VISJA STROKOVNA SOLA ACADEMIA

MARIBOR

AVTOMATIZACIJA SISTEMSKE
ADMINISTRACIJE S POMOCJO SODOBNIH
ORODIJ IN SKRIPTIRANJA

Kandidat: Iztok Hladen
Vrsta Studija: vi§jeSolski strokovni $tudij
Studijski program: Informatika
Mentor — predavatelj: mag. DusSan Brglez
Mentor v podjetju: Matjaz Znidari¢, inZ. inf.

Lektorica: Jasmina Vajda Vrhunec, prof. slov.

Maribor, 2025

IZJAVA O AVTORSTVU DIPLOMSKEGA DELA

Podpisani Iztok Hladen sem avtor diplomskega dela z naslovom Avtomatizacija sistemske
administracije s pomocjo sodobnih orodij in skriptiranja, ki sem ga napisal pod mentorstvom

mag. DuSana Brgleza.
S svojim podpisom zagotavljam, da:

e je predlozeno delo izklju¢no rezultat mojega dela,

e sem poskrbel, da so dela in mnenja drugih avtorjev, ki jih uporabljam v predloZeni
nalogi, navedena oz. citirana skladno s pravili Visje strokovne Sole Academia Maribor,

e se zavedam, da je plagiatorstvo — predstavljanje tujih del oz. misli kot moje lastne —
kaznivo po Zakonu o avtorski in sorodnih pravicah (Uradni list RS, §t. 16/07 — uradno
precisceno besedilo, 68/08, 110/13, 56/15 in 63/16 — ZKUASP); prekrSek pa podleze
tudi ukrepom Visje strokovne Sole Academia Maribor skladno z njenimi pravili,

e skladno z 32.a ¢lenom ZASP dovoljujem Visji strokovni Soli Academia Maribor objavo

diplomskega dela na spletnem portalu Sole.

KriZevci pri Ljutomeru, junij 2025 Podpis Studenta: Iztok Hladen

ZAHVALA

Zahvaljujem se mentorju mag. DuSanu Brglezu za strokovno pomo¢, usmeritve in koristne

nasvete skozi celoten proces nastajanja diplomskega dela.

Prav tako se zahvaljujem mentorju v podjetju g. Matjazu Znidari¢u za podporo in pomo¢ pri

prakti¢ni uporabi orodij, potrebnih za nastanek diplomskega dela.

Najvecjo zahvalo namenjam druzini za neomajno podporo, razumevanje in spodbudo, ne le

med pisanjem diplomskega dela, temvec¢ skozi celoten Studij.

POVZETEK

V sodobnih okoljih informacijske tehnologije (IT) predstavlja sistemska administracija temelj
za zagotavljanje stabilnega, varnega in ucinkovitega delovanja IT-sistemov. Cilj diplomskega
dela je bil ovrednotiti vpliv avtomatizacije kljucnih nalog sistemske administracije na

ucinkovitost, zanesljivost, varnost in odzivnost IT-sistemov.

Diplomsko delo se za¢ne z zgodovinskim pregledom racunalniStva in opredelitvijo vloge
sistemskega administratorja. Sledi pregled izbranih orodij, ki podpirajo avtomatizacijo in
napredno analitiko — od osnovnih skriptnih jezikov, kot so Shell, PowerShell in Python, do
specializiranih orodij, kot sta Ansible za upravljanje konfiguracij in CheckMK za nadzor
sistemov. Predstavljena so tudi nekatera napredna orodja, kot je Darktrace, ki izkoris¢a umetno
inteligenco in strojno ucenje za izboljSano zaznavanje anomalij ter podporo pri odlocanju tako
v sistemski administraciji kot v kibernetski varnosti. Teoreticno je obravnavan tudi pomen
avtomatizacije za varnostno skladnost, zlasti v kontekstu upravljanja uporabniskih racunov.
Osrednji del diplomskega dela se nato osredoto¢a na poglobljeno implementacijo
avtomatizacije specificnih sistemskih opravil, kjer s prakti¢énimi primeri preverjamo nekatere
zastavljene hipoteze. V tem sklopu smo razvili tudi lastno PowerShell skripto AD-Toolkit, ki
skozi interaktivni meni ponuja nabor orodij za upravljanje uporabniskih racunov v okolju
Active Directory. Prav tako smo izvedli avtomatizacijo varnostnega kopiranja podatkov in
obnovitve sistema z orodjem Proxmox VE ter avtomatizirano nameScanje programskih

posodobitev z orodjem Ansible.

