

1. git clone https://github.com/udacity/self-driving-car-sim.git 

• Zagon simulatorja: 

Simulator naredimo izvršljiv: 

1. sudo chmod +x ~/Downloads/beta_simulator_linux/beta_simulator.x86_64 

Simulator zaženemo z mesta prenosa: 

1. ~/Downloads/beta_simulator_linux/beta_simulator.x86_64 

Za namenski grafični način zaženemo simulator z: 

1. RUN_GRAPH=true ~/Downloads/beta_simulator_linux/beta_simulator.x86_64 

Iz simulatorja izstopimo z Alt + F4. 

3.2.1.2 Windows 

Če želimo namestiti simulator v operacijskem sistemu Windows, prenesemo datoteko zip iz 

github-a z razpoložljivimi datotekami, jo razširimo in zaženemo izvršilni program. Za 

namestitev sledimo korakom: 

Repozitorij kloniramo s sistemom Git LFS: 

1. git lfs install 

Kloniramo repozitorij: 

1. git clone https://github.com/udacity/self-driving-car-sim.git 

Namestimo program Unity (če še ni nameščen): 

• Delo s skriptami in gradnja skladb: 

Najdemo skripte za uporabniški vmesnik in vtičnike: 

1. Assets/1_SelfDrivingCar/Scripts 

Najdemo skripte za interakcije z avtomobili: 

1. Assets/Standard Assets/Vehicle/Car/Scripts 

Zgradimo novo progo: 

1. Assets/RoadKit/Prefabs 
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Tabela 3: Specifikacije strojne in programske opreme za Udacity Simulator 

Zahteve Windows minimum Windows 

maximum 

Ubuntu minimum Ubuntu maximum Upoštevani stroški 

Operacijski 

sistem (OS) 

Windows 7/8/10 Windows 10 Ubuntu 16.04 ali novejši Ubuntu 18.04 ali novejši Win – 140 €– 200 €/licenca 

Lin – brezplačno 

macOS – stroški računalnika 

Procesor Intel Core i5-

2500K ali 

enakovreden 

procesor AMD 

Intel Core i7 

ali AMD 

Ryzen 7 

Intel Core i5 ali 

enakovreden procesor 

AMD 

Intel Core i7 ali AMD 

Ryzen 7 

Intel Core i5 – od 230 € naprej. 

Intel Core i7 – od 250 € naprej. 

Spomin 8 GB RAM 16 GB RAM 8 GB RAM 16 GB RAM 8GB RAM – od 20 € naprej. 

16GB RAM – od 50 € naprej. 

Grafika NVIDIA GeForce 

GTX 670 ali AMD 

Radeon HD 7870 

NVIDIA 

GeForce 

GTX 1060 ali 

AMD Radeon 

RX 580 

NVIDIA GeForce GTX 

670 ali AMD Radeon 

HD 7870 

NVIDIA GeForce GTX 

1060 ali AMD Radeon 

RX 580 

NVIDIA GeForce GTX 670 – 

415 € 

AMD Radeon HD 7870 – 240 € 

NVIDIA GeForce GTX 1060 – 

500 € 

AMD Radeon RX 580 – 350 € 
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DirectX Version 11 Version 12 N/A N/A  

Pomnilnik 10 GB 

razpoložljivega 

prostora 

10 GB 

razpoložljive

ga prostora 

10 GB razpoložljivega 

prostora 

10 GB razpoložljivega 

prostora 

Cena je odvisna od izbrane 

grafične kartice 

Unity 

različiča 

Unity 5.5.1f1 Unity 5.5.1f1 Unity 5.5.1f1 Unity 5.5.1f1 Personal – brezplačno 

Pro – od 2,040.00 $/leto 

Industry – od 4,950.00 $ /leto 

Dodatno Git LFS za velike 

vrednosti 

Posodobljeni 

grafični 

gonilniki 

Git LFS za velike 

vrednosti 

Posodobljeni grafični 

gonilniki 

Ni dodatnih stroškov 

Vir: (Lastni vir) 
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3.3 Udacity Simulator vs CARLA 

CARLA je primerna za napredne raziskave in razvoj, saj omogoča zelo natančno simulacijo 

kompleksnih metropolitanskih območij, različnih vremenskih razmer in dinamičnih predmetov. 

Zagotavlja zelo prilagodljivo in vsestransko platformo, vendar zahteva veliko računalniške 

moči. Omogoča široko interakcijo s številnimi ogrodji za robotiko in strojno učenje. Za 

programom CARLA stoji živahna skupnost, ki zagotavlja bogato dokumentacijo in pomoč. 

Zaradi svoje fine vizualne podobe in zapletenih tekstur, ki povečujejo vizualni realizem, je kot 

nalašč za zapleteno testiranje algoritmov in potrjevanje sistemov (Li, in drugi, 2024). 

Simulator samovozečega avtomobila Udacity pa je namenjen predvsem za izobraževalne 

namene. V primerjavi s simulatorjem CARLA ima preprostejša okolja in manj dinamičnih 

elementov. Simulator je enostavnejši za vzpostavitev in uporabo, saj se osredotoča na preprosto 

interakcijo in osnovne koncepte samovozečega avtomobila. Ima bolj omejene možnosti 

integracije in je manj zahteven z vidika računalniških virov. Čeprav so njegova podpora 

skupnosti in posodobitve bolj omejene, je simulator Udacity primeren za uvodno učenje in 

izobraževalne vaje s poenostavljeno grafiko in teksturo. Njegova prilagodljivost je prav tako 

omejena, saj se osredotoča na vnaprej določene scenarije in ne na obsežno prilagajanje (Li, in 

drugi, 2024). 

Glede na vse to je simulator CARLA zaradi velike natančnosti in številnih funkcij primernejši 

za napredne študije, medtem ko je simulator Udacity zasnovan z mislijo na poučevanje in 

poudarja preprostost uporabe in osnovne ideje. 

Tabela 4: Primerjava simulatorjev CARLA in Udacity Self-Driving Car Simulator 

Aspekt CARLA Udacity Simulator  

Link na install page CARLA Quick Start Udacity Installation 

Verodostojnost simulacije Visok realizem s podrobnimi 

mestnimi okolji, vključno z 

različnimi vremenskimi 

razmerami in dinamičnimi 

predmeti. 

V primerjavi z igro CARLA 

je manj podrobna, z 

enostavnejšimi okolji in manj 

dinamičnimi elementi. 

Enostavno vključevanje Podpira integracijo z 

različnimi okvirji za strojno 

Osnovne možnosti 

integracije, osredotočen 

https://carla.readthedocs.io/en/latest/start_quickstart/
https://github.com/udacity/self-driving-car-sim
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učenje in robotiko. Dobro 

dokumentirani API-ji in 

močna skupnost za podporo. 

predvsem na izobraževalno 

uporabo z omejeno 

razširljivostjo. 

Uporabnost Bolj zapletena nastavitev in 

konfiguracija, vendar ponuja 

obsežno prilagajanje in 

napredne funkcije. 

Lažje ga je nastaviti in 

uporabljati, zasnovan je za 

izobraževalne namene s 

poudarkom na enostavni 

interakciji. 

Podpora skupnosti Aktivna in dobro podprta 

skupnost z obsežnimi viri in 

dokumentacijo. Redne 

posodobitve in izboljšave. 

Omejena podpora skupnosti 

in manj posodobitev, 

vzdržuje se predvsem v 

izobraževalne namene. 

Zmogljivost in sistemske 

zahteve 

Zahteva znatne računalniške 

vire, zlasti za simulacije 

visoke verodostojnosti s 

podrobnimi okolji. 

Na splošno so manj zahtevni; 

primerni so za izobraževalne 

namene in simulacije, ki 

zahtevajo manj virov. 

Aplikacije Primeren je za široko paleto 

raziskovalnih in razvojnih 

aplikacij, vključno z 

naprednim testiranjem 

algoritmov in potrjevanjem 

sistemov. 

Zasnovan je predvsem za 

izobraževalne in uvodne 

namene s poudarkom na 

osnovnih konceptih 

samovozečega avtomobila in 

simulacij. 

