

VIŠJA STROKOVNA ŠOLA ACADEMIA

MARIBOR

AVTOMATIZACIJA SISTEMSKE

ADMINISTRACIJE S POMOČJO SODOBNIH

ORODIJ IN SKRIPTIRANJA

Kandidat: Iztok Hladen

Vrsta študija: višješolski strokovni študij

Študijski program: Informatika

Mentor – predavatelj: mag. Dušan Brglez

Mentor v podjetju: Matjaž Žnidarič, inž. inf.

Lektorica: Jasmina Vajda Vrhunec, prof. slov.

Maribor, 2025

IZJAVA O AVTORSTVU DIPLOMSKEGA DELA
Podpisani Iztok Hladen sem avtor diplomskega dela z naslovom Avtomatizacija sistemske

administracije s pomočjo sodobnih orodij in skriptiranja, ki sem ga napisal pod mentorstvom

mag. Dušana Brgleza.

S svojim podpisom zagotavljam, da:

• je predloženo delo izključno rezultat mojega dela,

• sem poskrbel, da so dela in mnenja drugih avtorjev, ki jih uporabljam v predloženi

nalogi, navedena oz. citirana skladno s pravili Višje strokovne šole Academia Maribor,

• se zavedam, da je plagiatorstvo – predstavljanje tujih del oz. misli kot moje lastne –

kaznivo po Zakonu o avtorski in sorodnih pravicah (Uradni list RS, št. 16/07 – uradno

prečiščeno besedilo, 68/08, 110/13, 56/15 in 63/16 – ZKUASP); prekršek pa podleže

tudi ukrepom Višje strokovne šole Academia Maribor skladno z njenimi pravili,

• skladno z 32.a členom ZASP dovoljujem Višji strokovni šoli Academia Maribor objavo

diplomskega dela na spletnem portalu šole.

Križevci pri Ljutomeru, junij 2025 Podpis študenta: Iztok Hladen

ZAHVALA

Zahvaljujem se mentorju mag. Dušanu Brglezu za strokovno pomoč, usmeritve in koristne

nasvete skozi celoten proces nastajanja diplomskega dela.

Prav tako se zahvaljujem mentorju v podjetju g. Matjažu Žnidariču za podporo in pomoč pri

praktični uporabi orodij, potrebnih za nastanek diplomskega dela.

Največjo zahvalo namenjam družini za neomajno podporo, razumevanje in spodbudo, ne le

med pisanjem diplomskega dela, temveč skozi celoten študij.

POVZETEK

V sodobnih okoljih informacijske tehnologije (IT) predstavlja sistemska administracija temelj

za zagotavljanje stabilnega, varnega in učinkovitega delovanja IT-sistemov. Cilj diplomskega

dela je bil ovrednotiti vpliv avtomatizacije ključnih nalog sistemske administracije na

učinkovitost, zanesljivost, varnost in odzivnost IT-sistemov.

Diplomsko delo se začne z zgodovinskim pregledom računalništva in opredelitvijo vloge

sistemskega administratorja. Sledi pregled izbranih orodij, ki podpirajo avtomatizacijo in

napredno analitiko – od osnovnih skriptnih jezikov, kot so Shell, PowerShell in Python, do

specializiranih orodij, kot sta Ansible za upravljanje konfiguracij in CheckMK za nadzor

sistemov. Predstavljena so tudi nekatera napredna orodja, kot je Darktrace, ki izkorišča umetno

inteligenco in strojno učenje za izboljšano zaznavanje anomalij ter podporo pri odločanju tako

v sistemski administraciji kot v kibernetski varnosti. Teoretično je obravnavan tudi pomen

avtomatizacije za varnostno skladnost, zlasti v kontekstu upravljanja uporabniških računov.

Osrednji del diplomskega dela se nato osredotoča na poglobljeno implementacijo

avtomatizacije specifičnih sistemskih opravil, kjer s praktičnimi primeri preverjamo nekatere

zastavljene hipoteze. V tem sklopu smo razvili tudi lastno PowerShell skripto AD-Toolkit, ki

skozi interaktivni meni ponuja nabor orodij za upravljanje uporabniških računov v okolju

Active Directory. Prav tako smo izvedli avtomatizacijo varnostnega kopiranja podatkov in

obnovitve sistema z orodjem Proxmox VE ter avtomatizirano nameščanje programskih

posodobitev z orodjem Ansible.

Rezultati potrjujejo, da avtomatizacija sistemskih opravil zmanjšuje tveganje izgube podatkov

in število varnostnih ranljivosti, izboljšuje odzivni čas na sistemske težave, optimizira porabo

diskovnega prostora in skrajša čas obnovitve sistemov po napakah. Čeprav so nekatere

naprednejše tematike, kot je polna implementacija rešitev na osnovi umetne inteligence zaradi

praktičnih omejitev, obdelane pretežno skozi teoretični del, praktični preizkusi in razvoj

lastnega orodja jasno kažejo, da je avtomatizacija nepogrešljiv element za doseganje visoke

učinkovitosti zanesljivosti, varnosti in odzivnosti sodobnih IT-sistemov.

Ključne besede: avtomatizacija, sistemska administracija, PowerShell, Ansible, varnost

informacijskih sistemov.

ABSTRACT

Automation of System Administration Using Modern Tools and Scripting

In modern IT environments, system administration forms the foundation for ensuring the stable,

secure and efficient operation of IT systems. The aim of this diploma thesis was to evaluate the

impact of automating key system administration tasks on the efficiency, reliability, security,

and responsiveness of IT systems.

The diploma thesis starts with a historical overview of computing and a definition of the system

administrator's role. This is followed by a review of the selected tools that support automation

and advanced analytics – from basic scripting languages such as Shell, PowerShell, and Python,

to specialized tools like Ansible for configuration management and CheckMK for system

monitoring. Some advanced tools are also presented, such as Darktrace, which utilizes artificial

intelligence and machine learning for improved anomaly detection and supports decision

making in both system administration and cybersecurity. The importance of automation for

security compliance, particularly in the context of user account management, is also discussed

theoretically. The core part of the diploma thesis then focuses on the implementation of

automating specific system tasks, where practical examples are used to test some of the

hypotheses. In this section, we also developed our own PowerShell script, AD-Toolkit, which

provides a set of tools for managing user accounts in Active Directory via an interactive menu.

We further implemented automation of data backup and system recovery using Proxmox VE,

and automated software update installation with Ansible.

The results confirm that automating system tasks reduces the risk of data loss, decreases the

number of security vulnerabilities, improves response time to system errors, optimizes disk

space usage, and shortens system recovery time after failures. Although some more advanced

topics, such as the full implementation of artificial intelligence-based solutions, were addressed

primarily in the theoretical part due to practical constraints, the practical tests and the

development of a custom tool clearly indicate that automation is an important element for

achieving high efficiency, reliability, security, and responsiveness in modern IT systems.

Keywords: automation, system administration, PowerShell, Ansible, IT System Security

KAZALO VSEBINE

1 UVOD .. 9

1.1 OPIS PODROČJA IN OPREDELITEV PROBLEMA ...9

1.2 NAMEN, CILJI IN OSNOVNE TRDITVE ..10

1.3 PREDPOSTAVKE IN OMEJITVE ..10

1.4 UPORABLJENE RAZISKOVALNE METODE ..10

2 ORODJA ZA AVTOMATIZACIJO SISTEMSKE ADMINISTRACIJE 11

2.1 ZGODOVINA AVTOMATIZACIJE ..11

2.1.1 Zgodovina računalnikov .. 11

2.1.2 Kaj je sistemska administracija ... 14

2.2 PREGLED ORODIJ ..16

2.2.1 Shell skripte ... 16

2.2.2 PowerShell ... 18

2.2.3 Python .. 19

2.2.4 Ansible ... 22

2.2.5 Checkmk .. 26

2.3 UMETNA INTELIGENCA V SISTEMSKI ADMINISTRACIJI ..30

2.4 AVTOMATIZACIJA IN VARNOSTNA SKLADNOST ..31

3 AVTOMATIZACIJA SISTEMSKIH OPRAVIL ... 32

3.1 PRIMERI AVTOMATIZACIJE S POWERSHELLOM ...32

3.1.1 Brisanje specifičnega direktorija s pomočjo PowerShell skripte in Task Schedulerja 32

3.1.2 Premikanje datotek v arhivsko mapo s pomočjo PowerShella .. 35

3.1.3 Izdelek – program AD-Toolkit v PowerShellu ... 39

3.2 PRIMERI INTEGRACIJE UMETNE INTELIGENCE V AVTOMATIZACIJO ..42

3.3 AVTOMATIZACIJA VARNOSTNIH KOPIJ ...43

3.4 AVTOMATIZACIJA POSODABLJANJA PROGRAMSKE OPREME ..45

4 SKLEP ... 48

5 LITERATURA ... 52

6 PRILOGE .. 54

KAZALO SLIK

SLIKA 1: ABAKUS ... 11

SLIKA 2: KALKULATOR PASCALINE ... 12

SLIKA 3: DIFERENČNI STROJ ... 12

SLIKA 4: ANALITIČNI STROJ ... 13

SLIKA 5: ENIAC .. 14

SLIKA 6: STANJE V IZVORNI IN CILJNI MAPI PRED ZAGONOM SKRIPTE... 22

SLIKA 7: STANJE V IZVORNI IN CILJNI MAPI PO ZAGONU SKRIPTE IN VSEBINA DNEVNIŠKE DATOTEKE 22

SLIKA 8: DODAJANJE REPOZITORIJA ANSIBLE .. 24

SLIKA 9: RAZLIČICA ANSIBLE .. 24

SLIKA 10: KONFIGURACIJA ANSIBLE HOSTS ... 24

SLIKA 11: ANSIBLE PING .. 25

SLIKA 12: IZKLOP SISTEMA PLAYBOOK .. 25

SLIKA 13: REZULTAT PLAYBOOKA ... 26

SLIKA 14: PRIDOBIVANJE ORODJA CHECKMK ... 26

SLIKA 15: NAMESTITEV ORODJA CHECKMK ... 27

SLIKA 16: PRIKAZ PRIDOBIVANJA AGENTOV V ORODJU CHECKMK ... 27

SLIKA 17: PRIKAZ DODANIH KLIENTOV V ORODJU CHECKMK .. 28

SLIKA 18: PRIKAZ STANJA KLIENTOV V ORODJU CHECKMK ... 28

SLIKA 19: PRAVILO ZA OBVEŠČANJE V ORODJU CHECKMK .. 28

SLIKA 20: PRIMER OPOZORILA ORODJA CHECKMK PREK E-POŠTE 1 ... 29

SLIKA 21: PRIMER OPOZORILA ORODJA CHECKMK PREK E-POŠTE 2 ... 29

SLIKA 22: PRIMER PRIKAZA STANJA KLIENTOV V ORODJU CHECKMK V PODJETJU .. 30

SLIKA 23: SPLOŠNE NASTAVITVE TASK SCHEDULERJA – POWERSHELL BRISANJE VSEBINE MAPE 34

SLIKA 24: TRIGGER NASTAVITVE TASK SCHEDULERJA – POWERSHELL BRISANJE VSEBINE MAPE 34

SLIKA 25: ACTIONS NASTAVITVE TASK SCHEDULERJA – POWERSHELL BRISANJE VSEBINE MAPE 35

SLIKA 26: PRIMER VSEBINE DATOTEKE ICT_LOCATIONS.TXT ... 37

SLIKA 27: LASTNOSTI MAP PRED PREMIKANJEM ... 38

SLIKA 28: LASTNOSTI MAP PO PREMIKANJU ... 38

SLIKA 29: VSEBINA DNEVNIŠKE DATOTEKE ROBOCOPY PO PREMIKANJU ... 39

SLIKA 30: OSNOVNI PRIKAZ AD-TOOLKIT ... 40

SLIKA 31: KREIRANJE NOVEGA UPORABNIKA V AD-TOOLKIT ... 40

SLIKA 32: ONEMOGOČANJE UPORABNIKA V AD-TOOLKIT ... 40

SLIKA 33: IZPIS PODATKOV O UPORABNIKIH V AD-TOOLKIT ... 41

SLIKA 34: UREJANJE INFORMACIJ O UPORABNIKIH V AD-TOOLKIT .. 41

SLIKA 35: UVOZ IZ DATOTEKE CSV V AD-TOOLKIT .. 41

SLIKA 36: PRIKAZ ORODJA DARKTRACE .. 43

SLIKA 37: KONFIGURACIJA AVTOMATIZACIJE VARNOSTNIH KOPIJ ... 44

SLIKA 38: REZULTAT AVTOMATIZACIJE VARNOSTNEGA KOPIRANJA .. 44

SLIKA 39: ANSIBLE UPDATE IN UPGRADE ... 45

SLIKA 40: STANJE STREŽNIKA PRED ZAGONOM PLAYBOOKA ... 46

SLIKA 41: STANJE OB ZAGONU PLAYBOOKA .. 46

SLIKA 42: STANJE STREŽNIKA PO ZAGONU PLAYBOOKA .. 47

9

1 UVOD

1.1 Opis področja in opredelitev problema

V današnjem svetu je informacijska tehnologija (IT) postala hrbtenica poslovanja, zato je vloga

sistemske administracije ključnega pomena pri zagotavljanju nemotenega delovanja in

zanesljivosti IT-sistemov. Naloge sistemskih administratorjev zajemajo širok spekter, v

katerega vključujemo upravljanje uporabnikov in strežnikov, nameščanje in konfiguracijo

programske opreme, postavljanje in vzdrževanje omrežij ter zagotavljanje varnosti sistemov. S

stalnim napredkom tehnologije in vedno večjo kompleksnostjo IT-okolij pa se sistemski

administratorji soočajo z vedno večjimi izzivi. V sodobnem IT-svetu so tradicionalne metode

in pristopi pogosto zamudni in podvrženi napakam. Kadar je treba upravljati na stotine ali celo

na tisoče strežnikov in naprav, postane ročna sistemska administracija zamudna, neučinkovita

in praktično nemogoča. Taka neučinkovitost povzroči izgubo časa in virov, prav tako pa lahko

povzroči resne težave, kot so izpadi raznih sistemov, varnostne ranljivosti in izguba podatkov.