Rezultati potrjujejo, da avtomatizacija sistemskih opravil zmanjSuje tveganje izgube podatkov
in Stevilo varnostnih ranljivosti, izboljSuje odzivni €as na sistemske tezave, optimizira porabo
diskovnega prostora in skrajsa ¢as obnovitve sistemov po napakah. Ceprav so nekatere
naprednejSe tematike, kot je polna implementacija reSitev na osnovi umetne inteligence zaradi
prakticnih omejitev, obdelane pretezno skozi teoreticni del, prakti¢ni preizkusi in razvoj
lastnega orodja jasno kazejo, da je avtomatizacija nepogresljiv element za doseganje visoke

ucinkovitosti zanesljivosti, varnosti in odzivnosti sodobnih IT-sistemov.

Kljucne besede: avitomatizacija, sistemska administracija, PowerShell, Ansible, varnost

informacijskih sistemov.

ABSTRACT

Automation of System Administration Using Modern Tools and Scripting

In modern IT environments, system administration forms the foundation for ensuring the stable,
secure and efficient operation of IT systems. The aim of this diploma thesis was to evaluate the
impact of automating key system administration tasks on the efficiency, reliability, security,

and responsiveness of IT systems.

The diploma thesis starts with a historical overview of computing and a definition of the system
administrator's role. This is followed by a review of the selected tools that support automation
and advanced analytics — from basic scripting languages such as Shell, PowerShell, and Python,
to specialized tools like Ansible for configuration management and CheckMK for system
monitoring. Some advanced tools are also presented, such as Darktrace, which utilizes artificial
intelligence and machine learning for improved anomaly detection and supports decision
making in both system administration and cybersecurity. The importance of automation for
security compliance, particularly in the context of user account management, is also discussed
theoretically. The core part of the diploma thesis then focuses on the implementation of
automating specific system tasks, where practical examples are used to test some of the
hypotheses. In this section, we also developed our own PowerShell script, AD-Toolkit, which
provides a set of tools for managing user accounts in Active Directory via an interactive menu.
We further implemented automation of data backup and system recovery using Proxmox VE,

and automated software update installation with Ansible.

The results confirm that automating system tasks reduces the risk of data loss, decreases the
number of security vulnerabilities, improves response time to system errors, optimizes disk
space usage, and shortens system recovery time after failures. Although some more advanced
topics, such as the full implementation of artificial intelligence-based solutions, were addressed
primarily in the theoretical part due to practical constraints, the practical tests and the
development of a custom tool clearly indicate that automation is an important element for

achieving high efficiency, reliability, security, and responsiveness in modern IT systems.

Keywords: automation, system administration, PowerShell, Ansible, IT System Security

KAZALO VSEBINE

1

5

6

LUAYZ0)) et 9
1.1 OPIS PODROCJA IN OPREDELITEV PROBLEMAuciiuiiiiiiiiiiitiiie ittt a it a bbb bbb bbb st sas s 9
1.2 NAMEN, CILJI IN OSNOVNE TRDITVEeeervreeriireeerieeessreeesneeeenns10
1.3 PREDPOSTAVKE IN OMEJITVE ...ccuiiiiiiiiiniiiiicnieiiinescnece s10
1.4 UPORABLIENE RAZISKOVALNE METODE .10

ORODJA ZA AVTOMATIZACIJO SISTEMSKE ADMINISTRACIJE................ 11
2.1 ZGODOVINA AVTOMATIZACHE ...ooiuiiiiitiiiiiiite ittt sttt bbb s h bbb e bbb b s bs b e b bbb sbe s 11

2.1.1 Zg0dOVINA FACURGINIKOV ..ottt ettt ettt ettt e s e s 11

2.1.2 Kaj je sistemska QdMiniStrACIIQAcoeeveevieesiieieeiiiiisieseest ettt 14
2.2 PREGLED ORODIJ ...ttt ittt ettt h b h s a b b e e b bbb et a s bbb ene s 16