Grafika in vizualna podoba Visokokakovostna grafika s 

podrobnimi teksturami in 

realističnimi vizualnimi 

elementi. 

Poenostavljena grafika in 

teksture z manjšim 

poudarkom na vizualnem 

realizmu. 

Prilagodljivost in 

razširljivost 

Zelo prilagodljiv, saj 

uporabnikom omogoča 

ustvarjanje prilagojenih 

okolij in scenarijev. 

Omejena prilagodljivost, 

osredotočeno na vnaprej 

določene scenarije in 

izobraževalne vaje. 

Vir: (Lastni vir) 
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4 KNJIŽNICE IN RAZVOJNA OKOLJA 

Beležnica Jupyter zagotavlja interaktivno programsko okolje, ki združuje kodo z besedilom 

markdown, kar pomaga pri učenju in poučevanju. Zmožnost izvajanja kode v kosih in takojšnje 

povratne informacije omogočajo lajšanje napak in razumevanje zapletenih konceptov, kot so 

nevronske mreže (Menke, Homberg, & Koch, 2023). 

Beležnico je mogoče gostiti na GitHubu, kar omogoča enostaven dostop in sodelovanje. 

Uporabniki lahko klonirajo repozitorije, jih prilagajajo in ponovno vključujejo spremembe, kar 

omogoča nenehne izboljšave in sodelovanje skupnosti. Funkcije GitHuba, kot je „Issue 

Tracker“, dodatno izboljšujejo interakcijo in povratne informacije uporabnikov (Taieb, 2018). 

Google Colaboratory (Colab) platforma je dostopen način za zagon beležnic Jupyter brez 

potrebe po lokalni namestitvi. Ponuja računalniške vire v oblaku, vključno z grafičnimi 

procesorji in procesorji TPU, zaradi česar je primerna za umetno inteligenco in globoko učenje. 

Glavna pomanjkljivost je, da podatkov in nastavitev ni mogoče shraniti, ko se primerek 

strežnika zapre (Nelson & Hoover, 2020). 

4.1 Jupyter Notebook 

Najbolj priljubljena platforma za interaktivno pismeno programiranje je beležnica Jupyter 

(Shen, 2014). Njen namen je bil olajšati dokumentiranje, izmenjavo in ponovitev analize 

podatkov. Od leta 2013, ko je sistem začel delovati, je bilo v GitHubu zbranih več kot 9 

milijonov beležnic (Parente, 2020).  

Jupyter izhaja iz IPythona in poleg Pythona podpira različne programske jezike, kot so Julia, 

R, JavaScript in C. Poleg kode in besedila omogoča tudi prepletanje različnih vrst bogatih 

medijev, vključno s slikami, videom in celo interaktivnimi gradniki, ki združujejo HTML in 

JavaScript (Perez & Granger, 2007). 

Odprtokodna aplikacija Jupyter Notebook služi kot virtualni laboratorijski zvezek za podporo 

podatkov, kode, delovnih postopkov in vizualizacij raziskovalnega procesa. Njena strojno in 

človeško berljiva narava spodbuja znanstveno sodelovanje in interoperabilnost. Te beležnice je 

mogoče shraniti v spletnih skladiščih in jih povezati z drugimi raziskovalnimi artefakti, 

vključno s kodo, članki, delovnimi tokovi, priročniki za tehnike in podatkovnimi zbirkami 

(Randles, Pasquetto, Golshan, & Borgman, 2017).  
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Vendar je ta oblika vse bolj tarča kritik zaradi spodbujanja nezaželenih navad, ki povzročajo 

nepredvideno vedenje in jih ni mogoče ponoviti (Xie, 2018). Med glavnimi kritikami so skrita 

stanja, nepričakovan vrstni red izvajanja z razdrobljeno kodo ter slabe prakse pri poimenovanju, 

različicah, testiranju in modularizaciji kode. Poleg tega oblika beležnice ne kodira odvisnosti 

knjižnic s pripetimi različicami, zaradi česar je težko (in včasih nemogoče) reproducirati 

beležnico. Te kritike potrjujejo prejšnje delo, ki je poudarilo negativen vpliv pomanjkanja 

najboljših praks programskega inženirstva (Wilson, in drugi, 2014) v programski opremi za 

znanstveno računalništvo glede ločevanja skrbi (Hursch & Lopes, 1995), testov in vzdrževanja 

(Neglectos, 2018). 

4.2 Google Colab 

Čeprav je bil program Colab ustvarjen za lažjo izmenjavo ponovljivih poskusov in opisov 

tehnik med raziskovalci na področju umetne inteligence in znanosti o podatkih, so ugotovili, da 

je odlično orodje tudi za izobraževalne namene. Glavna prednost je v tem, da lahko učenci z 

dovolj procesorske moči interaktivno izvajajo napredne pristope umetne inteligence, saj lahko 

uporabljajo inštruktorjeve delovne zvezke v skupni rabi. Tako uporabnikom ni treba 

individualno konfigurirati programskih paketov in odvisnosti (Nelson & Hoover, 2020). 

Notebooke delujejo v virtualnih strojih (VM – Virtual Machine), ki temeljijo na operacijskem 

sistemu Linux in jih vzdržuje in zagotavlja Google. Ti VM omogočajo izvajanje izračunov s 

centralnimi procesnimi enotami (CPU – Central Processing Unit) ali pospešeno z uporabo 

specializiranih grafičnih procesorjev in tenzorskih procesnih enot (TPU – Tensor Processing 

Unit). Vsak VM ima za posamezno sejo na voljo različno strojno opremo, čeprav so običajno 

na voljo vrhunski grafični procesorji NVIDIA (K80, T4 ali P100), 8-12 GB pomnilnika RAM 

in 50–70 GB prostega prostora na trdem disku VM. Notebooke Colab so zasnovani za 

interaktivno uporabo in ne za daljše preiskave. Zato se VM po izteku časa mirovanja prekinejo 

in imajo 12-urno omejitev seje (Nelson & Hoover, 2020). 

Google Colab deluje kot npr. Google Docs in omogoča uporabnikom, da skupaj delajo na istem 

Notebook-u. TensorFlow, Matplotlib in Keras so le nekatere od ključnih knjižnic za strojno 

učenje in umetno inteligenco, s katerimi je program Colaboratory predhodno konfiguriral 

izvajalne sisteme Python 2 in 3. Po določenem času se VM pod izvajalnim časom zapre, vse 

uporabniške nastavitve in podatki pa izginejo. Kljub temu pa beležnica ostane nedotaknjena, 

informacije pa se lahko s trdega diska virtualnega stroja prenesejo na uporabnikov račun Google 
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Drive. Nazadnje, ob popolni konfiguraciji prej omenjene programske opreme, ta Googlova 

storitev ponuja izvajanje s pospeševanjem z grafičnim procesorjem. Google Cloud služi kot 

gostiteljska platforma za infrastrukturo Google Colaboratory (CARNEIRO, in drugi, 2018). 

4.3 Google Colab vs Jupyter Notebook 

Jupyter Notebook in Google Colab sta priljubljeni interaktivni programski orodji, ki imata 

vsaka svoje prednosti in slabosti. Ker Jupyter Notebook uporabnikom omogoča, da popolnoma 

prilagodijo svoj delovni prostor, je odlično orodje za lokalno delo. To vključuje možnost 

ohranjanja in spreminjanja določenih parametrov, kar olajša preprosto repliciranje operacij. 

Poleg tega se Jupyter povezuje s številnimi platformami, kot je GitHub, in ponuja široko 

podporo za več programskih jezikov, kar spodbuja sodelovanje in izmenjavo raziskovalnih 

dosežkov. 

Nasprotno pa je Google Colab odličen vir za vse, ki želijo izkoristiti zmogljivosti v oblaku, ne 

da bi za to potrebovali zapletene lokalne nastavitve. V Colabu so na voljo močni računski viri, 

kot so enote za obdelavo tenzorjev (TPU) in grafične procesne enote (GPU), kar je zelo koristno 

za globoko učenje in druge najsodobnejše tehnike umetne inteligence. Uporabnikom se ni treba 

ukvarjati z nameščanjem potrebnih knjižnic ali skrbeti za strojno opremo, saj deluje v oblaku. 