V zadnjem času se tudi na področju sistemske administracije uveljavlja uporaba umetne

inteligence, kar sistemskim administratorjem lahko tako olajša kot do določene mere tudi oteži

delo.

Namen diplomskega dela je raziskovati razne možnosti avtomatizacije sistemske administracije

z namenom izboljšanja učinkovitosti, zmanjšanja stroškov in hkrati povečanja zanesljivosti IT-

sistemov. Avtomatizacija predstavlja rešitev za raznorazne izzive, s katerimi se sistemski

administratorji soočajo na dnevni bazi, saj nam omogoča avtomatizacijo ponavljajočih se nalog,

standardizacijo konfiguracij in avtomatizirano spremljanje sistemov. S pomočjo avtomatizacije

zmanjšamo potrebo po ročnem posredovanju, ob pravilni konfiguraciji pa s tem zmanjšamo

možnost človeških napak in prav tako sprostimo časovne vire sistemskih administratorjev,

zaradi česar se lahko posvetijo pomembnejšim nalogam.

V diplomskem delu se bomo osredotočili na praktično implementacijo avtomatizacije nekaterih

ključnih nalog sistemske administracije. Za to bomo primarno uporabili skriptni jezik

PowerShell. Če je za specifične naloge bolj smiselno uporabiti okolje Linux, se bomo

posluževali Shell skript, omenili pa bomo tudi uporabo skript, zapisanih v programskem jeziku

Python, ter naprednejša in zmogljivejša orodja, kot je Ansible.

10

1.2 Namen, cilji in osnovne trditve

Namen diplomskega dela je raziskati in ovrednotiti vpliv avtomatizacije ključnih nalog

sistemske administracije na učinkovitost, zanesljivost, varnost in odzivnost IT-sistemov.

Poudarek bo na uporabi skriptnega jezika PowerShell (predvsem v okolju Microsoft Windows),

dopolnjenega s Shell skriptami (v okoljih Linux) in Python skriptami. Dodatno bomo še

raziskali možnosti uporabe umetne inteligence za izboljšanje učinkovitosti avtomatizacije.

Osredotočili se bomo predvsem na avtomatizacijo varnostnega kopiranja podatkov,

avtomatizacijo posodabljanja sistemov, avtomatizacijo čiščenja začasnih datotek,

avtomatizacijo spremljanja sistemskih virov in uporabo umetne inteligence pri avtomatizaciji.

1.3 Predpostavke in omejitve

Diplomsko delo je zastavljeno na način, da imamo relativno enostaven dostop do potrebne

tehnologije – z nekaj izjemami. Za izvedbo praktičnega dela projektnega dela je zahtevana

določena mera osnovnega znanja sistemske administracije, kot je poznavanje ukazne vrstice

tako v okoljih Windows kot Linux. Čeprav je dostop do tehnologije relativno enostaven, pa

morda vidimo težavo v omejenosti potrebnih računalniških virov in posledično v omejenem

testnem okolju. Prav tako zaradi informacij zaupne narave v diplomskem delu ne moremo

izvesti celotnega praktičnega dela v okolju podjetja, zato se bomo omejili na lokalno

postavljene strežnike in virtualne stroje.

1.4 Uporabljene raziskovalne metode

V diplomskem delu bomo uporabili kombinacijo empiričnega in praktično-aplikativnega

pristopa. V raziskavi se bomo opirali na že obstoječe znanje in izkušnje strokovnjakov, ki so

opisani v strokovni literaturi, hkrati pa bomo ustvarili uporabne skripte za avtomatizacijo in

preverili, kako dobro se te obnesejo v praksi. Na tak način bo raziskava imela praktično

vrednost in bo hkrati tudi dobro utemeljena s teorijo, kar bo pomagalo pri lažjem razumevanju

namena avtomatizacije v sistemski administraciji.

11

2 ORODJA ZA AVTOMATIZACIJO SISTEMSKE

ADMINISTRACIJE

2.1 Zgodovina avtomatizacije

2.1.1 Zgodovina računalnikov

Zgodovina razvoja računalnikov sega v davno preteklost, saj so si ljudje pri štetju pomagali z

raznoraznimi pripomočki. Dobrih 2500 let pred našim štetjem se je pojavil abakus – naprava,

ki je s pomočjo v okvir vpetih kroglic omogočala hitro in enostavno seštevanje, odštevanje in

nekatere ostale računske operacije, s tem pa je kar precej poenostavila trgovanje. (Anželj in

drugi, 2025, str. 212)

Slika 1: Abakus

Vir: https://www.ecb.torontomu.ca/~elf/abacus/intro.html

Leta 1642 je Blaise Pascal naredil prvi mehanični kalkulator, ki ga imenujemo Pascaline.

Deloval je na principu zobatih koles z desetimi zobmi ter mehanizma za prenos enote na

naslednje kolo, omogočal pa je seštevanje in odštevanje. (Anželj in drugi, 2025, str. 213)

Podobno delovanje je bilo mogoče opaziti v avtomobilih, saj so v preteklosti avtomobili imeli

analogne števce kilometrov, ki so delovali na dokaj podoben princip.

12

Slika 2: Kalkulator Pascaline

Vir: https://kids.britannica.com/students/article/Pascaline/332603/media?assemblyId=116010

Ker pa so ljudje vedno bolj stremeli k temu, da svoja dnevna opravila avtomatizirajo, se je v

19. stoletju pojavil nov izum. Charles Babbage je namreč izumil prvi avtomatični mehanski

kalkulator – poimenovan diferenčni stroj. (Anželj in drugi, 2025, str. 214) Ta stroj je bil zmožen

računati vrednosti s pomočjo seštevanja, kar pomeni, da je bil relativno omejen. Kasneje je

Babbage zasnoval tako imenovani analitični stroj, ki je bil zmožen poleg seštevanja tudi

odštevanja, množenja in deljenja, možno pa ga je bilo tudi programirati. Leta 1843 je Ada

Lovelace v svojih prevodih člankov italijanskega matematika in inženirja Luigija Federica

Menabreaja zasnovala prvi računalniški program za analitični stroj, ki bi lahko izračunaval

Bernoullijeva števila. (Charles Babbage, 2025)

Slika 3: Diferenčni stroj

Vir: https://cdn.britannica.com/10/23610-050-6E34CF6B/portion-Difference-Engine-Charles-Babbage-

logarithm-tables-1832.jpg

13

Slika 4: Analitični stroj

Vir: https://cdn.britannica.com/31/172531-050-E009D42C/portion-Charles-Babbage-Analytical-Engine-death-

mill-1871.jpg

Skok v leto 1936 nam prinese novo teoretično zasnovo sodobnega računalnika, ki si ga je

zamislil Alan Turing. Ta naj bi imel neskončen trak, katerega glava bi imela možnost določenih

operacij, in kontrolni mehanizem. Trak je razdeljen v kvadrate, ki lahko vsebujejo informacije

ali pa ne, glava pa ima možnost premikanja, branja in zapisovanja ter tudi brisanja iz kvadratov

na traku. (Turing Machine, 2025) To je kasneje postala osnova za vse nadaljnje digitalne

računalnike, ki delujejo po Neumannovem principu. (Anželj in drugi, 2025, str. 216)

Pri zgodovini razvoja računalnikov je pomembno omeniti tudi računalnik Eniac, zasnovan leta

1943 in dokončan leta 1945. Zasnovan je bil za izračunavanje vrednosti v tabeli dosega

artilerije. Navodila so bila programirana s pomočjo strojnih jezikov, kar je pomenilo, da je stroj

lahko deloval z veliko hitrostjo. (Eniac, 2025) To leto predstavlja tudi nek mejnik, saj od tega

leta naprej ljudje postanejo operaterji oziroma programerji, računalnik pa je le še poimenovanje

za stroj. (Anželj in drugi, 2025, str. 217)

14

Slika 5: Eniac

Vir: https://cdn.sanity.io/images/i2z87pbo/production/a9132a54f148d9eef366dbf5f7a8cb5c25603971-

2500x1597.webp

V letih, ki so sledila, ločimo pet generacij elektronskih računalnikov. Prva generacija, v katero

spada tudi računalnik Eniac, temelji na tehnologiji elektronk, uporablja strojni jezik in luknjaste

kartice, programira pa se s premikanjem stikal. Druga generacija temelji na tehnologiji

tranzistorjev, uporablja luknjaste kartice, programira pa se s simbolnimi jeziki. Tretja

generacija temelji na tehnologiji čipov oziroma integriranih vezij, kot vhodno in izhodno

napravo uporablja tipkovnico in monitor, programira pa se s pomočjo postopkovnih in opisnih

programskih jezikov. Prav tako imajo računalniki že nameščene operacijske sisteme. Četrta

generacija temelji na tehnologiji mikroprocesorjev, kar pomeni, da je na eno silicijevo ploščico

postavljenih ogromno čipov. Kot vhodne in izhodne naprave se uporabljajo miška, tipkovnica,

mikrofon, fotoaparat, monitor, tiskalnik, zvočniki. Programira se večinoma v višjenivojskih

programskih jezikih. Peta generacija, prihodnost računalnikov, pa bo po vsej verjetnosti

vsebovala kvantne računalnike ali pa skupine računalnikov – oblak (angl. cloud). (Anželj in

drugi, 2025, str. 218–220)

2.1.2 Kaj je sistemska administracija

Sistemska administracija je zelo širok pojem, neka strnjena definicija pa bi bila, da je to

disciplina upravljanja informacijskih sistemov. V to so vključeni postavitev, konfiguracija in

vzdrževanje, saj tako poskrbimo za zanesljivo delovanje računalniških sistemov in omrežij.

15

Sistemski administratorji imajo zelo širok spekter nalog, ki so ključnega pomena za nemoteno

delovanje podjetij in organizacij. Odvisno od velikosti in kompleksnosti organizacije lahko

opravljajo različne naloge, vendar pa v večji meri med te naloge spadajo načrtovanje,

konfiguracija, odpravljanje težav in vzdrževanje kompleksnih računalniških sistemov, ki so

sestavljeni iz več komponent (na primer sistemi za upravljanje baz podatkov in spletni strežniki)

in več strežnikov, ki so razporejeni po več omrežjih in različnih platformah operacijskih

sistemov. (Barrett in drugi, 2004) Prav tako pa med naloge sistemskih administratorjev spadajo

tudi zagotavljanje varnosti sistemov, pomoč končnim uporabnikom, pripravljanje

dokumentacije in ne nazadnje tudi pripravljanje avtomatizacije za določene naloge. (What Does

a Systems Administrator Do?, 2025) Ravno pri tej zadnji nalogi sistemskih administratorjev –

avtomatizaciji – se pogosto pojavljajo razni miti, kot na primer, da je avtomatizacija nevarna in

da se raje poslužujejo ročnega upravljanja nalog, saj je s tem zagotovljena večja kakovost.

Seveda ta trditev ne drži, saj je pri vsaki nalogi, ki vsebuje človeški dejavnik, možno, da pride

do težave. Naloga sistemskega administratorja je, da avtomatizacijo preveri v testnem okolju, s

tem pa zagotovi čim boljše delovanje v živem okolju. (Limoncelli, Hogan, & Chalup, 2017, str.