2201 SREILSKIIDEE .ttt ettt 16

D o3 N Y Y= | SR 18

223 PYIROMN ettt ettt sttt sttt 19

2204 ARBSIDI@ .ttt sttt 22

22,5 CROCKINK .ttt sttt 26

2.3 UMETNA INTELIGENCA V SISTEMSKI ADMINISTRACUI

2.4 AVTOMATIZACIJA IN VARNOSTNA SKLADNOSTccceunnine .31
AVTOMATIZACIJA SISTEMSKIH OPRAVILuuuueees 32
3.1 PRIMERI AVTOMATIZACIE S POWERSHELLOM.......uuttiiitittisiteeesteeessseessssseessssseesssesssssssssssssessssssesssssessssssessssssesssssseesnes 32
3.1.1 Brisanje specificnega direktorija s pomocjo PowerShell skripte in Task Schedulerja.................. 32
3.1.2 Premikanje datotek v arhivsko mapo s pomocjo POWerSRellqccccovcueveveceeneeneeseaneeenne. 35
3.1.3 Izdelek — program AD-Toolkit v POWEFSHEIUc.c.ccooueeeveieiiieiiiiiieeeeeeee e 39
3.2 PRIMERI INTEGRACIE UMETNE INTELIGENCE V AVTOMATIZACIIOuvvteeiuieeeeiteeeeereeeesseeeessseeeesseeessssessssssesessssessasssennns 42
3.3 AVTOMATIZACITA VARNOSTNIH KOPIJuvveeisutreeesireeessureessssesessseesssessssssesssssseessssesssssssessssssssssssessnsssssssssessssssessnssessnes 43
3.4 AVTOMATIZACIJA POSODABLIJANJA PROGRAMSKE OPREMEccuvvieiiurieeesireeesireessseesssssessssssessssssesssssessssssessssssessnssnessnes 45
SKILEP ... eieeecrecereeceeeeeeeeeececeseeesesesssesess 48
LITERATURA ... eeececceeeeeeeeneeeecccccsessssssssssscccssssssssssssssessse 52
PRILIOGE ...auueeeeeeeeeeeeccrrrssnnneeeeecccssssssssssssessessssssssasssssssssssssssssasssssssessssssssassssssssssssssansasases 54