Google Colab prinaša veliko prednosti, vendar ima tudi slabosti. Glavna je, da se ob zaprtju 

navideznega stroja izgubijo podatki in nastavitve, saj okolja ni mogoče shraniti med sejami. 

Dolgotrajnejše raziskave lahko zaradi tega postanejo zahtevne, zato bodo potrebne pogoste 

varnostne kopije na Googlovem disku ali v drugi spletni shrambi. Za izboljšanje ponovljivosti 

in dolgoročnega vodenja projektov ponuja beležnica Jupyter popoln nadzor nad delovnim 

okoljem vključno z različicami knjižnic in drugimi spremenljivkami. 

Medtem ko se Google Colab odlikuje po dostopnosti, enostavnosti uporabe in močnih virih v 

oblaku, zaradi česar je idealen za hitro testiranje in izdelavo prototipov, beležnica Jupyter 

ponuja večjo prilagodljivost in vzdržljivost za dolgoročne projekte. Posebne zahteve 

uporabnika, vključno s tistimi povezanimi z računsko močjo, ponovljivostjo, sodelovanjem in 

želenim okoljem pogosto določajo, katera možnost je najboljša. 

Tabela 5: Primerjava lastnosti Google Colab in Jupyter Notebook 

Lastnost Google Colab Jupyter Notebook 
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Okolje Storitev v oblaku Lokalno ali na strežniku 

Dostop Zahteva internetno povezavo Lahko se uporablja brez 

povezave 

Računalniški viri Zagotavlja brezplačen 

dostop do grafičnih 

procesorjev in procesorjev 

TPU 

Zanaša se na lokalno ali 

strežniško strojno opremo 

Nastavitev in konfiguracija Nastavitev ni potrebna, na 

voljo so vnaprej 

konfigurirane knjižnice 

Zahteva ročno nastavitev in 

konfiguracijo 

Sodelovanje Sodelovanje v realnem času, 

podobno kot v Googlovih 

dokumentih 

Sodelovanje prek skupnih 

datotek ali nadzora različic 

(npr. GitHub) 

Trajanje seje Omejeno na 12-urne seje, 

ponastavitev VM izgubi 

podatke 

Trajne seje s popolnim 

nadzorom nad okoljem 

Podprti jeziki Predvsem Python (podpira 

druge z dodatnimi 

nastavitvami) 

Podpira več jezikov, 

vključno z jeziki Python, R, 

Julia itd. 

Shranjevanje podatkov Začasno, podatke je treba 

ročno shraniti v Google 

Drive ali druge storitve v 

oblaku 

Lokalno shranjevanje s 

trajnimi datotečnimi sistemi 

Reproduktibilnost Omejeno zaradi ponastavitve 

VM, potrebna je ponovna 

namestitev paketov 

Visoka, saj je mogoče okolja 

v celoti nadzorovati in 

reproducirati 

Idealni primer uporabe Hitro prototipiranje, poskusi 

globokega učenja, 

izobraževalni nameni 

Dolgoročni projekti, 

zapleteni delovni tokovi, 

popoln nadzor nad okoljem 
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Upoštevani stroški V brezplačni različici 

programa Colab je dostop do 

grafičnih procesorjev zelo 

omejen 

Colab Pro – 11,28 €/mesec 

Colab Pro+ – 51,54 €/mesec 

Colab Enterprise – Plačilo 

po uporabi 

Uporaba je prosto dostopna 

Vir: (Lastni vir) 
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5 UVOD V SAMOUČENJE ALGORITMA 

5.1 Strojno učenje 

Znanstveno preučevanje statističnih modelov in tehnik, ki jih računalniški sistemi uporabljajo 

za izvajanje določenih nalog brez izrecnega programiranja, je znano kot strojno učenje ali krajše 

ML (Machine Learning). Eden od razlogov, zakaj je spletni iskalnik, kot je Google, tako dober 

vsakič, ko ga uporabimo za iskanje po internetu, je, da ima algoritem, ki se nenehno uči, kako 

razvrščati spletna mesta. Prediktivna analitika, obdelava slik, podatkovno rudarjenje in druge 

uporabe teh algoritmov so le nekatere. Glavna prednost strojnega učenja je sposobnost 

algoritmov, da samodejno opravljajo naloge, ko se naučijo, kako ravnati s podatki (Mahesh, 

2018). Na kratko si oglejmo nekaj najpogosteje uporabljenih algoritmov v ML (Nasteski, 

2017): 

• Nadzorovano učenje (Supervised Learning): vključuje algoritme, ki se učijo iz označenih 

podatkov za napovedovanje rezultatov. Različni algoritmi ustvarijo funkcijo, ki preslika 

vhodne podatke v želene izhodne podatke. Ena od standardnih formulacij naloge 

nadzorovanega učenja je problem klasifikacije: uporabnik se mora naučiti (približati 

obnašanje) funkcije, ki prikazuje vektor v enega od več razredov, tako da preuči več 

vhodno-izhodnih primerov funkcije. 

• Nenadzorovano učenje (Unsupervised Learning): pri tem se osredotoča na algoritme, ki 

delajo z neoznačenimi podatki in iščejo skrite vzorce.  

• Delno nadzorovano učenje (Semi-Supervised Learning): združuje tako označene kot 

neoznačene podatke.  

• Učenje z okrepitvijo (Reinforcement Learning): algoritem se nauči, kako naj ravna glede 

na opazovanje sveta. Vsako dejanje ima določen vpliv na okolje, okolje pa zagotavlja 

povratne informacije, ki usmerjajo učni algoritem. 

• Večopravilno učenje (Multitask Learning): cilj je sočasno reševanje več nalog z 

izkoriščanjem podobnosti med njimi. 

• Učenje v skupinah (Ensemble Learning): vključuje združevanje več modelov za izboljšanje 

splošne učinkovitosti, pri čemer se preučujejo metode, kot sta Boosting in Bagging. 
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5.2 Globoko učenje 

Globoko učenje omogoča računalniškim modelom, ki so sestavljeni iz več slojev obdelave, da 

se naučijo predstavitev podatkov z več ravnmi abstrakcije. Te metode so bistveno izboljšale 

stanje na področju prepoznavanja govora, vizualnega prepoznavanja predmetov, zaznavanja 

predmetov in številnih drugih področjih, kot sta odkrivanje zdravil in genomika. Z uporabo 

tehnike povratnega širjenja, s katero se predlagajo spremembe notranjih parametrov stroja, ki 

se uporabljajo za izračun predstavitve v vsaki plasti na podlagi predstavitve v prejšnji plasti. 

Globinsko učenje odkriva kompleksno strukturo znotraj obsežnih podatkovnih nizov. 

Rekurentne mreže so osvetlile zaporedne podatke, kot sta besedilo in glas, medtem ko so 

globoke konvolucijske mreže pomembno napredovale pri obdelavi slik, videa, govora in zvoka 

(Lecun, Bengio, & Hinton, 2015). V nasprotju s splošnim strojnim učenjem se pri globokem 

učenju uporablja kaskada slojev nelinearnih procesnih enot za ekstrakcijo in spreminjanje 

funkcij. S hierarhično predstavitvijo podatkov, kjer se značilnosti višje ravni ustvarjajo iz 

informacij nižje ravni, omogoča računalnikom učenje (Hao, Zhang, & Ma, 2016). 

Globoke arhitekture so na voljo v številnih različicah, za predstavitev različnih virov podatkov 

pa se lahko uporabljajo različne strukture. Predstavljajo nabor modelov nevronskih omrežij, 

zasnovan za samodejno učenje in pridobivanje lastnosti iz podatkov prek več plasti, ki omogoča 

naloge, kot so prepoznavanje slik, obdelava naravnega jezika in kompleksno odločanje. Ključne 

arhitekture vključujejo konvolucijske nevronske mreže za prostorske podatke, rekurentne 

nevronske mreže in transformatorje za zaporedne podatke ter generativne adverzijske mreže za 

generiranje novih vzorcev podatkov. Konvolucijske nevronske mreže se na primer najpogosteje 

uporabljajo za prepoznavanje slik, rekurentne nevronske mreže pa bolje delujejo pri zaporednih 

aplikacijah, kot je prepoznavanje glasu ali rokopisa (Hao, Zhang, & Ma, 2016).  