74)

Kot že omenjeno, imajo sistemski administratorji širok spekter nalog, zato jih lahko ločimo

glede na področje, s katerim se primarno ukvarjajo. Tako lahko imamo sistemske

administratorje za omrežja, administratorje baz podatkov, administratorje sistemov v oblaku in

podobno. (What Does a Systems Administrator Do?, 2025)

Prihodnost sistemske administracije je po eni strani polna izzivov, po drugi strani pa polna

novih priložnosti. Predvidevamo, da bodo področja, kot so avtomatizacija, umetna inteligenca,

računalništvo v oblaku in splošna kibernetska varnost, močno vplivala na razvoj nalog

sistemskih administratorjev.

Da bi lažje razumeli delo sistemskih administratorjev, je treba razumeti razvoj in napredek

sistemov in različnih arhitektur. Če na kratko povzamemo vrste teh sistemov:

1. Mainframe je neke vrste glavni računalnik, ki je ključen za obdelavo ogromne količine

podatkov in izvedbo ključnih operacij. Sistemski administrator za tako arhitekturo je

odgovoren za vzdrževanje, upravljanje in varnost takega sistema. Njegovo delo vključuje

nameščanje razne programske opreme, nadzorovanje delovanja sistema in tudi skrb za

varnost sistema. Kot zanimivost, mainframe sega v davno leto 1937 – tako imenovani IBM

Automatic Sequence Controlled Calculator ali Harvard Mark I je bil prvi računalnik take

16

arhitekture. Prednosti take arhitekture so predvsem v zanesljivosti in dostopnosti. (Susnjara

& Smalley, 2025)

2. Na drugi strani sistemske administracije pa se je v 70. letih pojavil UNIX. Ti sistemi so

imeli pomembno vlogo pri razvoju računalništva, saj so neposredno vplivali na razvoj

marsikaterega modernega operacijskega sistema. Sistemski administratorji morajo do

določene mere poznati administracijo UNIX, saj se ta arhitektura oziroma neki derivati te

arhitekture pogosto pojavljajo še dandanes. Delo administratorja tako vključuje vse od

nameščanja in konfiguracij do upravljanja uporabnikov, nadzorovanja sistema ter tudi

skriptiranja in avtomatizacije. (unix.org, 2025)

3. V kontekstu sistemske administracije je pomembno omeniti še Microsoftovo programsko

opremo, ki ne temelji na arhitekturi UNIX, vendar je kljub temu z vidika sistemske

administracije pomemben del vsakdanjika sistemskih administratorjev.

Dandanes je realnost, da se v sodobnem IT-okolju sistemski administratorji srečujejo z zelo

heterogenim delom, saj upravljanje vseh teh raznovrstnih sistemov in arhitektur zahteva širok

spekter znanj in spretnosti.

2.2 Pregled orodij

2.2.1 Shell skripte

Shell skripte, običajno uporabljene v sistemih UNIX, so skripte, ki jih sistemski administratorji

tipično uporabljajo za lažje, ponavljajoče se naloge. V večini sistemov je privzeta »lupina« ali

shell tako imenovani bash (angl. Bourne-again shell), določeni sistemi pa še vedno uporabljajo

sh ali pa ksh. (Nemeth, Snyder, Hein, & Whaley, 2010, str. 29, 30) Kot že omenjeno, je bash

odličen za relativno enostavne skripte, ki sistemskemu administratorju avtomatizirajo delo, ki

bi ga običajno moral izvajati ročno v ukazni vrstici.

V bash skripti v prvi vrstici sistemu povemo, da gre za skripto. To storimo z zapisom

#!/bin/bash. S tem deklariramo, da bo datoteko interpretirala bash lupina, ki se nahaja v mapi

/bin. Za komentarje v skripti uporabljamo simbol »#«. (Nemeth, Snyder, Hein, & Whaley, 2010,

str. 37)

17

Enostaven primer bash skripte bi lahko bil, ko imamo kot sistemski administrator nalogo, da

uredimo avtomatizacijo brisanja vsebine mape in njenih podmap, vendar hkrati ohranjamo

strukturo samih map. V ta namen bomo kreirali skripto z imenom brisanje_datotek.sh.

#!/bin/bash

Brisanje datotek
Avtor: Iztok Hladen
Datum: 20.02.2025

Nastavi mapo, v kateri se bodo brisale datoteke.

MAPA_ZA_BRISANJE="/home/iztokh/Documents/scanners"

Preverjanje, če mapa obstaja

if [! -d "$MAPA_ZA_BRISANJE"]; then
 echo "Mapa '$MAPA_ZA_BRISANJE' ne obstaja."
 exit 1
fi

Iskanje in brisanje vseh datotek v mapi

find "$MAPA_ZA_BRISANJE" -depth -type f -delete

echo "Brisanje datotek v mapi '$MAPA_ZA_BRISANJE' in podmapah je končano."

exit 0

Struktura omenjene skripte je zelo enostavna: najprej določi, da se bo skripta izvajala z bash

lupino, sledi nekaj zakomentiranih vrstic, v katerih so zapisani glavna funkcija skripte ter tudi

avtor in datum. Sledita definicija spremenljivke lokacije mape, v kateri bo skripta izvajala

brisanje, nato pa še hitro preverjanje, ali zapisana lokacija sploh obstaja. Če ta ne obstaja, se

izpiše sporočilo o napaki, skripta pa se zaključi. Če lokacija obstaja, pa bo skripta poiskala v

mapi, ki je bila določena s spremenljivko MAPA_ZA_BRISANJE, vse datoteke in jih tudi

izbrisala. Skripti smo določili iskanje le datotek z uporabo -type f. Skripta se zaključi s

sporočilom, da je bilo brisanje datotek v vnaprej določeni mapi in podmapah končano.

Če želimo, da se omenjena skripta izvaja samodejno v določenih intervalih, lahko za to

uporabimo Cron. Za namen tega moramo urediti crontab, v katerega moramo dodati vrstico, v

kateri definiramo čas izvajanja in lokacijo skripte. Če bi na primer želeli, da se skripta izvaja

vsako nedeljo ob enih zjutraj, bi ta vrstica izgledala tako:

0 1 * * 0 /home/iztokh/Documents/brisanje_datotek.sh

V prvem znaku definiramo minuto, v drugem uro, tretji in četrti sta dan v mesecu in mesec, z *

določimo, da se izvaja vsak dan v mesecu in vsak mesec v letu, z zadnjim znakom pa definiramo

dan v tednu. Sledi lokacija, kjer se skripta nahaja.

18

2.2.2 PowerShell

PowerShell je zmogljivo Microsoftovo orodje, ki ga sistemski administratorji uporabljajo za

poenostavitev sistemskih opravil in avtomatizacijo. (What is PowerShell?, 2025) Temelji na

ogrodju .NET in za razliko od tradicionalnega ukaznega poziva (command prompt) uporablja

objekte in ne le besedilne nize. (PowerShell nadomešča ukazni poziv, 2025) Ukazi v

PowerShellu so imenovani »cmdlet« in so tako rekoč majhni programi za izvajanje specifičnih

nalog. (Chapter 1 - Getting started with PowerShell, 2025) Nekaj primerov teh cmdletov:

• Get-ChildItem, ki nam na enostaven način izpiše vsebino specifične mape;

• Get-Process, ki nam brez uporabe dodatnih parametrov izpiše seznam vseh aktivnih

procesov;

• Get-Service, ki nam brez uporabe dodatnih parametrov izpiše seznam vseh storitev v

sistemu.

PowerShell prav tako podpira skriptiranje, kar sistemskim administratorjem omogoča

avtomatizacijo kompleksnejših nalog in tudi ustvarjanje lastnih orodij.

Preprost primer tega bi lahko bil preverjanje odprtih portov na želenih IP-naslovih:

Preverjanje portov po IP naslovih

Avtor: Iztok Hladen
Datum: 03.03.2025

Ime log datoteke
$logFilePath = Join-Path -Path $PSScriptRoot -ChildPath "tnclog.txt"

Zapisovanje v log datoteko
function Write-Log {
 param (
 [string]$Message
)
 $Timestamp = Get-Date -Format "yyyy-MM-dd HH:mm:ss"
 $LogEntry = "[$Timestamp] $Message"
 Add-Content -Path $logFilePath -Value $LogEntry
 Write-Host $LogEntry
}

Vnos IP naslovov, ločenih z vejico
$ipAddressesInput = Read-Host "Vnesi IP naslove, ki jih želiš preveriti. Če jih je
več, jih loči z vejico."
$ipAddresses = $ipAddressesInput.Split(',') | ForEach-Object { $_.Trim() }

Vnos portov, ločenih z vejico
$portsInput = Read-Host "Vnesi porte, ki jih želiš preveriti. Če jih je več, jih
loči z vejico."
$ports = $portsInput.Split(',') | ForEach-Object { $_.Trim() }

Zanka skozi IP naslove in porte
foreach ($ip in $ipAddresses) {
 foreach ($port in $ports) {
 try {
 # Izvedba TNC
 $testResult = Test-NetConnection -ComputerName $ip -Port $port -
InformationLevel Quiet

19

 # Zapisovanje rezultatov v log datoteko in izpis na zaslon
 if ($testResult) {
 Write-Log "IP: $ip, Port: $port - Odprt"
 } else {
 Write-Log "IP: $ip, Port: $port - Zaprto"
 }
 } catch {
 # Zapisovanje napak v log datoteko in izpis na zaslon
 Write-Log "Napaka pri preverjanju IP: $ip, Port: $port -
$($_.Exception.Message)"
 }
 }
}

Write-Log "Preverjanje portov končano."

Struktura skripte je enostavna: sestavljena je tako, da skripta najprej kreira log datoteko z

imenom tnclog.txt v mapi, kjer se nahaja skripta. Sledi funkcija Write-Log za zapisovanje v log

datoteko, nato pa skripta od uporabnika zahteva vnos IP-naslovov in portov. Pri obeh lahko

uporabnik zapiše več vnosov, ločeni pa morajo biti z vejico. Sledita foreach zanki, v katerih se

izvaja cmdlet Test-NetConnection na želenih IP-naslovih in portih. V primeru, da je do želenega

IP-naslova omogočen dostop prek zapisanega porta, bo skripta izpisala, da je na določenem IP-

naslovu določen port odprt, v nasprotnem primeru pa, da je zaprt. Če se v preverjanju pojavi

napaka, se aktivira catch blok, kjer se izpiše, da je prišlo pri preverjanju do napake. Na koncu

skripta še zapiše, da je preverjanje končano.

2.2.3 Python

Python je odprtokodni programski jezik, ki združuje različne stile programiranja – objektno

orientiranega, proceduralnega in funkcijskega. (Fister, 2023, str. 41) Značilnost tega jezika je,

da ne vsebuje deklaracij spremenljivk in da je za skriptno programiranje dokaj enostaven,

vendar pa za naprednejšo uporabo vseeno potrebujemo določene osnove programskega jezika.

Omogoča uporabo tako imenovanih modulov, ki v jeziku Python združujejo več programov, ki

se nanašajo na določeno problemsko domeno. Prednost tega je v tem, da lahko ponovno

uporabimo že napisano kodo, moduli pa prav tako omogočajo uporabo imenskih prostorov, kar

pomeni, da se lahko imena funkcij znotraj različnih modulov tudi podvajajo. (Fister, 2023, str.

42–47)

Dokaj preprost primer skripte v jeziku Python bi bil, ko v različnih »blokih« skripte določimo

različne funkcije, glavna funkcionalnost skripte pa je varnostno kopiranje želene mape:

import os
import shutil
import datetime

20

import sys

--- Konfiguracija ---

SOURCE_DIR = r"C:\proizvodnja\Source_folder"
BASE_DESTINATION_DIR = r"C:\proizvodnja\Destination_folder"
LOG_FILE = r"C:\proizvodnja\ARCHIVE\PRENOS_ARHIV\Logs\backup_log_dated.log"

--- Funkcija za logging ---
def log_message(message, level="INFO"):
 try:
 # Preverjanje ali mapa za log datoteko obstaja
 log_dir = os.path.dirname(LOG_FILE)
 if log_dir and not os.path.exists(log_dir):
 try:
 os.makedirs(log_dir)
 except OSError as e:
 print(f"KRITIČNA NAPAKA: Ne morem ustvariti mape za log
'{log_dir}': {e}", file=sys.stderr)
 return

 # Dodajanje zapisa v datoteko
 with open(LOG_FILE, 'a', encoding='utf-8') as f:
 timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
 f.write(f"{timestamp} - {level} - {message}\n")
 except Exception as e:
 print(f"KRITIČNA NAPAKA: Ne morem pisati v log datoteko '{LOG_FILE}': {e}",
file=sys.stderr)

--- Funkcija za varnostno kopiranje ---
def perform_backup(src, base_dst):

 # Pridobivanje trenutnega datuma v formatu YYYY-MM-DD
 today = datetime.date.today()
 date_str = today.strftime('%Y-%m-%d')

 archive_folder_name = f"ARHIV_ICT_{date_str}"

 # Ciljna mapa
 full_archive_path = os.path.join(base_dst, archive_folder_name)

 # Izvorna mapa
 source_folder_name = os.path.basename(src)
 if not source_folder_name:
 source_folder_name = "root_backup"

 final_destination = os.path.join(full_archive_path, source_folder_name)

 log_message(f"Začetek varnostnega kopiranja iz '{src}' v
'{final_destination}'.")