KAZALO SLIK

SLIKA 12 ABAKUS...ceittiitteeiteesiteesteesiutessteessseesteessseesatesssseesasessseesssesssessssessssessssessnseesssessssessseessseesoseesssessssessssees 11
SLIKA 2: KALKULATOR PASCALINEuceitteiieieeteieesteesseesseeseaseesseessesssesssesssessssssessssssseesesssssssessessssessesssesssessessses 12
SLIKA 3: DIFERENCNI STROJ...ccuuteetetestreetesasseessesasseesssesensesssesassessssesansesssesassesssesansesssessssessssessssessssessssessssessssesn 12
SLIKA 4: ANALITICNI STROJ «.vveuvteutteutesteesteeseessesssesseesseesseesseesssassssssessesssesssesssessssssessssssseenseessesssesssessesssesssesssesssesses 13
SLIKA 52 ENTAC .eutieiiet ittt sttt ettt e st e bt e st e s bt e sabeesaseesabeesabeesabeesasaesabaesaseesabeesabeesabaesabeesabaesabeesabaesaseesn 14
SLIKA 6: STANJE V IZVORNI IN CILINI MAPI PRED ZAGONOM SKRIPTE......cccersuutterrreeeesirieeessreeessseeesssseeesssseesssnees 22
SLIKA 7: STANJE V IZVORNI IN CILINI MAPI PO ZAGONU SKRIPTE IN VSEBINA DNEVNISKE DATOTEKEc..cveeeuen.. 22
SLIKA 8: DODAJANJE REPOZITORITA ANSIBLE ...c..veiuteitieiteesteeteestesssesteesseessesssesssesseessesssessseessesssssseessesssesssesssssnsesses 24
SLIKA 9: RAZLICICA ANSIBLE ...ueeittiiitteeteeesteesteeesseestesasseestesasessssesasessssesassessssessssesssessssessssessssessssessssessssessssesn 24
SLIKA 10: KONFIGURACITA ANSIBLE HOSTSuutttiiiuteeeesieeeesureeesaseeeessseessssseessssseessssseeesssssesssssssesssssseessssssessssssens 24
SLIKA 11: ANSIBLE PING .uveetteutieutesteesteesseeseessesssesseesssesseesssasssassssssessesssesssesssesssssssssssssssensesssssssesssessesssesssessssssesses 25
SLIKA 12: IZKLOP SISTEMA PLAYBOOKvectieterteieesteesseesseaseassessesseessesssesssessssssesssesssessseassesssssssessesssesssesssesssesses 25
SLIKA 13: REZULTAT PLAYBOOKA.......cetiititeieitteteiiteeeesteeeesiueeeesauaeesessseeesssseessssssesssssseesasssessssssseesssssessssssseesssseens 26
SLIKA 14: PRIDOBIVANIE ORODJA CHECKMEceiiiiuteeeeruteeeenuresesnseesessseessssseesssseesessseeesssssessssssesssssseessssesssssseees 26
SLIKA 15: NAMESTITEV ORODJA CHECKMEveeuveiutesseesseesseeseassesssessesssessesssesssssseesseessssssesssssssesseessesssesssessssssssnes 27
SLIKA 16: PRIKAZ PRIDOBIVANJA AGENTOV V ORODJU CHECKMEceeiuvvieeeereresnureeeesreeessssseeessseessssseeessssesssssseees 27
SLIKA 17: PRIKAZ DODANIH KLIENTOV V ORODJU CHECKMEcccuvtteeiureeesiureeessueesessreeessssseeesssseesssssseessssssessssseees 28
SLIKA 18: PRIKAZ STANJA KLIENTOV V ORODJU CHECKMEKccvteuvesteesieeseesesaesseesseesseessesssesssesseessesssesssesssessssnes 28
SLIKA 19: PRAVILO ZA OBVESCANIJE V ORODJU CHECKMEvviiiueerteeeueesireessseesssessnseesssessssesssseesssessssessssessssessssees 28
SLIKA 20: PRIMER OPOZORILA ORODJA CHECKMK PREK E-POSTE 1 ...cccuiiiiiiieiieiiiecieesieeeteesteeeaeesveesveesveesanee s 29
SLIKA 21: PRIMER OPOZORILA ORODJA CHECKMK PREK E-POSTE 2 ...cccveeitiieieesreeeieesreesiseesseesssesssessssesssesssseess 29
SLIKA 22: PRIMER PRIKAZA STANJA KLIENTOV V ORODJU CHECKMK V PODJETIU..cccciuvireeriirieeriiieeeniieeessreeessaneens 30
SLIKA 23: SPLOSNE NASTAVITVE TASK SCHEDULERJA — POWERSHELL BRISANJE VSEBINE MAPEcccc0eeevveennenn. 34
SLIKA 24: TRIGGER NASTAVITVE TASK SCHEDULERJA — POWERSHELL BRISANJE VSEBINE MAPEcccccccvveennnen. 34
SLIKA 25: ACTIONS NASTAVITVE TASK SCHEDULERJA — POWERSHELL BRISANJE VSEBINE MAPEccceccvveeennneen. 35
SLIKA 26: PRIMER VSEBINE DATOTEKE ICT LOCATIONS.TXT .eeecttteieeriieeieesieeeieesieesneesbeesseesreesaseesneesaneens 37
SLIKA 27: LASTNOSTI MAP PRED PREMIKANIEM......ceeruttieteerteesseesuteesseesteesseesaseesseesaseesnseesaseessseessessnseessessnseess 38
SLIKA 28: LASTNOSTI MAP PO PREMIKANIUuuutiiiiiiieeeniteeeeaiteeesiutteeesteeesssseeesausteessaseeessssseeesasssesssseeessssseeessnsens 38
SLIKA 29: VSEBINA DNEVNISKE DATOTEKE ROBOCOPY PO PREMIKANIUccccveerreeeiveesreesiseessseesssessssessssessssessssees 39
SLIKA 30: OSNOVNI PRIKAZ AD-TOOLKITceecttteiteerreeeieesieeesieesteeeseesteesseesteesseesaseesseessseessseesaseessseesssesssseess 40
SLIKA 31: KREIRANJE NOVEGA UPORABNIKA V AD-TOOLKITccocttirriieriiiriieenieesieesreesieesreesseesseessseessessssees 40
SLIKA 32: ONEMOGOCANJE UPORABNIKA V AD-TOOLKITceceteiirireiieesitieeiteesiteeesseesressssesssessssessssessssessssessssess 40
SLIKA 33: IZPIS PODATKOV O UPORABNIKIH V AD-TOOLKITccuttritiieieeriieeiieesieesieesreesseesreessseesaseessseesssesssseess 41
SLIKA 34: UREJANJE INFORMACIJ O UPORABNIKIH V AD-TOOLKIT......ccuvttieiurireeiireeesrieeeeseeeeesssseesessreessssseessssenes 41
SLIKA 35: UVOZ IZ DATOTEKE CSV V AD-TOOLKIT ...ccccutttiiriieteiiiteeeniiieeeeiireeessitteeesteeessssseeessssseessnsseesssssseessssses 41