5.3 Definicija samoučenja v kontekstu avtonomnih vozil 

Aplikacije UI v avtomobilskem sektorju segajo precej dlje od razvoja, inženiringa, logistike, 

proizvodnje, oskrbovalne verige, uporabniške izkušnje, trženja, prodaje, poprodajnih storitev 

in storitev mobilnosti. UI je ključ do nove prihodnosti glede vrednosti za avtomobilsko 

industrijo (Hofmann, Neukart, & Bäck, 2017).  

V zadnjem času so bili predstavljeni številni testni projekti s samovozečimi avtomobili. Vsem 

tem eksperimentalnim projektom je skupno, da se pri nekaterih nalogah vožnje, kot so 

načrtovanje poti, zavedanje okolja in celo upravljanje volana, uporabljajo metode, ki temeljijo 
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na globokem učenju. Z uspešno predstavitvijo avtonomnih prototipov, ki jih poganja globoko 

učenje, se avtomobilska industrija postopoma preusmerja od izdelave in predstavitve 

prototipnih vozil k serijski proizvodnji. Danes je glavni izziv, kako nevronske mreže spraviti v 

serijsko proizvodnjo avtomobilov na način, ki bo skladen z varnostnimi zahtevami (Rao & 

Frtunikj, 2018). 

Natančno zaznavanje drugih avtomobilov na cesti z uporabo računalniškega vida je zahtevna 

tema, ki je v zadnjih dvajsetih letih pritegnila veliko pozornosti (Sun, Bebis, & Miller, 2006). 

Ceste, po katerih vozijo avtomobili, so dinamične, z nenehno spreminjajočo se osvetlitvijo in 

ozadjem. Ker vsak avtomobil na cesti pogosto vozi v istem trenutku, se velikost in lokacija 

vozila v slikovni ravnini, ki jo zajame fotoaparat, razlikujeta. Velikost, barva in oblika vozila 

se lahko v vsakdanjih voznih razmerah zelo razlikujejo. V literaturi je že več kot deset let veliko 

raziskav o sledenju in zaznavanju vozil. V prejšnjih raziskavah je bilo za odkrivanje vozil 

uporabljenih več umetno ustvarjenih značilnosti (Capparuccia, Renato, & Marchitto, 2007). 
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6 ALGORITMI ZA SAMOSTOJNO VOŽNJO 

Razvoj algoritmov za samovozeče avtomobile je že na najosnovnejši ravni zahteven podvig, ki 

vključuje vrsto senzorjev, nadzornih shem in računalniških pristopov. Poudarek pri 

»enostavnih« ali vstopnih samovozečih avtomobilih bi bil verjetno na nadzorovanih poteh, 

parkiriščih ali testnih stezah in ne na zapletenih situacijah v resničnem svetu (Badue, in drugi, 

2021). 

6.1 Algoritmi zaznavanja 

Zajemanje pomeni razumevanje okolja okoli avtomobila s pomočjo različnih senzorjev. Pri 

osnovnem samovozečem avtomobilu se algoritmi zaznavanja lahko osredotočijo na zaznavanje 

preprostih ovir in oznak voznega pasu (Rosique, Navarro, Fernández, & Padilla, 2019). 

• Fuzija senzorjev: združitev podatkov iz več senzorjev (npr. kamer, LIDAR, ultrazvočnih 

senzorjev) za ustvarjanje celovitega pogleda na okolje. Pri preprostejših aplikacijah lahko 

to vključuje le kamero in nekaj ultrazvočnih senzorjev (Rosique, Navarro, Fernández, & 

Padilla, 2019). 

• Zaznavanje predmetov: uporaba osnovnih tehnik računalniškega vida ali predhodno 

usposobljenih modelov strojnega učenja za zaznavanje predmetov, kot so pešci, druga 

vozila ali statične ovire. Tehnike vključujejo zaznavanje robov, zaznavanje madežev in 

naprednejše metode, kot so konvolucijske nevronske mreže (Rosique, Navarro, Fernández, 

& Padilla, 2019). 

• Zaznavanje voznih pasov: algoritmi za zaznavanje oznak voznih pasov na cesti, pri čemer 

se pogosto uporabljajo tehnike računalniškega vida, kot je Houghova transformacija za 

prepoznavanje ravnih črt ali krivulj (Rosique, Navarro, Fernández, & Padilla, 2019). 

6.2 Algoritmi za lokalizacijo 

Pri lokalizaciji gre za določanje natančnega položaja avtomobila v danem okolju (Lu, Ma, 

Smart, & Yu, 2021). 

• Lokalizacija na podlagi GPS: pri osnovnih samovozečih avtomobilih lahko GPS zagotovi 

grobo oceno lokacije avtomobila. Vendar je to morda treba dopolniti z drugimi metodami 

zaradi nenatančnosti GPS, zlasti v mestnih okoljih (Lu, Ma, Smart, & Yu, 2021). 
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• Mrtvo določanje: ta tehnika ocenjuje trenutni položaj avtomobila na podlagi njegovega 

prejšnjega položaja, smeri in hitrosti. Pogosto se uporablja v povezavi s podatki GPS (Lu, 

Ma, Smart, & Yu, 2021). 

• Hkratna lokalizacija in kartiranje: čeprav je ta tehnika naprednejša, jo je mogoče 

poenostaviti za enostavne aplikacije za samovozeče avtomobile. Vključuje izdelavo 

zemljevida neznanega okolja in hkratno spremljanje lokacije avtomobila v tem okolju, pri 

čemer se običajno uporabljajo metode LIDAR ali metode, ki temeljijo na vidu (Lu, Ma, 

Smart, & Yu, 2021). 

6.3 Algoritmi za načrtovanje 

Načrtovanje vključuje določitev poti, ki naj jo vozilo opravi od trenutnega položaja do cilja 

(Ming, Y., Li, Y., Zhang, Z., & Yan, W., 2021). 

• Načrtovanje poti: pri enostavnih samovozečih avtomobilih lahko načrtovanje poti vključuje 

preproste algoritme, kot sta A* ali Dijkstrov algoritem za iskanje najkrajše poti na vnaprej 

začrtanem območju (Ming, Y., Li, Y., Zhang, Z., & Yan, W., 2021). 

• Načrtovanje obnašanja: to vključuje odločanje o tem, katera dejanja naj vozilo izvede, na 

primer upočasnitev, ustavitev ali prehitevanje. Pri osnovnih aplikacijah lahko preproste 

scenarije obravnavajo sistemi, ki temeljijo na pravilih (npr. stroji končnih stanj) (Ming, Y., 

Li, Y., Zhang, Z., & Yan, W., 2021). 

• Načrtovanje poti: ko je pot določena, načrtovanje trajektorije vključuje ustvarjanje gladke  

vozne poti, ki se izogne oviram in upošteva cestne predpise. V ta namen se lahko uporabijo 

polinomske metode (Ming, Y., Li, Y., Zhang, Z., & Yan, W., 2021). 

6.4 Nadzorni algoritmi 

Algoritmi za nadzor upravljajo gibanje vozila in zagotavljajo, da vozilo nemoteno in varno sledi 

načrtovani poti (Zulu & John, 2014). 

• Proporcionalno-integralno-derivativni (PID – Proportional-Integral-Derivative) krmilniki: 

ti se običajno uporabljajo za krmiljenje, pospeševanje in zaviranje v enostavnejših 

aplikacijah za samovozeče voznike. Krmilnik PID nenehno izračunava vrednost napake in 

prilagaja krmilne vhode, da bi to napako čim bolj zmanjšal, s čimer pomaga vzdrževati 

želeno pot (Zulu & John, 2014). 
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• Modelno napovedno krmiljenje (MPC – Model Predictive Control): pri naprednejši metodi 

gre za napovedovanje prihodnjega obnašanja vozila in ustrezno optimizacijo njegove 

trajektorije. Čeprav je MPC bolj zapleten, ga je mogoče prilagoditi za preprostejša, omejena 

okolja (Zulu & John, 2014). 