 # Preverjanje, ali izvorna mapa obstaja
 if not os.path.isdir(src):
 log_message(f"Izvorna mapa '{src}' ni najdena ali ni mapa. Varnostno
kopiranje prekinjeno.", "ERROR")
 return False

 try:
 os.makedirs(full_archive_path, exist_ok=True)
 log_message(f"Zagotovljen obstoj arhivske mape: '{full_archive_path}'",
"INFO")

 shutil.copytree(src, final_destination, dirs_exist_ok=True)
 log_message(f"Varnostno kopiranje uspešno zaključeno iz '{src}' v
'{final_destination}'.")
 return True

 # Predvidene osnovne napake
 except shutil.Error as e:
 log_message(f"Med operacijo kopiranja (shutil) je prišlo do napake: {e}",
"ERROR")
 return False
 except PermissionError as e:
 log_message(f"Dovoljenje zavrnjeno med operacijo kopiranja. Preverite
dovoljenja za '{src}' ali '{full_archive_path}'. Napaka: {e}", "ERROR")
 return False
 except OSError as e:

21

 log_message(f"Med operacijo kopiranja je prišlo do napake OS: {e}",
"ERROR")
 return False
 except Exception as e:
 log_message(f"Prišlo je do nepričakovane napake med kopiranjem: {e}",
"ERROR")
 return False

--- Glavna funkcionalnost ---
if __name__ == "__main__":

 log_message("="*50, "INFO")
 log_message("Skripta za varnostno kopiranje z datumsko mapo zagnana", "INFO")

 # Izvajanje varnostnega kopiranja
 success = perform_backup(SOURCE_DIR, BASE_DESTINATION_DIR)

 # Zapisovanje končnega statusa
 if success:
 log_message("Proces varnostnega kopiranja je bil uspešno zaključen.",
"INFO")
 else:
 log_message("Proces varnostnega kopiranja je bil zaključen z napakami.
Preglejte zgornje zapise.", "WARNING")

 log_message("Skripta za varnostno kopiranje z datumsko mapo končana", "INFO")
 log_message("="*50, "INFO")

Skripta je zgrajena tako, da v prvem delu uvozimo potrebne module z uporabo import sistema.

Ta poskrbi, da v svojo kodo uvozimo kodo, ki jo je nekdo že napisal. V našem primeru smo

uvozili module os, shutil, datetime in sys, ki nam omogočajo različne funkcionalnosti, od

interakcije z operacijskim sistemom do dela s časom in datumom. V naslednjem koraku smo

definirali spremenljivke poti, ki jih bo skripta uporabljala – izvorno mapo, ciljno mapo in mapo

za dnevniško datoteko. Sledi funkcija za beleženje v dnevniško datoteko. Ta funkcija preveri,

ali log datoteka v specificirani mapi obstaja, in jo ustvari, če še ne obstaja. Nato jo odpre in na

konec datoteke doda nove vrstice z informacijami o kopiranju datotek in morebitnih napakah.

Temu sledi funkcija varnostnega kopiranja, ki najprej pripravi ciljne mape, zapiše v dnevniško

datoteko, da se je kopiranje začelo, preveri, ali izvorna mapa obstaja, nato pa začne kopirati

vsebino izvorne mape v ciljno mapo. Ob uspešnem kopiranju bo skripta to sporočilo zapisala v

dnevniško datoteko. Če bo med postopkom kopiranja prišlo do specifičnih napak, na primer

težave z dovoljenji ali drugimi sistemskimi napakami, bo skripta te napake ujela in zapisala

podrobnosti v dnevniško datoteko, funkcijo pa končala z neuspehom. Avtomatizacijo te skripte

lahko uredimo z uporabo Task Schedulerja v okolju Windows ali pa z uporabo Cron v okolju

Linux. V primeru okolja Linux bi seveda morali popraviti poti izvorne in ciljne mape ter mape

dnevniške datoteke.

22

Slika 6: Stanje v izvorni in ciljni mapi pred zagonom skripte

Vir: Lasten

Slika 7: Stanje v izvorni in ciljni mapi po zagonu skripte in vsebina dnevniške datoteke

Vir: Lasten

2.2.4 Ansible

Ansible je odprtokodno orodje, napisano v jeziku Python, ki ga uporabljamo za avtomatizacijo

IT-nalog. Glavni namen je avtomatizacija ponavljajočih se nalog, kar zmanjšuje možnost

23

človeških napak. Ansible se od konkurenčnih orodij pogosto razlikuje po tem, da ne potrebuje

agentov – to pomeni, da nam na ciljnih sistemih ni treba nameščati dodatne programske opreme.

(Introduction to Ansible, 2025) To v praksi pomeni, da potrebujemo le en strežnik, na katerega

namestimo orodje Ansible, nato pa prek tega strežnika in povezave SSH upravljamo vse ostale,

ki nam to omogočajo.

Ansible za svoje delovanje uporablja tako imenovane Playbooke, ki so zapisani v obliki YAML,

kar je primerno za začetnike, saj je prag vstopa dokaj nizek. Ključne komponente Playbooka

so:

1. Hosts – ta komponenta so ciljni sistemi za izvedbo nalog, lahko so posamezni sistemi, lahko

pa so skupine sistemov;

2. Tasks – ta komponenta vsebuje seznam nalog, ki jih bo orodje Ansible izvajalo na ciljnih

sistemih;

3. Vars – ta komponenta definira spremenljivke, ki jih je mogoče uporabiti v nalogah;

4. Handlers – v tej komponenti so posebne naloge, ki se izvajajo le v primeru, da jih sproži

druga naloga.

5. Roles – ta komponenta nam omogoča organizacije Playbooka v logične enote.

Kljub relativni enostavni uporabi, aktivni skupnosti in nizkemu pragu vstopa pa ima orodje

Ansible tudi nekatere slabosti. Kompleksni scenariji zahtevajo zapletene Playbooke, odvisnost

od povezave SSH pa lahko v podjetjih s strogimi varnostnimi politikami predstavlja določeno

mero tveganja.

Namestitev orodja je preprosta: v ta namen smo pripravili štiri strežnike, na katere je nameščen

operacijski sistem Ubuntu Server 24.04 LTS. Ker orodje za svoje delovanje ne zahteva

ogromno računalniških virov, smo za strežnike uporabili po 2 jedri CPU, 2GB pomnilnika in

20GB trdega diska.

Na glavnem strežniku je bilo najprej treba dodati repozitorij Ansible, kar smo naredili z uporabo

ukaza »sudo add-apt-repository --yes --update ppa:ansible/ansible«, nadaljevali pa smo z

ukazom »sudo apt install ansible«. Uspešno namestitev smo na koncu preverili z uporabo ukaza

»ansible –version«.

24

Slika 8: Dodajanje repozitorija Ansible

Vir: Lasten

Slika 9: Različica Ansible

Vir: Lasten

V hosts datoteki smo nato dodali naše strežnike, prav tako pa uporabniško ime in geslo za

uporabnika, ki smo ga kreirali za namene uporabe orodja Ansible.

Slika 10: Konfiguracija Ansible hosts

Vir: Lasten

Prvi ukaz za preverjanje delovanja sistema je uporaba modula »ping«, za kar smo uporabili

ukaz »ansible linux_servers -m ping«. S tem smo definirali, da naj Ansible izvede modul ping

25

na skupino »linux_servers«, ki je definirana v datoteki hosts. Rezultat tega ukaza je prikazan

na naslednji sliki.

Slika 11: Ansible ping

Vir: Lasten

Kreirali smo tudi testni Playbook za izklop vseh strežnikov naenkrat. Kot vidimo, smo mu

definirali ime, ciljne strežnike, da lahko ukaz zažene kot skrbnik sistema, nato pa definirali še

samo nalogo. Ta zažene ukaz »sudo shutdown -h now«, nakar nas sistem vpraša za

administratorsko geslo, ob vnosu gesla pa izpiše rezultat izvedbe Playbooka.

Slika 12: Izklop sistema Playbook

Vir: Lasten

26

Slika 13: Rezultat Playbooka

Vir: Lasten

2.2.5 Checkmk

Checkmk je orodje za nadzor IT-infrastrukture, ki nam omogoča spremljanje delovanja naprav

v naši infrastrukturi. To orodje sistemskim administratorjem ponuja celovit nadzor nad

infrastrukturo, saj z zbiranjem in analiziranjem podatkov o stanju in zmogljivosti naprav

omogoča hitro zaznavanje težav, posledično pa avtomatizira proces obveščanja sistemskih

administratorjev o stanju naprav. (Checkmk 2.3, 2025)

Postopek namestitve tega orodja je precej preprost. Najprej potrebujemo strežnik, na katerem

bo storitev Checkmk zagnana – uporabimo lahko strežnik Linux Ubuntu ali pa storitev

namestimo z Dockerjem.

Za testno namestitev smo uporabili Ubuntu Server 24.04 LTS, ki smo mu dodelili 2 jedri CPU,

2 GB pomnilnika in disk v velikosti 20 GB.

 Slika 14: Pridobivanje orodja Checkmk

Vir: Lasten

Iz zgornje slike je razviden enostaven proces pridobivanja potrebnih instalacijskih datotek za

namestitev orodja Checkmk. Za to smo uporabili ukaz wget.

27

Slika 15: Namestitev orodja Checkmk

Vir: Lasten

Za namestitev uporabimo ukaz sudo apt install ./check…, saj za namestitev potrebujemo

administratorske pravice. Temu sledi kreiranje tako imenovanega nadzornega mesta

(monitoring site) z ukazom sudo omd create $monitoring_site_name, nato pa sledi sudo omd

start $monitoring_site_name. Vmes nam sistem izpiše lokacijo, kje v našem omrežju se to

mesto nahaja, prav tako dobimo geslo za vpis v spletno mesto.

Ko se prijavimo v spletno mesto, bo to izgledalo dokaj prazno, dokler ne dodamo nekaj

»klientov«, ki jih Checkmk spremlja. V vmesniku imamo navodila za dostop do tako

imenovanih agentov, ki jih namestimo na kliente.

Slika 16: Prikaz pridobivanja agentov v orodju Checkmk

Vir: Lasten

Ko na klientu namestimo agenta, ga lahko dodamo v glavno Checkmk aplikacijo.

28

Slika 17: Prikaz dodanih klientov v orodju Checkmk

Vir: Lasten

Ko imamo v aplikacijo dodane kliente, jih lahko spremljamo prek več različnih prikazov. En

od njih nam prikazuje stanje klientov, prav tako nam prikaže morebitna opozorila in kritične

napake.

Slika 18: Prikaz stanja klientov v orodju Checkmk

Vir: Lasten

Orodje nam omogoča tudi kreiranje lastnih pravil, na podlagi katerih nas avtomatsko opozori v

primeru napak ali težav.

Slika 19: Pravilo za obveščanje v orodju Checkmk

Vir: Lasten

Na zgornji sliki je vidno pravilo, ki bo sistemskega administratorja, če je na strežniku

omogočeno pošiljanje e-pošte, opozorilo v primeru, da CPU load na klientu Test_Server_1 ali

checkmk_server doseže kritično raven.

29

Slika 20: Primer opozorila orodja Checkmk prek e-pošte 1

Vir: Lasten

Slika 21: Primer opozorila orodja Checkmk prek e-pošte 2

Vir: Lasten

30

Slika 22: Primer prikaza stanja klientov v orodju Checkmk v podjetju

Vir: Lasten

Iz zgornjih slik je razvidno, da lahko s pravilno konfiguracijo orodja Checkmk in tudi

konfiguracijo pošiljanja e-poštnih sporočil sistemski administratorji hitreje odreagirajo ob

morebitnih težavah v IT-infrastrukturi podjetja.