SLIKA 36: PRIKAZ ORODJA DARKTRACE ...uuiiieieieieieieieieieieieieieeesssesesssesesesesesesens 43

SLIKA 37: KONFIGURACIJA AVTOMATIZACIJE VARNOSTNIH KOPIJeeeuvieriiieeieenreesieesreesseesreesseesseesseesseessseess 44

SLIKA 38: REZULTAT AVTOMATIZACIJE VARNOSTNEGA KOPIRANIJA ...ccvtetertereeseeerseesseeseessesssesseessesssesssessssseesnes 44
SLIKA 39: ANSIBLE UPDATE IN UPGRADEcceeeiuttteiiuuteeeniteeesnureeesnseeessuseessssseesssseesssssesesssssesessseesssssseesssssseessssses 45
SLIKA 40: STANJE STREZNIKA PRED ZAGONOM PLAYBOOKAceiiiiiiiiieriieeieesiteesieesseesseesseessseessessssesssseessseess 46
SLIKA 41: STANJE OB ZAGONU PLAYBOOKA ...c.utttiitterieieieesiteessieesteessseesteesseesseessseesssessssesssseesssessssessssesssessssees 46

SLIKA 42: STANJE STREZNIKA PO ZAGONU PLAYBOOKAcciiiiiiiitiitiieeeeeieiteeteeeeeesesiaseeeeeesssssissesesesssesssssssseessennns 47

1 UVOD

1.1 Opis podrodja in opredelitev problema

V danasnjem svetu je informacijska tehnologija (IT) postala hrbtenica poslovanja, zato je vloga
sistemske administracije klju¢nega pomena pri zagotavljanju nemotenega delovanja in
zanesljivosti IT-sistemov. Naloge sistemskih administratorjev zajemajo Sirok spekter, v
katerega vkljuCujemo upravljanje uporabnikov in streznikov, names¢anje in konfiguracijo
programske opreme, postavljanje in vzdrZzevanje omrezij ter zagotavljanje varnosti sistemov. S
stalnim napredkom tehnologije in vedno vecjo kompleksnostjo IT-okolij pa se sistemski
administratorji soo¢ajo z vedno vecjimi izzivi. V sodobnem IT-svetu so tradicionalne metode
in pristopi pogosto zamudni in podvrzeni napakam. Kadar je treba upravljati na stotine ali celo
na tisoce streznikov in naprav, postane rocna sistemska administracija zamudna, neucinkovita
in prakti¢no nemogoca. Taka neucinkovitost povzroci izgubo ¢asa in virov, prav tako pa lahko
povzroci resne tezave, kot so izpadi raznih sistemov, varnostne ranljivosti in izguba podatkov.
V zadnjem c¢asu se tudi na podrocju sistemske administracije uveljavlja uporaba umetne
inteligence, kar sistemskim administratorjem lahko tako olajsa kot do dolo¢ene mere tudi otezi

delo.

Namen diplomskega dela je raziskovati razne moznosti avtomatizacije sistemske administracije
z namenom izboljSanja u¢inkovitosti, zmanjSanja stroSkov in hkrati povecanja zanesljivosti IT-
sistemov. Avtomatizacija predstavlja reSitev za raznorazne izzive, s katerimi se sistemski
administratorji sooc¢ajo na dnevni bazi, saj nam omogoca avtomatizacijo ponavljajocih se nalog,
standardizacijo konfiguracij in avtomatizirano spremljanje sistemov. S pomoc¢jo avtomatizacije
zmanjSamo potrebo po rocnem posredovanju, ob pravilni konfiguraciji pa s tem zmanjSamo
moznost ¢loveskih napak in prav tako sprostimo ¢asovne vire sistemskih administratorjev,

zaradi Cesar se lahko posvetijo pomembnejSim nalogam.

V diplomskem delu se bomo osredotocili na prakti¢no implementacijo avtomatizacije nekaterih
kljuénih nalog sistemske administracije. Za to bomo primarno uporabili skriptni jezik
PowerShell. Ce je za specifi¢tne naloge bolj smiselno uporabiti okolje Linux, se bomo
posluZevali Shell skript, omenili pa bomo tudi uporabo skript, zapisanih v programskem jeziku

Python, ter naprednejSa in zmogljivejSa orodja, kot je Ansible.