6.5 Algoritmi za izogibanje oviram 

Izogibanje oviram zagotavlja, da vozilo ne trči v predmete na svoji poti (Chen, Peng, & Grizzle, 

2018). 

• Potencialna področja: ta tehnika vključuje ustvarjanje „potencialnega polja“, v katerem 

ovire vozilo odbijajo, cilj pa ga privlači, kar vozilu omogoča nemoteno navigacijo okoli 

ovir (Chen, Peng, & Grizzle, 2018). 

• Reaktivne metode: za lažja okolja je mogoče uporabiti preproste reaktivne metode, kot je 

„Ustavi in počakaj“ (ustavi se, ko zazna oviro, in počakaj, dokler se ta ne odstrani) (Chen, 

Peng, & Grizzle, 2018). 

6.6 Varnost in varnostni mehanizmi 

Varnost je najpomembnejša pri vsakem sistemu za samovozeče voznike. Tudi preprosti sistemi 

potrebujejo osnovna varovala pred okvarami (Patel, 2021). 

• Zaviranje v sili: osnovno zaznavanje ovir v kombinaciji z enostavnim zavornim sistemom 

lahko pomaga preprečiti trke (Patel, 2021). 

• Redundanca: več senzorjev za isto funkcijo (npr. dve kameri za zaznavanje voznega pasu) 

poveča zanesljivost (Patel, 2021). 

6.7 Algoritmi za simulacijo in testiranje 

Pred uvedbo algoritma za samovozečo vožnjo v resničnem svetu se opravi obsežno testiranje v 

simulacijskih okoljih (Schöner, 2018). 

• Simulatorji: programsko opremo, kot so CARLA, Gazebo, Udacity ali celo preprostejši po 

meri izdelani simulatorji, je mogoče uporabiti za testiranje algoritmov v različnih 

nadzorovanih okoljih (Schöner, 2018). 
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6.8 Simulacija samovozečega avtomobila z uporabo globokega učenja 

6.8.1 Konvolucijsko nevronsko omrežje (CNN) 

Samovozeči avtomobil v tem diplomskem delu je bil opremljen s tehnologijo CNN zaradi 

njenih dobrih zmogljivosti prepoznavanja slik in vzorcev. Poleg učenja upravljanja avtomobila 

se je CNN naučil tudi, v kakšni situaciji je treba uporabiti določen kot krmiljenja. CNN je 

potreboval izjemno dolgo obdobje, da je končal svoje usposabljanje. Nevronska mreža v tej 

študiji je za vsako epoho potrebovala od tri do štiri minute, da se je usposobila v desetih epohah. 

1 h za 30 epoh in 2 h za 50 epoh. Metodologija omrežja, znana kot model usposabljanja Nvidia, 

je podrobneje pojasnjena v nadaljevanju. 

6.8.2 Zbiranje podatkov 

Zbrati moramo dovolj podatkov za usposabljanje predlaganega modela. Simulator Udacity 

ponuja možnost, da v načinu simulacijskega usposabljanja ustvarimo lasten nabor podatkov. 

Kote krmiljenja posname simulator, slike leve, desne in sredinske strani pa leva, desna oziroma 

sredinska kamera. S puščicami se uravnava hitrost vozila. Ustvarita se datoteka csv in mapa z 

vsemi slikami, ki se pozneje uporabita za usposabljanje. 

Kot obračanja je pozitivno število med 0 in 1, če se avtomobil obrača v desno, in negativno 

število med 0 in -1, če se obrača v levo. Ko vozilo vozi naravnost, je kot zavijanja enak nič. 

Avtomobil ima največjo hitrost 30 in lahko doseže katero koli število med 0 in 30 (simulator 

nima enote). 

6.8.3 Obdelava podatkov 

Zbrane podatke, tj. fotografije, pred učenjem modela predhodno obdelamo. Med predobdelavo 

se slike obrežejo, da se odstranita nebo in sprednji del avtomobila. Slike se nato pretvorijo iz 

RGB v YUV in pomanjšajo, da ustrezajo vhodni obliki modela. To se izvede, ker RGB ni 

najboljša preslikava za čutno zaznavanje. Ko gre za kodiranje in zmanjšanje pasovne širine, so 

barvni prostori YUV bistveno učinkovitejši od RGB. 
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6.8.4 Usposabljanje 

Pri usposabljanju omrežja so bili upoštevani številni vidiki. Ti so vključevali strukturo modela, 

vrsto razširitve, ki se je uporabila v učnem nizu in nepristranski kot obračanja. Za usposabljanje 

omrežja je bilo uporabljenih 10, 30 in 50 vadbenih epoh, podatki pa so bili naključno razdeljeni 

na vadbene in validacijske množice. Izguba pri potrjevanju se izračuna na koncu epohe, medtem 

ko se izguba pri usposabljanju izračuna med epoho. Manjša validacijska izguba bi pomenila 

izboljšano delovanje vozila, kar bi privedlo do daljših potovalnih razdalj in manjšega števila 

trkov, če sploh. 

Da bi razumeli vpliv različnih razširitev in kako lahko te povzročijo pretirano ali premajhno 

prilagajanje ali razkrijejo, da je nabor podatkov nereprezentativen, je bil ustvarjen tudi graf, ki 

prikazuje izgube pri usposabljanju in potrjevanju za vsako omrežje. Preučene so bile razširitve 

slik z obračanjem, pomikanjem, povečavo, svetlostjo, brez razširitve, naključno razširitvijo ter 

kombinacijo razširitve z obračanjem in svetlostjo. 

6.8.4.1 Obrnjena slika (flipped image) 

Pri razširitvi s flipom se slika obrne čez os Y, kot obrata pa spremeni znak iz „+“ v „-“ in 

obratno.  Na sliki 3 je primer, ki prikazuje kot zasuka 0,05154746, ki na spremenjeni sliki 

postane - 0,05154746. 

 

Slika 3: Obrnjena slika (flipped image) 

(Vir: Lasten) 

6.8.4.2 Augmentirana slika 

Povečanje s panoramo je neke vrste fina transformacija. V študiji sta bila kot argumenta za 

afinno funkcijo uporabljena 10-odstotni translacijski premik v levo in desno, naključno. Na sliki 

4 je primer. 
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Slika 4: Augmentirana slika 

(Vir: Lasten) 

6.8.4.3 Preprocesirana slika 

Izvirna slika se naloži s poti do datoteke, nato pa se uporabi funkcija predobdelave za 

spremembo slike, na primer za spremembo velikosti, normalizacijo ali zmanjšanje šuma. Obe 

sliki se nato prikažeta na eni sliki z dvema podpoglavjema: prvo podpoglavje prikazuje izvirno 

sliko, drugo podpoglavje pa predobdelano sliko. Ta vizualna primerjava pomaga oceniti učinke 

korakov predobdelave na neobdelane vhodne slike. 

 

Slika 5: Preprocesirana slika 

(Vir: Lasten) 

6.8.4.4 Povečanje in/ali zmanjševanje svetlosti  

Povečanje svetlosti izvirno sliko naključno osvetli ali zatemni in omrežje ustrezno izpostavi 

povečani sliki.  Na sliki 6 je primer povečanja svetlosti, kjer je spremenjena slika temnejša. 
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Slika 6: Zmanjšan nivo svetlosti slike 

(Vir: Lasten). 

6.8.4.5 Brez povečanja 

Originalne fotografije, ki jih je posnel simulator Udacity, so edine, ki so bile uporabljene za 

učenje algoritma, ki je bil učen brez kakršne koli razširitve. Po razširitvah so fotografije 

podvržene predobdelavi za zmanjšanje neželenih popačenj in izboljšanje atributov slike. 

Obrezani so odvečni elementi, kot so pokrov motorja avtomobila in območja slike, ki ne 

vključujejo ceste. Na sliki 5 je izvirna slika obrezana na osi Y od 135 do 160 in od vrednosti 0 

do 60. Poleg obrezovanja je bilo opravljenih še nekaj sprememb za izboljšanje slike. 