2.3 Umetna inteligenca v sistemski administraciji

Umetna inteligenca prinaša velike spremembe na področje sistemske administracije, saj prinaša

nove možnosti avtomatizacije, optimizacije in izboljšanja zanesljivosti informacijskih

sistemov. Če želimo prepoznati potencial umetne inteligence in to učinkovito implementirati v

praksi, pa je potrebno razumevanje določenih temeljnih konceptov.

Umetna inteligenca je dokaj široko področje, ki se ukvarja z razvojem računalniških sistemov

in strojev, ki so sposobni izvajanja nalog, ki običajno zahtevajo človeški dejavnik. Med te

naloge spadajo sklepanje, učenje, razumevanje jezika in reševanje problemov. V poslovnem

okolju med orodja umetne inteligence spadajo orodja, ki računalnikom omogočajo izvajanje

naprednih funkcij, vključno z analizo podatkov, razumevanjem govornega in pisnega jezika in

podobno. Čeprav se podrobnosti med različnimi metodami umetne inteligence razlikujejo, pa

je osnova v večini enaka – velike količine podatkov. Sistemi umetne inteligence se na podlagi

ogromne količine podatkov učijo, prepoznavajo razne vzorce in povezave med podatki, ki jih

človeško oko morda prezre. (What is Artificial Intelligence (AI)?, 2025)

31

Ko govorimo o umetni inteligenci, ne smemo pozabiti ključne veje umetne inteligence, to je

strojnega učenja in podvrste le-tega, to je globokega učenja. Pri tej veji umetne inteligence

sistemi niso eksplicitno programirani za vsako nalogo, temveč se učijo iz podatkov. Algoritmi

analizirajo velike količine podatkov, prepoznajo vzorce in na podlagi teh vzorcev sprejemajo

odločitve. (Deep Learning in Cybersecurity: Threat Detection and Defense, 2025) V kontekstu

sistemske administracije to pomeni, da lahko sistemi strojnega učenja napovedo morebitne

okvare strojne opreme na podlagi analize preteklih podatkov o delovanju, prav tako se taki

sistemi uporabljajo pri rešitvah, kot sta Darktrace in QRadar.

Ker umetna inteligenca, kot že omenjeno, omogoča samodejno odkrivanje anomalij, omogoča

ta zmožnost IT-ekipam možnost ukrepanja, preden majhne težave preidejo v večje težave in

izpade. AIOps izkorišča strojno učenje za obdelavo podatkov za odkrivanje anomalij v realnem

času, zgodnje in natančno odkrivanje le-teh pa je prvi korak k učinkovitemu reševanju težav.

(What is AIOps?, 2025)

2.4 Avtomatizacija in varnostna skladnost

Ob današnjih vedno številčnejših sistemih in povezavah med njimi je bistvenega pomena

smiselno in varno urediti avtomatizacijo upravljanja uporabniških računov in pristopov ter s

tem zagotoviti informacijsko varnostno skladnost podjetja.

Ročno upravljanje uporabniških računov prinaša številna tveganja, ki lahko resno ogrozijo

varnost in skladnost organizacije. Med najpogostejše napake spadajo tipkarske napake pri

vnosu podatkov, napačne dodelitve pravic za dostope do podatkov in pozabljeni odvzemi pravic

uporabnikom, ki so zapustili podjetje. (How Automation Simplifies User Access Reviews for

Remote and Hybrid Workforces, 2025) Z avtomatizacijo upravljanja uporabniških računov pa

lahko tako že vnaprej določimo točno določene pravice, ki jih nov uporabnik na podlagi

delovnega mesta in delovnih nalog potrebuje – te spreminjamo ob morebitnem napredovanju

uporabnika, prav tako pa ob integraciji z drugimi sistemi avtomatiziramo deaktivacijo

uporabniškega računa v primeru, da uporabnik zapusti podjetje.

32

3 AVTOMATIZACIJA SISTEMSKIH OPRAVIL

3.1 Primeri avtomatizacije s PowerShellom

3.1.1 Brisanje specifičnega direktorija s pomočjo PowerShell skripte in Task Schedulerja

PowerShell skripta za brisanje datotek iz izvorne mape in podmap

Datum: 18.02.2025
Avtor: Iztok Hladen
Za testiranje napak odkomentiraj Write-Verbose in Write-Host vrstice

Pot do mape Scanners (spremeni, če je potrebno)
$sourceFolder = "\\10.0.1.158\Scanners"

Pot do log datoteke
$logFilePath = "C:\Logs\delete_scanners_folder.log"

Preverjanje ali mapa Scanners obstaja
if (!(Test-Path -Path $sourceFolder -PathType Container)) {
 $errorMessage = "Mapa '$sourceFolder' ne obstaja!"
 Write-Error $errorMessage
 Add-Content -Path $logFilePath -Value "$(Get-Date -Format 'yyyy-MM-dd
HH:mm:ss') - ERROR: $errorMessage"
 exit
}

Zapisovanje v log datoteko
Add-Content -Path $logFilePath -Value "$(Get-Date -Format 'yyyy-MM-dd HH:mm:ss') -
Skripta za brisanje datotek se je začela."

Števec napak
$errorsOccurred = $false

Seznam vseh datotek v mapi in podmapah
$filesToDelete = Get-ChildItem -Path $sourceFolder -Recurse -File

Brisanje datotek
foreach ($file in $filesToDelete) {
 try {
 Remove-Item -Path $file.FullName -Force -ErrorAction Stop
 # Write-Verbose "Izbrisana datoteka: $($file.FullName)"
 }
 catch {
 $errorsOccurred = $true # Beleženje napake
 $warningMessage = "Napaka pri brisanju datoteke: $($file.FullName) -
$($_.Exception.Message)"
 Write-Warning $warningMessage
 Add-Content -Path $logFilePath -Value "$(Get-Date -Format 'yyyy-MM-dd
HH:mm:ss') - OPOZORILO: $warningMessage"
 }
}

if ($errorsOccurred) {
 Add-Content -Path $logFilePath -Value "$(Get-Date -Format 'yyyy-MM-dd
HH:mm:ss') - Skripta za brisanje datotek se je končala z OPOZORILI."
} else {
 Add-Content -Path $logFilePath -Value "$(Get-Date -Format 'yyyy-MM-dd
HH:mm:ss') - Skripta za brisanje datotek se je uspešno končala."
}

Write-Host "Skripta za brisanje datotek v mapi '$sourceFolder' je končana."
Write-Host "Struktura map je ostala nespremenjena."

33

Skripta je enostaven primer brisanja vsebine specifične mape. V trenutni izvedbi jo

uporabljamo v namene brisanja že skeniranih dokumentov, ki jih uporabniki po skeniranju

shranijo v svojo lokalno shrambo oziroma na strežnik. Namen skripte je tako brisanje

dokumentov, ki niso več v uporabi, s tem pa povečamo preglednost v ciljni mapi in prav tako

privarčujemo s prostorom na strežniku.

Skripta je sestavljena iz nekaj enostavnih sklopov:

1. v prvem sklopu definiramo pot do mape, iz katere želimo brisati datoteke, in pot do mape,

v katero bomo zapisovali log datoteko;

2. v drugem sklopu preverjamo, ali izvorna mapa (v našem primeru \\10.0.1.158\Scanners)

sploh obstaja. Tu se pojavi prvo preverjanje, ali je skripta pravilno zastavljena. V primeru,

da mapa ne obstaja (preverjanje z »if« stavkom in negacijo »!«), nam skripta zapiše v log

datoteko sporočilo napake;

3. sledi začetek zapisovanja v log datoteko, v katero se najprej zapiše, kdaj se je skripta začela

izvajati v formatu »leto-mesec-dan in ura-minuta-sekunda«;

4. v četrtem sklopu se definira števec napak na vrednost $false. Če bo v prihodnosti prišlo do

kakršnekoli napake, se bo ta vrednost spremenila na $true;

5. v petem sklopu skripta pridobi seznam vseh datotek (z uporabo Get-ChildItem in -File) v

glavni mapi in podmapah (z uporabo -Recurse), ki jih je treba izbrisati;

6. v šestem sklopu se zažene zanka foreach za brisanje vsake datoteke. Blok try catch je v

našem primeru prisoten za obravnavo napak. Če se v try bloku pojavi napaka, se bo v catch

bloku spremenljivka $errorsOccured nastavila na true, hkrati pa se bo ustvarilo sporočilo

o napaki v log datoteki;

7. v zadnjem, sedmem sklopu se zaključi zapisovanje v log datoteko s sporočilom o koncu

izvajanja skripte.

Sledi še prikaz nastavitev Task Schedulerja.

34

Slika 23: Splošne nastavitve Task Schedulerja – PowerShell brisanje vsebine mape

Vir: Lasten

Slika 24: Trigger nastavitve Task Schedulerja – PowerShell brisanje vsebine mape

Vir: Lasten

35

Slika 25: Actions nastavitve Task Schedulerja – PowerShell brisanje vsebine mape

Vir: Lasten

3.1.2 Premikanje datotek v arhivsko mapo s pomočjo PowerShella

Premikanje datotek z uporabo orodja Robocopy

Avtor: Iztok Hladen
Datum: 20.01.2025

Določimo poti do datotek
$source_dest_file =
"\\10.0.1.158\proizvodnja\ARCHIVE\PRENOS_ARHIV\ICT_LOCATIONS.txt"
$date = Get-Date -Format "yyyy-MM-dd"
$log_file = "\\10.0.1.158\proizvodnja\ARCHIVE\PRENOS_ARHIV\Logs\ICT_LOG_$date.txt"

Preberemo poti iz datoteke
$paths = Get-Content -Path $source_dest_file

foreach ($path in $paths) {
 $split_path = $path -split ";"
 $source_folder = $split_path[0]
 $destination_folder = $split_path[1]

 # Preverimo, ali oba folderja obstajata
 $source_exists = Test-Path -Path $source_folder
 $destination_exists = Test-Path -Path $destination_folder

 if (-not $source_exists -or -not $destination_exists) {
 # Zapišemo napako v log datoteko
 $error_message = "Napaka: "
 if (-not $source_exists) {
 $error_message += "Source folder ne obstaja: $source_folder. "
 }
 if (-not $destination_exists) {
 $error_message += "Destination folder ne obstaja: $destination_folder."
 }
 Add-Content -Path $log_file -Value $error_message
 continue
 }

 # Preverimo, ali sta source in destination folder enaka
 if ($source_folder -eq $destination_folder) {
 # Zapišemo napako v log datoteko
 $error_message = "Napaka: Source in destination folder sta enaka:
$source_folder."
 Add-Content -Path $log_file -Value $error_message
 continue
 }

 # Zapišemo datum začetka v log datoteko
 $start_date = Get-Date

36

 Add-Content -Path $log_file -Value "Datum začetka: $start_date"

 # Zapišemo ime source folderja v log datoteko
 Add-Content -Path $log_file -Value "Source folder: $source_folder"

 # Preštejemo .txt datoteke v source folderju in zapišemo število v log datoteko
 $file_count_before = (Get-ChildItem -Path $source_folder -Recurse -File -Filter
"*.txt").Count
 Add-Content -Path $log_file -Value "Število .txt datotek pred premikanjem:
$file_count_before"

 # Ustvarimo novo mapo v destination folderju z imenom "ARHIV_ICT_$date"
 $archive_folder = "$destination_folder\ARHIV_ICT_$date"
 New-Item -ItemType Directory -Path $archive_folder

 # Ustvarimo enako strukturo podmap v destination folderju
 Get-ChildItem -Path $source_folder -Directory | ForEach-Object {
 $subfolder = $_.FullName.Substring($source_folder.Length)
 New-Item -ItemType Directory -Path "$archive_folder$subfolder"
 }

 # Premaknemo samo .txt datoteke z uporabo robocopy
 $robocopy_log =
"\\10.0.1.158\proizvodnja\ARCHIVE\PRENOS_ARHIV\Logs\ICT_robocopy_log_$date.txt"
 robocopy $source_folder $archive_folder *.txt /E /MOV /MT:8 /R:10 /W:20
/log+:$robocopy_log /nfl /np

 # Preštejemo .txt datoteke v destination folderju po premikanju
 $file_count_after = (Get-ChildItem -Path $archive_folder -Recurse -File -Filter
"*.txt").Count
 Add-Content -Path $log_file -Value "Destination folder: $archive_folder"
 Add-Content -Path $log_file -Value "Število prekopiranih .txt datotek:
$file_count_after"

 # Zapišemo čas konca v log datoteko
 $end_date = Get-Date
 Add-Content -Path $log_file -Value "Čas konca: $end_date"

 # Preverimo napake in jih zapišemo v log datoteko
 $errors = Select-String -Path $robocopy_log -Pattern "ERROR"
 if ($errors) {
 Add-Content -Path $log_file -Value "Napake: $errors"
 }

 # Dodamo prazno vrstico na koncu log datoteke
 Add-Content -Path $log_file -Value ""
}

Skripta je aktualen primer avtomatizacije prenosa podatkov v živem okolju. Razdeljena je na

več logičnih delov, uporablja pa orodje Robocopy za premikanje datotek in hkrati ohranja enako

strukturo podmap tako v izvorni kot v ciljni mapi. Skripta je uporabna v primerih, ko določenih

informacij ne moremo izvoziti v bazo SQL, vendar moramo datoteke vseeno hraniti določeno

število let.