Slike YUV so bile poslane v omrežje v modelu Nvidia. Zato je bil v tej preiskavi uporabljen 

tudi sistem barvnega kodiranja YUV. Za glajenje slike in zmanjšanje šuma je bila uporabljena 

Gaussova zameglitev. Kot je razvidno iz predobdelane slike na sliki 5, je bila velikost slike nato 

zmanjšana za 66 na 200, da je ustrezala velikosti vhoda v modelu Nvidia. 

6.8.5 Model usposabljanja (Model Nvidia) 

Pri tem je bil uporabljen model Nvidia, ki je uporaben model za kloniranje vedenja. Arhitektura 

modela je bila pridobljena iz publikacije „End to End Learning for Self-Driving Car“ (Bojarski, 

in drugi, 2016). 
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Slika 7: Arhitektura CNN 

(Vir: https://developer.nvidia.com/blog/deep-learning-self-driving-cars/) 

Ker so bili podatki že normalizirani, normalizacija pri ustvarjanju modela ni bila potrebna. Prvi 

sloj konvolucije prejme normalizirane podatke. Slika 7 prikazuje, da ima prva konvolucijska 

plast velikost jedra 5 x 5 in 24 filtrov. Pri velikosti jedra 5 x 5 ima druga konvolucijska plast 36 

filtrov. Tretja plast ima jedro velikosti 3 x 3 in 48 filtrov. Pri 64 plasteh in velikosti jedra 3 x 3 

sta četrta in peta plast enaki. Dolžina koraka jedra med premikanjem po sliki se imenuje 

podvzorec. Za pospešitev izračuna so bili prvi trije sloji izvedeni z dolžino koraka 2 x 2, nato 

pa je bila uporabljena aktivacijska funkcija „elu“ (eksponentna linearna enota). Izbrana je bila 

dolžina koraka enega piksla, saj četrta in peta raven ne zahtevata izpuščanja pikslov. Izhod iz 

prejšnje konvolucijske plasti prejme raven „flatten“, ki ga pretvori v eno samo 

enodimenzionalno polje. Za izravnalnim slojem so nameščene štiri debele plasti s 100, 50, 10 

in 1. Zadnji sloj zagotavlja predvideni kot krmiljenja za samovozeči avtomobil, medtem ko 

imajo prejšnji trije sloji enako aktivacijsko funkcijo kot „elu“.  

 

 

 

 

https://developer.nvidia.com/blog/deep-learning-self-driving-cars/
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Tabela 6: Sekvencijski model po Nvidia standardih 

 

(Vir: Lasten). 

Model je sekvencijski, kar pomeni, da se vsak sloj linearno navezuje na naslednjega. Model je 

sestavljen iz več konvolucijskih slojev, ki jim sledijo popolnoma povezani (gosti) sloji, kar je 

značilna arhitektura za CNN, ki se uporabljajo pri nalogah prepoznavanja ali razvrščanja slik. 

Sestavljajo ga štiri plasti Conv2D, ki postopoma zmanjšujejo prostorske dimenzije vhoda, 

hkrati pa povečujejo število zemljevidov funkcij. Temu sledi plast Flatten, ki pretvori 2D 

zemljevide značilk v 1D vektor, ki se nato prenese skozi vrsto popolnoma povezanih plasti 

Dense. Ti gosti sloji postopoma zmanjšujejo razsežnost podatkov, kar vodi do enega samega 

izhodnega nevrona, kar nakazuje, da je model zasnovan za naloge binarne klasifikacije ali 

regresije. 

Povzetek modela vsebuje informacije o izhodni obliki in številu parametrov, ki jih je mogoče 

trenirati za vsako plast. Skupaj je 264 443 parametri, ki jih je mogoče natrenirati.  

6.8.5.1 Usposabljanje in testiranje modelov 

Za učenje smo uporabili več kot 3751 slik, za testiranje našega modela pa manj kot polovico 

slik. Slika 8 prikazuje število kotov krmiljenja v naboru podatkov za usposabljanje. 
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Slika 8: Število kotov krmiljenja v naboru podatkov za usposabljanje (usposabljanje in validacija) 

(Vir: Lasten) 

Z uporabo Pythonovega modula matplotlib smo izdelali graf, kot je prikazan na sliki 8. Število 

krmilnih stopinj v testni zbirki podatkov je prikazano vizualno. 

Pri usposabljanju modelov smo uporabili vrednosti 10, 30 in 50 za epohe (epochs), 

epohe_na_korak (epochs_per_step) in korake_preverjanja (validation_steps). Rezultati učenja 

so navedeni v poglavju » 6.8.6. Primerjava rezultatov pri različnem številu ciklov samoučenja«. 

6.8.5.2 Rezultati 

Simulacija in konzola s predhodno predvidenim kotom krmiljenja sta prikazani na sliki 9. 

Večina kotov krmiljenja, ki jih je napovedal naš model, je bila točna. Vozilo je samostojno 

končalo progo. 

 

Slika 9:Samovozeči avtomobil v simulatorju Udacity. 

(Vir: Lasten). 
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6.8.6 Primerjava rezultatov pri različnem številu ciklov samoučenja 

Postopek usposabljanja modela lahko izvedemo večkrat z različnim številom epoh 

usposabljanja, da preverimo hipotezo, ki primerja rezultate za različno število ciklov 

samoučenja. Za vsako izvedbo bo predstavljeno ločeno število ciklov samoučenja. Ko je teh 

več izvedb končanih, lahko primerjamo merila uspešnosti (kot sta izguba in natančnost), da 

preverimo, kako je število epoh učenja vplivalo na splošno uspešnost modela. 

V našem primeru seznam epochs_list določa različna števila epoh, ki se uporabijo za učenje, na 

primer [10, 30, 50], kar pomeni, da bo model učen trikrat z 10, 30 in 50 epohami. Seznam, 

imenovan histories, je ustvarjen za shranjevanje objektov zgodovine, ki jih je vrnila metoda 

model.fit() za vsako izvedbo usposabljanja. Ti objekti zgodovine vsebujejo podrobne 

informacije o postopku usposabljanja, vključno z izgubo pri usposabljanju in potrjevanju ter 

natančnostjo za vsako epoho.  

V zanki for se iterira nad vsako vrednostjo v seznamu epochs_list in za vsako iteracijo se model 

usposobi z določenim številom epoh. Po vsakem usposabljanju se objekt zgodovine doda na 

seznam zgodovine, kar omogoča enostaven dostop in primerjavo rezultatov vseh usposabljanj, 

da se oceni vpliv različnega števila epoh na uspešnost modela. 

 

Slika 10: Skupni graf različnih ciklusov učenja 

(Vir: Lastni) 
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Slika 11: Graf učenja epoch 10 

(Vir: Lastni) 

 

Slika 12: Graf učenja epoch 30 

(Vir: Lastni) 
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Slika 13: Graf učenja epoch 50 

(Vir: Lastni) 

Hipoteza tega poskusa je primerjava rezultatov za različno število ciklov samoučenja (epoch), 

da bi ugotovili, kako število iteracij usposabljanja vpliva na uspešnost in sposobnost 

posploševanja modela namenjenega uporabi v avtonomnih vozilih. 

Analiza rezultatov: 

• Epohe = 10: 

Model izkazuje stalno zmanjševanje izgub pri usposabljanju in potrjevanju, kar pomeni, da se 

učinkovito uči iz podatkov. Obstaja dobro ravnovesje med zmanjšanjem izgube pri 

usposabljanju in ohranjanjem nizke izgube pri potrjevanju. 

To nakazuje, da z 10 epohami model ni pretirano opremljen in je sposoben dobro posplošiti na 

neznane podatke. Hipoteza, da lahko določeno število ciklov usposabljanja zagotovi optimalno 

delovanje, je tu podprta, saj model kaže dobro delovanje z minimalnim usposabljanjem. 

• Epohe = 30: 

Model se sprva še naprej izboljšuje, kot kažejo padajoče vrednosti izgube, vendar pa se okoli 

12. epohe pojavi močan skok v izgubi pri usposabljanju, ki povzroči nestabilnost. Po tem skoku 

se izgube pri učenju in potrjevanju ponovno stabilizirajo, vendar proces učenja kaže znake 

morebitne nestabilnosti ali občutljivosti na nekatere vidike podatkov za učenje. 
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Ta rezultat kaže, da lahko razširitev števila ciklov samoučenja na 30 v proces učenja vnese 

nepričakovano vedenje ali anomalije. Izbruh lahko pomeni, da je model naletel na težave z 

določenimi podatki ali hiperparametri, kar je začasno vplivalo na izgubo. 

Vendar model sčasoma ponovno pridobi stabilnost, kar pomeni, da lahko podaljšanje števila 

epoh sicer poveča možnosti učenja, vendar lahko privede tudi do nestabilnosti. To delno 

podpira hipotezo, saj kaže, da ima lahko več epoh različne učinke na učenje modela. 

• Epohe = 50: 

Pri 50 epohah izgube pri učenju in potrjevanju močno nihajo, kar pomeni, da model težko 

vzdržuje stalno učinkovitost. Povečano nihanje, zlasti pri izgubi potrjevanja, kaže, da se model 

verjetno preveč prilagaja učnim podatkom, saj jih večkrat vidi v številnih epohah. 

Ta nihanja izgub kažejo na zmanjševanje donosnosti povečanja števila ciklov samoučenja po 

določeni točki. Model ne kaže stalnega izboljšanja, temveč postane bolj nestabilen in deluje 

nedosledno na podatkih za preverjanje. 

Ta rezultat kaže, da lahko preveliko število epoh škoduje sposobnosti posploševanja modela, 

kar potrjuje hipotezo, da obstaja optimalno število ciklov samoučenja, nad katerim se uspešnost 

ne izboljša in se lahko celo poslabša. 

• Zaključek v povezavi s hipotezo: 

Hipoteza je bila primerjati uspešnost pri različnem številu ciklov samoučenja in določiti 

optimalno število za usposabljanje modela. Rezultati podpirajo hipotezo, saj kažejo, da: 

• spodnje epohe (10): vodijo do stabilnega in učinkovitega učenja, kar nakazuje, da bi manjše 

število epoh lahko zadostovalo za optimalno delovanje; 

• srednje število epoh (30): povzročijo nekaj nestabilnosti, vendar lahko še vedno privedejo 

do učinkovitega učenja. To pomeni, da lahko modelu koristi zmerno povečanje števila epoh, 

vendar obstaja tveganje nestabilnosti; 

• večje število epoh (50): povzročijo znatno pretirano prilagajanje in nestabilno učenje, kar 

potrjuje, da preveliko število epoh vodi v zmanjševanje donosnosti in lahko poslabša 

učinkovitost modela na nevidnih podatkih. 
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7 RAZPRAVA 

Raziskava, predstavljena v tem delu, se osredotoča na primerjavo dveh priljubljenih 

simulacijskih platform - CARLA in Udacity - za usposabljanje modelov UI v aplikacijah AV, 

zlasti za začetnike. Raziskava ocenjuje tudi učinkovitost dveh razvojnih okolij, Jupyter 

Notebook in Google Colab, za razvoj in testiranje algoritmov AV, hkrati pa optimizira 

algoritme samoučenja za aplikacije AV. V poglavju o razpravi bodo obravnavane posledice teh 

ugotovitev, izzivi, na katere smo naleteli in morebitna področja za prihodnje raziskovanje. 

7.1 Vpliv ugotovitev 

O prednostih in slabostih simulatorjev CARLA in Udacity za usposabljanje modelov umetne 

inteligence v avtonomnih vozilih je mogoče pridobiti veliko informacij. Simulator CARLA kot 

zelo bogat s funkcijami in realističen simulator zagotavlja stabilno okolje za oblikovanje in 

preskušanje modelov umetne inteligence v različnih voznih scenarijih. Za začetnike pa bi lahko 

bila njegova zapletenost in večje zahteve glede obdelave podatkov težavna. Simulator Udacity 

pa, kljub temu da je manj realističen, ponuja bolj dostopno okolje z manj vstopnimi ovirami, 

zaradi česar je primeren za začetnike, ki se šele spoznavajo z izdelavo AV. 

Ugotovitve kažejo, da bi bil za izobraževalne namene ali začetne faze razvoja modela zaradi 

svoje preprostosti in enostavne uporabe koristnejši simulator Udacity. Nasprotno pa je lahko 

simulator CARLA primernejši za napredne uporabnike ali za faze, v katerih sta podrobno 

testiranje in realizem ključnega pomena. 

Kontrast med Google Colabom in beležnico Jupyter v smislu razvojnih okolij pokaže na 

kompromise med dostopnostjo in vsestranskostjo. Ker je Jupyter Notebook lokalno okolje, 

omogoča uporabnikom večje možnosti prilagajanja, vendar zahteva lokalno procesorsko moč. 

Google Colab pa ponuja brezplačen dostop do zmogljivih grafičnih procesorjev v oblaku, ki 

lahko močno izboljšajo razvojni proces – zlasti pri računsko zahtevnih dejavnostih, kot je 

usposabljanje modelov globokega učenja. 

V delu je bilo ugotovljeno, da bi lahko začetnikom bolj koristila uporaba storitve Google Colab 

zaradi njene dostopnosti in razpoložljivosti računalniških virov, ki zmanjšujejo potrebo po 

lokalnih visokozmogljivih računalniških napravah. Ko pa razvijalci pridobijo več izkušenj, 

lahko postaneta prilagodljivost in nadzor, ki ju zagotavlja beležnica Jupyter, bolj dragocena, 

zlasti v strokovnih ali raziskovalnih okoljih. 
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7.2 Izzivi in omejitve 

Študija je vključevala številne težave, ki jih je treba upoštevati pri prihodnjih raziskavah. Ena 

glavnih pomanjkljivosti je bila razpoložljivost in obseg naborov podatkov uporabljenih za 

usposabljanje in ocenjevanje modelov umetne inteligence. Zanesljivi modeli AV in natančna 

simulacija voznih okoliščin v resničnem svetu so odvisni od realističnih in obsežnih zbirk 

podatkov. Na posplošljivost ugotovitev bi lahko vplivala odvisnost študije od majhnih naborov 

podatkov. 

Dodatno težavo predstavljajo računalniški viri, ki so potrebni za izvajanje modelov globokega 

učenja in zahtevnih simulacij, zlasti v okolju CARLA. Raziskovalci in razvijalci, ki nimajo 

dostopa do visokozmogljivih računalniških virov, lahko pri svojem delu naletijo na omejitve 

zaradi vse večjih potreb po grafičnih procesorjih in pomnilniških virih. 

Poleg tega so časovne omejitve omejile število poskusov in iteracij, ki jih je bilo mogoče izvesti 

med raziskavo. Ta omejitev je morda vplivala na zanesljivost rezultatov optimizacije, ki se 

nanašajo na algoritme samoučenja. 

7.3 Priporočila za prihodnje raziskave 

Za temeljitejšo primerjavo bi bilo treba v prihodnjih študijah razmisliti o raziskavi širšega 

nabora razvojnih okolij in simulacijskih platform. Poleg tega so potrebna bolj realistična, a 

hkrati dostopna simulacijska okolja, ki lahko povežejo vrzel med obsežnimi zmogljivostmi za 

izkušene razvijalce in uporabnostjo za začetnike. 

Prihodnje raziskave se lahko osredotočijo tudi na oblikovanje in izboljšanje algoritmov za 

samoučenje, ki so izdelani posebej za aplikacije AV. Pričujoče delo predlaga idealno število 

iteracij za cikle samoučenja; vendar pa bi lahko z več raziskavami raziskali prilagodljive 

algoritme, ki dinamično spreminjajo parametre učenja kot odziv na povratne informacije in 

delovanje v realnem času. 