V skripti najprej definiramo datoteko, iz katere skripta bere pot izvorne in pot ciljne mape, nato

pa definiramo pot dnevniške datoteke. Prav tako za potrebe avtomatiziranega poimenovanja

definiramo še trenutni datum z uporabo ukaza Get-Date. Skripta nato bere poti iz datoteke,

poimenovane ICT_LOCATIONS.txt, v kateri sta poti ločeni s podpičjem.

37

Slika 26: Primer vsebine datoteke ICT_LOCATIONS.txt

Vir: Lasten

Sledi foreach zanka, v kateri skripta procesira en par izvorne in ciljne mape. Poti nato razdeli

na dva dela z uporabo ukaza -split, ločilo pa je definirano kot podpičje. Vrednosti nato shrani v

spremenljivki $source_folder in $destination_folder. Sledi kratko preverjanje, ali izvorna in

ciljna mapa sploh obstajata ter ali sta morda po uporabniški napaki vneseni isti lokaciji za

izvorno in ciljno mapo. Sledita štetje datotek v izvorni mapi in njenih podmapah ter beleženje

v dnevniško datoteko, nato pa je na vrsti ustvarjanje arhivske mape v ciljni mapi, v kateri ohrani

strukturo podmap iz izvorne mape. Nato z uporabo ukaza robocopy začne premikati datoteke

iz izvorne v ciljno mapo. Uporablja vrsto parametrov, s katerimi smo določili premikanje map

(/MOV), uporabo več niti za hitrejše premikanje (/MT:8), v primeru napake pa ponovni poskus

do desetkrat (/R:10), z razmikom 20 sekund med poskusi (/W:20). Kreira tudi svojo dnevniško

datoteko, saj omogoča preglednejši zapis morebitnih napak. Skripta nato prešteje še število

datotek v ciljni mapi in to tudi zapiše v dnevniško datoteko. S tem lahko sistemski administrator

hitro preveri, ali je morda prišlo do napak pri prenosu. Skripto po želji s pomočjo Task

Schedulerja lahko izvajamo avtomatsko ob določenem dnevu in uri – ker gre za izvajanje v

živem okolju je to lahko na primer ob nedeljah ob 8. uri zjutraj, ko proizvodnja miruje.

Vsekakor je za velike količine datotek smiselno uporabiti določeno vrsto avtomatizacije, saj s

tem bistveno prihranimo na času, ki bi ga po nepotrebnem porabili, če bi namesto skripte ročno

premikali posamezne datoteke in mape.

38

Slika 27: Lastnosti map pred premikanjem

Vir: Lasten

Slika 28: Lastnosti map po premikanju

Vir: Lasten

39

Slika 29: Vsebina dnevniške datoteke robocopy po premikanju

Vir: Lasten

3.1.3 Izdelek – program AD-Toolkit v PowerShellu

V prilogi diplomskega dela je skripta preprostega PowerShell programa »AD-Toolkit.ps1", s

katerim lahko uporabnik ureja določene vidike v Active Directoryju. S tem programom lahko

kreira nov uporabniški račun, omogoči ali onemogoči že kreiran uporabniški račun, izpiše

osnovne podatke o specifičnem uporabniškem računu glede na izbran filter, spreminja

informacije o oddelku in nazivu uporabnika ter uvozi datoteko CSV, s katero lahko kreira večje

število uporabnikov naenkrat.

40

Slika 30: Osnovni prikaz AD-Toolkit

Vir: Lasten

Slika 31: Kreiranje novega uporabnika v AD-Toolkit

Vir: Lasten

Slika 32: Onemogočanje uporabnika v AD-Toolkit

Vir: Lasten

41

Slika 33: Izpis podatkov o uporabnikih v AD-Toolkit

Vir: Lasten

Slika 34: Urejanje informacij o uporabnikih v AD-Toolkit

Vir: Lasten

Slika 35: Uvoz iz datoteke CSV v AD-Toolkit

Vir: Lasten

Zgornje slike prikazujejo delovanje PowerShell skripte AD-Toolkit, s katero lahko do določene

mere avtomatiziramo dodajanje novih uporabnikov v Active Directory, omogoča pa nam tudi

omogočanje in onemogočanje uporabnikov, izpis informacij o uporabnikih in spreminjanje

informacij o uporabnikih.

42

3.2 Primeri integracije umetne inteligence v avtomatizacijo

Uporaba umetne inteligence lahko močno olajša delo sistemskih administratorjev že od samega

začetka njihove karierne poti. Prva »postaja« sistemskih administratorjev je tako imenovani

»helpdesk« oziroma prva podpora strankam in uporabnikom. Primer uporabe umetne

inteligence v take namene je na primer IBM watsonx Assistant – izdelek, ki ga lahko uporabimo

za pogovor s stranko/uporabnikom, ki lahko na podlagi baze znanja svetuje in pomaga pri

enostavnih težavah, kot so zamenjava gesla pred potekom le-tega, reševanje težav pri tiskanju

in podobno. Bistvena prednost takega orodja je v tem, da je dosegljivo 24 ur na dan, 7 dni v

tednu, brez čakalnih vrst, če infrastruktura to podpira. (Watsonx Assistant, 2025)

Še eno orodje, ki za svoje delovanje uporablja umetno inteligenco, je Darktrace. Darktrace je

orodje, ki uporablja strojno učenje za analizo ogromne količine podatkov o omrežnem prometu,

na podlagi tega pa si kreira neko podobo normalnega stanja in obnašanja naprav v omrežju. V

naslednjem koraku, če orodje zazna vedenje, ki odstopa od normalnega vzorca, sproži

opozorilo, ki ga nato posreduje administratorjem. (Darktrace - Network, 2025) Kompatibilen

je tudi z orodjem QRadar, ki je orodje oziroma platforma za varnostno analizo.

43

Slika 36: Prikaz orodja Darktrace

Vir: https://cdn.prod.website-

files.com/626ff19cdd07d1258d49238d/67865d9beae5d46f856f5397_Homepage%20w-Highlighted%20Path.png

Tako orodje lahko sistemskim administratorjem zelo olajša delo, seveda le v primeru pravilne

vpeljave v IT-infrastrukturo podjetja, saj je bistveno pri zagotavljanju varnosti IT-okolja

podjetja.

3.3 Avtomatizacija varnostnih kopij

V sodobni infrastrukturi podjetja dandanes vidimo vedno več uporabe virtualizacije. Kjer

virtualni stroji in kontejnerji gostijo kritične podatke in aplikacije, so varnostne kopije

nepogrešljiv element zanesljive IT-infrastrukture. Izguba teh sredstev, bodisi zaradi odpovedi

strojne opreme, napak v programski opremi, človeških napak ali vse pogostejših zlonamernih

napadov, lahko povzroči znatno škodo. Večina hipervizorjev že sama po sebi omogoča

kreiranje varnostnih kopij, prav tako pa marsikateri omogoča tudi integracijo namenske opreme

za varnostno kopiranje podatkov, med katere spadata Veeam in Rubrik.

Za potrebe primera prikaza avtomatizacije varnostnih kopij smo uporabili hipervizor tipa 1

Proxmox, ki sam po sebi nudi osnovno funkcionalnost varnostnega kopiranja, ki pa se ob

uporabi Proxmox Backup Serverja še znatno poveča.

44

Slika 37: Konfiguracija avtomatizacije varnostnih kopij

Vir: Lasten

Kot je razvidno iz zgornje slike, smo kreirali novo opravilo za avtomatizacijo varnostnih kopij,

kjer smo določili shrambo, urnik in način selekcije, izbrali, kateri virtualni stroj želimo

varnostno kopirati, prav tako pa smo določili, koliko varnostnih kopij naj program ohrani.

Slika 38: Rezultat avtomatizacije varnostnega kopiranja

Vir: Lasten

Na zgornji sliki je viden rezultat konfiguracije avtomatizacije varnostnega kopiranja – ob

vnaprej določeni uri se je ustvarila enostavna varnostna kopija izbranega virtualnega stroja. Ker

smo za varnostno kopiranje uporabili le Proxmox Virtual Environment brez Proxmox Backup

Serverja, se je ustvarila celotna varnostna kopija virtualnega stroja. V primeru uporabe

Proxmox Backup Serverja pa bi lahko vzpostavili kreiranje inkrementalnih varnostnih kopij,

kjer bi se po prvi polni varnostni kopiji varnostno kopirali le tisti podatki, ki so se od prejšnje

različice spremenili.

45

3.4 Avtomatizacija posodabljanja programske opreme

Posodabljanje programske opreme je ena ključnih nalog sistemskih administratorjev, saj s tem

zagotovimo, da so morebitne varnostne luknje zastarele programske opreme pokrpane. Ko

govorimo o IT-okolju, ki šteje več deset ali celo več sto strežnikov, pa se soočimo s časovnimi

težavami. Posodabljanje operacijskih sistemov in programske opreme na takšni količini naprav

je lahko zelo zamudno, vendar obstajajo orodja, kako sistemski administratorji vse to

poenostavijo. Eno teh orodij smo že omenili – to je Ansible, s katerim lahko naenkrat pošljemo

ukaze na veliko številno strežnikov naenkrat ter s tem poskrbimo za hitro in učinkovito

posodobitev tako operacijskega sistema kot nameščene programske opreme.

Kot primer smo pripravili Playbook za Ansible z imenom update_upgrade.yml, ki bo posodobil

tri vnaprej pripravljene strežnike, ki so v skupini »linux_servers«, z enim samim ukazom.

Slika 39: Ansible update in upgrade

Vir: Lasten

Za zagon tega Playbooka moramo na strežniku, kjer je nameščen Ansible, zagnati ukaz

»ansible-playbook update_upgrade.yml -K«. Na spodnjih slikah je možno videti stanje možnih

posodobitev na strežniku pred zagonom Playbooka, sam Ansible izpis ob zagonu Playbooka ter

stanje možnih posodobitev na strežniku po zagonu Playbooka.

46

Slika 40: Stanje strežnika pred zagonom Playbooka

Vir: Lasten

Slika 41: Stanje ob zagonu Playbooka

Vir: Lasten

47

Slika 42: Stanje strežnika po zagonu Playbooka

Vir: Lasten

Rezultat tega primera je, da smo z uporabo enega ukaza in vnaprej pripravljenega Playbooka

istočasno zagnali posodabljanje sistemske in programske opreme na treh strežnikih. S tem smo

prihranili dragocen čas, ki bi ga zapravili ob ročnem posodabljanju vseh treh strežnikov

posebej.

48

4 SKLEP

Med pisanjem diplomskega dela smo prišli do določenih ugotovitev pri vseh sedmih hipotezah

– pri nekaterih skozi teorijo in že dokazanih primerov, pri drugih pa skozi praktične teste na

lastnih virtualnih strojih. Sledijo zastavljene hipoteze in potrditve ali zavrnitev le-teh.

Hipoteza 1:

Avtomatizacija varnostnega kopiranja podatkov bistveno zmanjša tveganje izgube

podatkov v primeru sistemskih napak.

Prvo hipotezo smo potrdili – to smo dokazali z implementacijo in preizkusom treh različnih

avtomatiziranih pristopov k varnostnemu kopiranju. Z uporabo PowerShell skripte

(podpodpoglavje 3.1.2) smo avtomatizirali proces premikanja pomembnih datotek iz delovne

mape na namensko arhivsko lokacijo, kar zmanjšuje tveganje izgube podatkov v primeru

napake na primarnem mestu shranjevanja. Prav tako smo z uporabo Python skripte

(podpodpoglavje 2.2.3) implementirali rešitev varnostnega kopiranja iz primarne na

sekundarno lokacijo. Kot zadnjo implementacijo smo uredili tudi avtomatizacijo kreiranja

varnostnih kopij celotnega sistema znotraj virtualizacijskega okolja Proxmox VE. To v praksi

pomeni, da bi lahko v primeru sistemske napake na virtualnem stroju hitro obnovili celoten

stroj v zadnje delujoče stanje iz shranjene varnostne kopije.