Razširitev obsega zbirk podatkov na bolj raznolike scenarije vožnje, vremenske razmere in 

geografske lokacije bi povečala zanesljivost modelov umetne inteligence, razvitih s temi 

simulacijskimi platformami. To ne bi izboljšalo le natančnosti in zanesljivosti modelov, temveč 

bi pomagalo tudi pri razvoju sistemov AV, ki so bolj prilagodljivi različnim okoljem v 

resničnem svetu. 
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8 SKLEP 

V tem diplomskem delu smo se osredotočili na oceno, kako dobro simulacijski platformi - 

CARLA in Udacity - usposabljata modele umetne inteligence za aplikacije AV, zlasti za 

uporabnike začetnike. Namen te študije je bil tudi oceniti uporabnost dveh razvojnih platform 

za testiranje in razvoj algoritmov AV: Jupyter Notebook in Google Colab. Drugi cilj študije je 

bil poiskati najboljše konfiguracije za algoritme samoučenja v simulacijah AV. Na podlagi 

temeljitega pregleda in testiranja ugotavljamo, da so bili cilji, ki smo si jih zastavili na začetku, 

v bistvu doseženi. 

Začetni cilj je bil najti boljšo simulacijsko platformo med CARLA in Udacity za usposabljanje 

začetnih modelov umetne inteligence. Glede na to analizo ima vsaka platforma edinstvene 

prednosti in slabosti. Platforma CARLA je zaradi svoje velike realističnosti in širokih 

zmogljivosti primernejša za zapletene simulacije in zahtevno testiranje modelov. Vendar zaradi 

svoje zapletenosti in visokih zahtev glede obdelave morda ni najboljša možnost za začetnike. 

Po drugi strani pa simulator Udacity, čeprav manj realističen, ponuja bolj dostopen in intuitiven 

vmesnik, zaradi česar je boljša možnost za začetnike, ki se učijo osnov AV ustvarjanja. Tako 

je bil dosežen cilj primerjave teh platform in ugotavljanja, ali so primerne za začetnike ali ne. 

Drugi cilj je bil ugotoviti, katero okolje - beležnica Jupyter ali Google Colab - bolje omogoča 

ustvarjanje in testiranje algoritmov AV. Študija je pokazala, da je Google Colab zaradi svoje 

zasnove v oblaku in lahko dostopnih računalniških virov boljša možnost za začetnike, zlasti 

tiste, ki nimajo dostopa do visoko zmogljive lokalne strojne opreme. Čeprav beležnica Jupyter 

Notebook ponuja več svobode in nadzora, bi bila za zahtevnejše uporabnike, ki potrebujejo 

posebne nastavitve, lahko primernejša. Tako je bil z ugotavljanjem prednosti in slabosti 

posameznih nastavitev dosežen tudi ta cilj. 

Tretji cilj je bila optimizacija algoritmov samoučenja za aplikacije AV – natančneje ugotoviti, 

koliko iteracij učnih ciklov je idealnih. Raziskava je potrdila, da povečanje števila iteracij 

poveča učinkovitost učnih algoritmov do določenega praga, po katerem omejitve virov 

povzročijo zmanjšanje donosnosti. Ta rezultat prispeva k cilju optimizacije ciklov samoučenja 

z uravnoteženjem uporabe računalniških virov z učinkovitostjo učenja. 

Raziskava je temeljila na štirih osnovnih hipotezah: 
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H1: Udacity Simulator je bolj prijazen za začetnike pri treniranju modelov umetne inteligence 

za AV kot CARLA pri enostavnih samostojnih vožnjah. 

Ta hipoteza je bila potrjena. Simulator Udacity se je zaradi preprostejšega vmesnika in manjših 

računalniških zahtev izkazal za uporabniku prijaznejšega in dostopnejšega za začetnike. Model 

CARLA je sicer zmogljivejši, vendar je bolj primeren za napredne uporabnike. 

H2: Google Colab ima večjo podporo in je lažji za začetnike kot Jupyter Notebook. 

Tudi ta hipoteza je bila potrjena. Google Colab je zaradi svoje postavitve v oblaku in 

razpoložljivosti zmogljivih računalniških virov bolj praktična izbira za začetnike, zlasti za tiste, 

ki nimajo lokalnih računalniških virov. 

H3: Povečanje števila ponovitev v ciklu samoučenja algoritma v simulaciji AV pri enostavnih 

samostojnih vožnjah vodi k izboljšanju učinkovitosti algoritma. 

Ta hipoteza je bila delno potrjena. V študiji je bilo ugotovljeno, da se s povečevanjem števila 

iteracij sicer sprva izboljša učinkovitost, vendar obstaja optimalna točka, po kateri dodatne 

iteracije ne povečajo bistveno učinkovitosti in lahko namesto tega povzročijo neučinkovitost 

zaradi omejenih virov. 

H4: Jupyter Notebook je učinkovitejši za razvoj in testiranje algoritmov umetne inteligence za 

AV pri enostavnih samostojnih vožnjah v primerjavi z Google Colab. 

Ta hipoteza je bila zavrnjena. Ugotovitve kažejo, da ima Google Colab za začetnike več 

prednosti zaradi infrastrukture v oblaku in enostavne uporabe, zato je primernejši za začetne 

faze razvoja. 

Raziskava je privedla do več ključnih ugotovitev, ki so dragocene tako za začetnike kot za 

izkušene strokovnjake na področju razvoja AV: 

Primernost platforme: V tem primeru je platforma Udacity zaradi svoje preprostosti primernejša 

za začetnike, medtem ko je CARLA primernejša za napredne uporabnike, ki zahtevajo visoko 

stopnjo realizma in podrobne simulacije. 

Razvojna okolja: Google Colab je ugodnejši za začetnike, saj ponuja preprosto uporabo in 

zmogljive vire v oblaku, medtem ko beležnica Jupyter zagotavlja več nadzora in 

prilagodljivosti, kar lahko koristi izkušenim uporabnikom. 
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Optimizacija učnih algoritmov: Obstaja optimalno število iteracij za algoritme za samostojno 

učenje, ki uravnoteži računsko učinkovitost in uporabo virov. Nad to optimalno točko se 

povečanje učinkovitosti zmanjša, kar poudarja pomen upravljanja virov v simulacijah AV. 

Na podlagi ugotovitev raziskave so predlagani naslednji predlogi: 

Za začetnike: Priporočljivo je začeti s simulatorjem Udacity in okoljem Google Colab. Ti orodji 

zagotavljata manj zapleteno in bolj dostopno vstopno točko v razvoj AV, kar začetnikom 

omogoča, da se osredotočijo na temeljno učenje, ne da bi jih preobremenili s tehničnimi zapleti. 

Za napredne uporabnike: Napredni uporabniki naj razmislijo o prehodu na simulator CARLA 

in beležnico Jupyter, ko se njihove spretnosti in potrebe razvijajo. Realistično okolje v 

simulatorju CARLA in prilagodljiva nastavitev Jupytra ponujata robustnejšo platformo za 

testiranje zapletenih scenarijev in razvoj naprednih algoritmov. 

Optimizacija algoritmov: Nadaljnje raziskave bi morale raziskati prilagodljive algoritme 

samoučenja, ki dinamično prilagajajo svoje parametre glede na uspešnost v realnem času, kar 

zagotavlja optimalno uporabo računalniških virov in povečuje učinkovitost učenja. 

Razširitev podatkov: Prihodnje študije bi morale vključevati širši nabor podatkovnih nizov, ki 

odražajo različne vozne pogoje in okolja. To bo povečalo robustnost in posplošljivost modelov 

umetne inteligence usposobljenih s temi simulatorji. 

Cilji tega diplomskega dela so bili učinkovito doseženi, večina postavljenih teorij pa je bila 

preverjena. Rezultati zagotavljajo pomembne nove informacije o tem, kako dobro delujejo 

razvojna okolja in simulacijske platforme za aplikacije AV, zlasti za začetnike. Ta raziskava 

omogoča bolj premišljeno odločanje na tem področju, saj zagotavlja uporabne nasvete, ki 

pomagajo tako neizkušenim kot izkušenim razvijalcem pri premagovanju izzivov, povezanih z 

razvojem AV tehnologije. Prihodnje študije bi morale temeljiti na teh odkritjih, da bi izboljšale 

instrumente in tehnike, ki so na voljo za ustvarjanje avtonomnih vozil, kar bi zagotovilo 

nenehne inovacije in napredek v tem hitro razvijajočem se sektorju. 
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10 PRILOGE 

Vse potrebne kode, ki sem jih naredila za to diplomsko delo in analizo, so vključene in oddane 

na USB ključku. 
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