Vsi trije primeri jasno kažejo, da avtomatizacija varnostnega kopiranja prispeva k zmanjšanju

tveganja izgube podatkov.

Hipoteza 2:

Avtomatizacija posodabljanja sistema in programske opreme zmanjša število varnostnih

ranljivosti v informacijskem sistemu.

Drugo hipotezo smo potrdili na podlagi praktičnega preizkusa z uporabo orodja Ansible

(podpoglavje 3.4) na treh virtualnih strojih. Pred izvedbo avtomatiziranega procesa

posodabljanja je bilo na te stroje možno namestiti 71 posodobitev, od tega 20 varnostnih

popravkov. Vsak tak nenameščeni popravek predstavlja varnostno ranljivost, ki bi jo lahko

izkoristili potencialni napadalci. Razvili smo enostaven Ansible Playbook, prilagojen za

avtomatizirano nameščanje vseh čakajočih posodobitev na vnaprej definiranih virtualnih

strojih, ki smo ga kasneje tudi zagnali. Po pregledu stanja na omenjenih virtualnih strojih smo

ugotovili, da je bilo nameščenih vseh 71 popravkov. Ta rezultat dokazuje veljavnost hipoteze,

49

saj smo z avtomatizacijo namestitve varnostnih popravkov učinkovito odpravili specifične,

znane varnostne pomanjkljivosti, ki so jih ti popravki naslavljali. Z avtomatizacijo procesa

posodabljanja zagotovimo, da bodo sistemi dosledno posodobljeni z najnovejšimi varnostnimi

popravki, kar neposredno zmanjšuje število obstoječih varnostnih ranljivosti v sistemu.

Hipoteza 3:

Samodejno čiščenje začasnih datotek vodi k znatnemu izboljšanju zmogljivosti sistema in

zmanjšanju porabe diskovnega prostora.

Tudi tretjo hipotezo smo potrdili, za kar smo razvili Shell skripto (primer v podpodpoglavju

2.2.1), ki ob pomoči pravilno konfiguriranega cronjoba skrbi za brisanje vseh datotek v vnaprej

določenih mapah v rednih časovnih intervalih. S tem smo zagotovili manjšo porabo diskovnega

prostora, posledično tudi izboljšanje delovanja sistema, prav tako pa na tak način skrbimo za

higieno in organizacijo v mapi. Čeprav v tem delu nismo izvajali meritev zmogljivosti sistema

pred in po čiščenju, je vseeno splošno sprejeto dejstvo, da lahko prekomerno kopičenje začasnih

datotek negativno vpliva na sistemsko zmogljivost. Zaključimo lahko, da avtomatizirano

čiščenje začasnih datotek neposredno prispeva k manjši porabi diskovnega prostora in hkrati

pozitivno vpliva na ohranjanje oziroma izboljšanje zmogljivosti sistema.

Hipoteza 4:

Spremljanje sistemskih virov in samodejno obveščanje o preseženih pragovih zmanjša

odzivni čas na sistemske težave.

Za dokazovanje in potrditev te hipoteze smo v testnem okolju implementirali sistem za nadzor

CheckMK (podpodpoglavje 2.2.5). V sistem je bilo vključeno spremljanje treh testnih

strežnikov, spremljali pa smo CPU Load in dosegljivost strežnika. Ko je sistem CheckMK

zaznal mejne vrednosti, je to tudi ustrezno signaliziral v svojem vmesniku. Čeprav v našem

okolju ni bilo možno v celoti konfigurirati pošiljanja e-poštnih sporočil, smo ta ključni vidik

samodejnega obveščanja uspešno ponazorili s praktičnimi primeri iz delovnega okolja. S

pridobljenim soglasjem smo prikazali primere dejanskih e-poštnih obvestil, ki jih CheckMK ob

pravilni konfiguraciji pošlje sistemskim administratorjem ob preseganju nastavljenih pragov.

Pridobili smo tudi soglasje za prikaz primera osnovnega vmesnika CheckMK, ki prikazuje

stanje določenega dela IT-infrastrukture podjetja.

50

Hipoteza 5:

Avtomatizacija upravljanja uporabniških računov vodi do večje varnostne skladnosti in

manj napak v upravljanju pravic dostopa.

Hipoteze v okviru praktičnega dela tega diplomskega dela zaradi omejitev strojne in

programske opreme nismo mogli neposredno preizkusiti z implementacijo demonstracijskega

primera, vendar pa smo hipotezo potrdili na podlagi teoretičnega pregleda relevantne literature

in uveljavljenih praks na področju informacijske varnosti in sistemske administracije. V

teoretičnem delu smo izpostavili, da v kompleksnih okoljih ročno upravljanje uporabniških

računov postane zamudno, neučinkovito in predvsem podvrženo človeškim napakam.

Teoretične ugotovitve kažejo, da ravno človeški dejavnik predstavlja največje tveganje za

varnostno skladnost. Pravilno zastavljena avtomatizacija, na primer z uporabo rešitev za

upravljanje identitet in dostopa, pa te težave bistveno zmanjšuje.

Hipoteza 6:

Vpeljava avtomatizacije obnovitve po napakah ne izboljša časa obnovitve sistema v

primerjavi z ročnimi postopki.

Hipotezo smo na podlagi naših ugotovitev s praktičnim primerom avtomatizacije varnostnih

kopij zavrgli. Naš primer jasno nakazuje, da avtomatizirani oziroma delno avtomatizirani

postopki obnove bistveno pripomorejo k skrajšanju časa, potrebnega za ponovno vzpostavitev

delovanja sistema. Ročna obnova je dolgotrajen proces, ki lahko vključuje ponovno namestitev

operacijskega sistema in potrebnih aplikacij, konfiguracijo nastavitev ter obnovo podatkov. V

nasprotju s tem pa možnost hitre obnove celotnega virtualnega stroja iz popolne varnostne

kopije, ki jo omogoča Proxmox, predstavlja bistveno izboljšavo. Čeprav morda sam sprožilec

obnove ni vedno popolnoma avtomatiziran brez človeške intervencije, pa že sama

avtomatizacija kreiranja konsistentnih varnostnih kopij in možnost hitre povrnitve sistema v

delujoče stanje predstavljata bistveno izboljšavo v času obnovitve. Pomembno je tudi poudariti,

da mora biti pri načrtovanju avtomatizacije obnove po napakah pozornost namenjena tudi

varnostnim in kontrolnim mehanizmom, saj nočemo, da se ti po nepotrebnem sprožijo zaradi

morebitnih kratkotrajnih motenj.

51

Hipoteza 7:

Uporaba umetne inteligence pri avtomatizaciji sistemske administracije poveča

učinkovitost pri odkrivanju in odpravljanju napak.

Hipoteze v okviru praktičnega dela tega diplomskega dela nismo mogli neposredno preizkusiti

z lastno implementacijo rešitev zaradi sistemskih in programskih omejitev. Kljub temu pa lahko

na podlagi teoretičnega dela relevantne literature hipotezo potrdimo. V sklopu tega smo

raziskali orodje Darktrace, ki po javno dostopnih informacijah s strani proizvajalca uporablja

umetno inteligenco in strojno učenje za učenje normalnega obnašanja omrežja in sistemov. Na

podlagi naučenega pa naj bi Darktrace sistemske administratorje kasneje opozarjal na

morebitne zaznane anomalije, kibernetske napade in ostale grožnje v realnem času. Takšen

pristop neposredno vpliva na zmanjšanje časa, ki je potreben za odkrivanje in odpravljanje

morebitnih napak in incidentov.

Prihodnost sistemske administracije, kot smo ugotovili v diplomskem delu, ni v izginotju vloge,

temveč v njeni preobrazbi, ki jo poganjajo trije ključni dejavniki: napredna avtomatizacija,

umetna inteligenca in hibridna oblačna okolja. Sistemskemu administratorju bo pri delu v

neizogibno pomoč umetna inteligenca, ki ne bo več samo zaznavala anomalij, ampak bo

napovedovala možne okvare, avtomatsko določala vzroke težav in do neke mere samostojno

izvajala ukrepe. Sistemski administrator bo novo vlogo opravljal v vse bolj kompleksnih

hibridnih okoljih, saj trendi kažejo, da prihodnost ni zgolj v javnem oblaku, temveč v

premišljeni kombinaciji lokalnih in oblačnih virov. Posledično bodo znanja avtomatizacije,

orkestracije med raznimi platformami in optimizacije stroškov ključne veščine, ki definirajo

uspešnega sistemskega administratorja prihodnosti.

52

5 LITERATURA

Anželj, G., Brank, J., Brodnik, A., Bulić, P., Ciglarič, M., Đukić, M., . . . Sterle, P. (2. februar

2025). E-Učbenik za informatiko v gimnaziji. Pridobljeno iz https://lusy.fri.uni-

lj.si/ucbenik/book/index.html

Barrett, R., Kandogan, E., Maglio, P. P., Haber, E. M., Takayama, L., & Prabaker, M. (2004).

Field studies of computer system administrators: Analysis of system management tools

and practices. Proceedings of the 2004 ACM Conference on Computer Supported

Cooperative Work, (str. 388-395). Chicago.

Chapter 1 - Getting started with PowerShell. (3. marec 2025). Pridobljeno iz Microsoft Learn:

https://learn.microsoft.com/en-us/powershell/scripting/learn/ps101/01-getting-

started?view=powershell-7.5

Charles Babbage. (2. februar 2025). Pridobljeno iz Britannica:

https://www.britannica.com/biography/Charles-Babbage

Checkmk 2.3. (19. marec 2025). Pridobljeno iz checkmk: https://checkmk.com/product/latest-

version

Darktrace - Network. (18. marec 2025). Pridobljeno iz Darktrace:

https://darktrace.com/products/network

Deep Learning in Cybersecurity: Threat Detection and Defense. (20. maj 2025). Pridobljeno iz

xenonstack.com: https://www.xenonstack.com/blog/deep-learning-in-cybersecurity

Eniac. (2. februar 2025). Pridobljeno iz Britannica:

https://www.britannica.com/technology/ENIAC

How Automation Simplifies User Access Reviews for Remote and Hybrid Workforces. (25. maj

2025). Pridobljeno iz securends.com: https://www.securends.com/blog/automate-user-

access-reviews/

Introduction to Ansible. (1. april 2025). Pridobljeno iz ansible.com:

https://docs.ansible.com/ansible/latest/getting_started/introduction.html

Fister, I. (2. 11 2023). Sistemska administracija v Linuxu. Univerzitetna založba Univerze v

Mariboru.

53

Limoncelli, T. A., Hogan, C. J., & Chalup, S. R. (2017). The Practice of System and Network

Administration. Addison Wesley.

Nemeth, E., Snyder, G., Hein, T. R., & Whaley, B. (2010). UNIX and Linux System

Administration Handbook. Boston: Prentice Hall.

PowerShell nadomešča ukazni poziv. (3. marec 2025). Pridobljeno iz Microsoft Support:

https://support.microsoft.com/sl-si/windows/powershell-nadome%C5%A1%C4%8Da-

ukazni-poziv-fdb690cf-876c-d866-2124-21b6fb29a45f

Susnjara, S., & Smalley, I. (10. februar 2025). What is a mainframe? Pridobljeno iz IBM:

https://www.ibm.com/think/topics/mainframe

Turing Machine. (2. Februar 2025). Pridobljeno iz Britannica:

https://www.britannica.com/technology/Turing-machine

unix.org. (12. februar 2025). Pridobljeno iz History and Timeline:

https://unix.org/what_is_unix/history_timeline.html

Watsonx Assistant. (18. marec 2025). Pridobljeno iz IBM:

https://www.ibm.com/products/watsonx-assistant

What Does a Systems Administrator Do? (3. Februar 2025). Pridobljeno iz Florida National

University: https://www.fnu.edu/what-does-a-systems-administrator-do/

What is AIOps? (22. maj 2025). Pridobljeno iz aws.amazon.com:

https://aws.amazon.com/what-is/aiops/

What is Artificial Intelligence (AI)? (20. maj 2025). Pridobljeno iz cloud.google.com:

https://cloud.google.com/learn/what-is-artificial-intelligence

What is PowerShell? (3. marec 2025). Pridobljeno iz Microsoft Learn:

https://learn.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.5

6 PRILOGE

Priloga 1: Izdelek AD-Toolkit.ps1

Simple AD user management script

Avtor: Iztok Hladen
Datum: 13.03.2025

Import AD module
Import-Module ActiveDirectory

Funkcija za ustvarjanje uporabnika
function Create-ADUser {
 # Pridobivanje uporabniškega imena in preverjanje zasedenosti
 do {
 $Username = Read-Host "Vnesite uporabniško ime (SamAccountName)"
 if (Get-ADUser -Filter "SamAccountName -eq '$Username'") {
 Write-Host "Uporabniško ime '$Username' je že zasedeno. Izberite
drugo."
 }
 } while (Get-ADUser -Filter "SamAccountName -eq '$Username'")

 # Pridobivanje imena in priimka
 $Ime = Read-Host "Vnesite ime uporabnika"
 $Priimek = Read-Host "Vnesite priimek uporabnika"

 # Izbira skupine
 Write-Host "1. Leadership"
 Write-Host "2. Employees"
 Write-Host "Izberite skupino:"
 $GroupChoice = Read-Host

 # Določanje skupine
 if ($GroupChoice -eq "1") {
 $GroupDN = "CN=Leadership,CN=Users,DC=frosty,DC=si"
 } elseif ($GroupChoice -eq "2") {
 $GroupDN = "CN=Employees,CN=Users,DC=frosty,DC=si"
 } else {
 Write-Host "Napačna izbira. Uporabnik ne bo dodan v nobeno skupino."
 }

 # Ustvarjanje DisplayName
 $displayName = "$Ime $Priimek"

 # Default geslo
 $Password = (ConvertTo-SecureString "Fr0sty.01" -AsPlainText -Force)

 # Ustvarjanje AD uporabnika
 New-ADUser `
 -SamAccountName $Username `
 -Name $displayName `
 -DisplayName $displayName `
 -GivenName $Ime `
 -Surname $Priimek `
 -UserPrincipalName $Username@frosty.si `
 -AccountPassword $Password `
 -Path "CN=Users,DC=frosty,DC=si" `
 -ChangePasswordAtLogon $true `
 -Enabled $true

 # Dodajanje v skupino
 if ($GroupDN) {
 Add-ADGroupMember -Identity $GroupDN -Members $Username
 Write-Host "Uporabnik '$Username' je bil dodan v skupino
'$($GroupDN.Split(',')[0].Split('=')[1])'."
 }

 Write-Host "Uporabnik '$displayName' je bil uspešno ustvarjen."
}

Funkcija za omogočanje/onemogočanje uporabnika
function Enable-Disable-ADUser {
 # Pridobivanje uporabniškega imena
 $Username = Read-Host "Vnesite uporabniško ime"

 # Pridobivanje informacij o uporabniku
 $User = Get-ADUser -Identity $Username -Properties Enabled, DisplayName,
SamAccountName, UserPrincipalName, Department, Title, EmailAddress

 # Preverjanje, ali je uporabnik najden
 if ($User) {
 # Izpis informacij o uporabniku
 Write-Host "Informacije o uporabniku:"
 $User | Format-List DisplayName, SamAccountName, Enabled,
UserPrincipalName, Department, Title, EmailAddress

 # Vprašanje o omogočanju/onemogočanju računa
 if ($User.Enabled) {
 do {
 $Action = Read-Host "Uporabniški račun je trenutno omogočen.
Onemogočim račun? (Y/N)"
 } while ($Action -notin ("Y", "N"))

 if ($Action -eq "Y") {
 Disable-ADAccount -Identity $Username
 Write-Host "Uporabniški račun '$Username' je bil onemogočen."
 } else {
 Write-Host "Onemogočanje uporabniškega računa je bilo preklicano."
 }
 } else {
 do {
 $Action = Read-Host "Uporabniški račun je trenutno onemogočen.
Omogočim račun? (Y/N)"
 } while ($Action -notin ("Y", "N"))

 if ($Action -eq "Y") {
 Enable-ADAccount -Identity $Username
 Write-Host "Uporabniški račun '$Username' je bil omogočen."
 } else {
 Write-Host "Omogočanje uporabniškega računa je bilo preklicano."
 }
 }
 } else {
 Write-Host "Uporabnik '$Username' ni bil najden."
 }
}

Funkcija za izpis podatkov o uporabnikih
function Get-User-Info {
 # Izbira skupine (prazno za vse skupine)
 $GroupChoice = Read-Host "Izberite skupino (Employees/Leadership/Pustite prazno
za vse)"
 while ($GroupChoice -notin ("Employees", "Leadership") -and $GroupChoice -ne
"") {
 Write-Host "Napačna izbira. Izberite Employees, Leadership ali pustite
prazno."
 $GroupChoice = Read-Host "Izberite skupino (Employees/Leadership/Pustite
prazno za vse)"
 }

 # Izbira oddelka (prazno za vse oddelke)
 $DepartmentChoice = Read-Host "Izberite oddelek
(Finance/Marketing/HR/Sales/IT/Pustite prazno za vse)"
 while ($DepartmentChoice -notin ("Finance", "Marketing", "HR", "Sales", "IT") -
and $DepartmentChoice -ne "") {
 Write-Host "Napačna izbira. Izberite Finance, Marketing, HR, Sales, IT ali
pustite prazno."
 $DepartmentChoice = Read-Host "Izberite oddelek
(Finance/Marketing/HR/Sales/IT/Pustite prazno za vse)"
 }

 # Določanje skupin
 $LeadershipDN = "CN=Leadership,CN=Users,DC=frosty,DC=si"
 $EmployeesDN = "CN=Employees,CN=Users,DC=frosty,DC=si"

 # Pridobivanje vseh uporabnikov

 $Users = Get-ADUser -Filter * -Properties DisplayName, Department, Enabled,
DistinguishedName, MemberOf, Title

 # Filtriranje
 $FilteredUsers = @()

 foreach ($User in $Users) {
 $GroupMatch = $true
 $DepartmentMatch = $true

 # Preverjanje pripadnosti skupini
 if ($GroupChoice -eq "Leadership") {
 $GroupMatch = ($User.MemberOf -contains $LeadershipDN)
 } elseif ($GroupChoice -eq "Employees") {
 $GroupMatch = ($User.MemberOf -contains $EmployeesDN)
 }

 # Preverjanje oddelka
 if ($DepartmentChoice -ne "") {
 $DepartmentMatch = ($User.Department -eq $DepartmentChoice)
 }

 # Če oba kriterija ustrezata, dodamo uporabnika v seznam
 if ($GroupMatch -and $DepartmentMatch) {
 $FilteredUsers += $User
 }
 }

 # Izpis uporabnikov
 if ($FilteredUsers.Count -gt 0) {
 Write-Host "Uporabniki:"
 $FilteredUsers | Format-Table DisplayName, SamAccountName, Enabled,
Department, Title
 } else {
 Write-Host "Ni uporabnikov z izbranimi kriteriji."
 }
}

Funkcija za spreminjanje oddelka in naziva
function Change-Info {
 # Pridobivanje uporabniškega imena
 $Username = Read-Host "Vnesite uporabniško ime (SamAccountName)"

 # Preverjanje, ali uporabnik obstaja
 if (Get-ADUser -Filter "SamAccountName -eq '$Username'") {

 # Pridobivanje informacij o uporabniku
 $User = Get-ADUser -Identity $Username -Properties Department, Title

 # Izpis trenutnih atributov
 Write-Host
 Write-Host "Department: $($User.Department)"
 Write-Host "Job Title: $($User.Title)"
 Write-Host

 # Meni za izbiro oddelka
 Write-Host "Izberite oddelek:"
 Write-Host "1. Finance"
 Write-Host "2. Marketing"
 Write-Host "3. HR"
 Write-Host "4. Sales"
 Write-Host "5. IT"
 Write-Host "x. Odstrani oddelek"
 Write-Host "0. Pustite nespremenjeno"

 $DepartmentChoice = Read-Host "Vaša izbira"

 # Preverjanje izbire oddelka
 switch ($DepartmentChoice) {
 "1" { $Department = "Finance" }
 "2" { $Department = "Marketing" }
 "3" { $Department = "HR" }
 "4" { $Department = "Sales" }
 "5" { $Department = "IT" }
 "x" { $Department = $null }
 "0" { $Department = $User.Department }
 default {

 Write-Host "Napačna izbira. Oddelek bo ostal nespremenjen."
 $Department = $User.Department
 }
 }

 # Vnos novih atributov za naziv
 $JobTitle = Read-Host "Vnesite nov naziv, pustite prazno, če ga ne želite
spremeniti, ali vnesite 'x' za odstranitev naziva"

 # Spreminjanje atributov
 try {
 if ($Department -eq $null) {
 Set-ADUser -Identity $Username -Clear Department
 } else {
 Set-ADUser -Identity $Username -Department $Department
 }

 if ($JobTitle -ne "") {
 if ($JobTitle -eq "x") {
 Set-ADUser -Identity $Username -Clear Title
 } else {
 Set-ADUser -Identity $Username -Title $JobTitle
 }
 }
 Write-Host "Atributi so bili uspešno spremenjeni."
 } catch {
 Write-Error "Napaka pri spreminjanju atributov:
$($_.Exception.Message)"
 }
 } else {
 Write-Host "Uporabnik '$Username' ni bil najden."
 }

}

Funkcija za uvoz CSV datoteke ki kreira uporabnike
function Create-ADUser-CSV {
 # Privzeto geslo
 $DefaultPassword = ConvertTo-SecureString "Fr0sty.01" -AsPlainText -Force

 # Uvoz CSV datoteke
 $Users = Import-Csv -Path "C:\temp\uporabniki.csv"

 # Obdelava vsakega uporabnika
 foreach ($User in $Users) {
 try {
 # Odstranjevanje skritih znakov in presledkov
 $SamAccountName = $User."uporabniško ime".Trim()
 $Ime = $User.ime.Trim()
 $Priimek = $User.priimek.Trim()
 $Skupina = $User.skupina.Trim()
 $Oddelek = $User.oddelek.Trim()
 $Naziv = $User.naziv.Trim()

 # Ustvarjanje DisplayName in Name
 $DisplayName = "$Ime $Priimek"
 $Name = $DisplayName

 # Ustvarjanje AD uporabnika
 $NewUser = New-ADUser -SamAccountName $SamAccountName `
 -Name $Name `
 -DisplayName $DisplayName `
 -GivenName $Ime `
 -Surname $Priimek `
 -UserPrincipalName "$SamAccountName@frosty.si"
`
 -AccountPassword $DefaultPassword `
 -Enabled $true `
 -ChangePasswordAtLogon $true `
 -Path "CN=Users,DC=frosty,DC=si"

 # Zagotovimo, da je $NewUser pravilno nastavljen
 if (-not $NewUser -and (Get-ADUser -Identity $SamAccountName)) {
 $NewUser = Get-ADUser -Identity $SamAccountName
 }

 # Dodajanje v skupino

 if ($Skupina -eq "Leadership") {
 Add-ADGroupMember -Identity
"CN=Leadership,CN=Users,DC=frosty,DC=si" -Members $NewUser
 } elseif ($Skupina -eq "Employees") {
 Add-ADGroupMember -Identity "CN=Employees,CN=Users,DC=frosty,DC=si"
-Members $NewUser
 } else {
 Write-Warning "Opozorilo: Nepravilna skupina '$Skupina' za
uporabnika '$SamAccountName'."
 }

 # Nastavitev oddelka in naziva
 if ($NewUser) {
 Set-ADUser -Identity $NewUser -Department $Oddelek -Title $Naziv
 } else {
 Write-Warning "Opozorilo: Uporabnika '$SamAccountName' ni bilo
mogoče najti za nastavitev atributov."
 }

 Write-Host "Uporabnik '$SamAccountName' je bil uspešno obdelan."
 } catch {
 Write-Error "Napaka pri obdelavi uporabnika '$SamAccountName':
$($_.Exception.Message)"
 }
 }

}

Glavna zanka
do {
 Write-Host "Izberite možnost:"
 Write-Host "1. Ustvarjanje uporabnika"
 Write-Host "2. Omogočanje/onemogočanje uporabnika"
 Write-Host "3. Pridobivanje informacij o uporabnikih"
 Write-Host "4. Spreminjanje informacij o uporabnikih"
 Write-Host "5. Uvoz uporabnikov iz CSV datoteke"
 Write-Host "x. Izhod"

 $Choice = Read-Host "Vaša izbira"

 switch ($Choice) {
 "1" {
 Create-ADUser
 }
 "2" {
 Enable-Disable-ADUser
 }
 "3" {
 Get-User-Info
 }
 "4" {
 Change-Info
 }
 "5" {
 Create-ADUser-CSV
 }
 "x" {
 Write-Host "Izhod iz skripte."
 }
 default {
 Write-Host "Napačna izbira. Poskusite ponovno."
 }
 }

 if ($Choice -ne "x") {
 Read-Host "Pritisnite Enter za nadaljevanje"
 }

} while ($Choice -ne "x")