1.2 Namen, cilji in osnovne trditve

Namen diplomskega dela je raziskati in ovrednotiti vpliv avtomatizacije klju¢nih nalog
sistemske administracije na ucinkovitost, zanesljivost, varnost in odzivnost IT-sistemov.
Poudarek bo na uporabi skriptnega jezika PowerShell (predvsem v okolju Microsoft Windows),
dopolnjenega s Shell skriptami (v okoljih Linux) in Python skriptami. Dodatno bomo Se

raziskali moZnosti uporabe umetne inteligence za izboljSanje u¢inkovitosti avtomatizacije.

Osredotocili se bomo predvsem na avtomatizacijo varnostnega Kkopiranja podatkov,
avtomatizacijo posodabljanja sistemov, avtomatizacijo ciS€enja zaCasnih datotek,

avtomatizacijo spremljanja sistemskih virov in uporabo umetne inteligence pri avtomatizaciji.

1.3 Predpostavke in omejitve

Diplomsko delo je zastavljeno na nacin, da imamo relativno enostaven dostop do potrebne
tehnologije — z nekaj izjemami. Za izvedbo prakti¢nega dela projektnega dela je zahtevana
dolo¢ena mera osnovnega znanja sistemske administracije, kot je poznavanje ukazne vrstice
tako v okoljih Windows kot Linux. Ceprav je dostop do tehnologije relativno enostaven, pa
morda vidimo tezavo v omejenosti potrebnih racunalniSkih virov in posledi¢no v omejenem
testnem okolju. Prav tako zaradi informacij zaupne narave v diplomskem delu ne moremo
izvesti celotnega prakti¢nega dela v okolju podjetja, zato se bomo omejili na lokalno

postavljene streznike in virtualne stroje.

1.4 Uporabljene raziskovalne metode

V diplomskem delu bomo uporabili kombinacijo empiri€nega in prakti¢no-aplikativnega
pristopa. V raziskavi se bomo opirali na Ze obstojece znanje in izkusnje strokovnjakov, ki so
opisani v strokovni literaturi, hkrati pa bomo ustvarili uporabne skripte za avtomatizacijo in
preverili, kako dobro se te obnesejo v praksi. Na tak nacin bo raziskava imela prakti¢no
vrednost in bo hkrati tudi dobro utemeljena s teorijo, kar bo pomagalo pri lazjem razumevanju

namena avtomatizacije v sistemski administraciji.

10

2 ORODJA ZA AVTOMATIZACIJO SISTEMSKE
ADMINISTRACIJE

2.1 Zgodovina avtomatizacije

2.1.1 Zgodovina racunalnikov

Zgodovina razvoja racunalnikov sega v davno preteklost, saj so si ljudje pri Stetju pomagali z
raznoraznimi pripomocki. Dobrih 2500 let pred naSim Stetjem se je pojavil abakus — naprava,
ki je s pomocjo v okvir vpetih kroglic omogocala hitro in enostavno sesStevanje, odStevanje in
nekatere ostale racunske operacije, s tem pa je kar precej poenostavila trgovanje. (AnZzelj in

drugi, 2025, str. 212)

UPPER
DECK

LOWER
DECK

Slika 1: Abakus

Vir: https://www.ecb.torontomu.ca/~elf/abacus/intro.html

Leta 1642 je Blaise Pascal naredil prvi mehanicni kalkulator, ki ga imenujemo Pascaline.
Deloval je na principu zobatih koles z desetimi zobmi ter mehanizma za prenos enote na
naslednje kolo, omogocal pa je seStevanje in odStevanje. (Anzelj in drugi, 2025, str. 213)
Podobno delovanje je bilo mogoce opaziti v avtomobilih, saj so v preteklosti avtomobili imeli

analogne Stevce kilometrov, ki so delovali na dokaj podoben princip.

11

Slika 2: Kalkulator Pascaline

Vir: https://kids.britannica.com/students/article/Pascaline/332603/media?assemblyld=116010

Ker pa so ljudje vedno bolj stremeli k temu, da svoja dnevna opravila avtomatizirajo, se je v
19. stoletju pojavil nov izum. Charles Babbage je namre¢ izumil prvi avtomati¢ni mehanski
kalkulator — poimenovan diferen¢ni stroj. (Anzelj in drugi, 2025, str. 214) Ta stroj je bil zmozen
racunati vrednosti s pomocjo seStevanja, kar pomeni, da je bil relativno omejen. Kasneje je
Babbage zasnoval tako imenovani analiti¢ni stroj, ki je bil zmoZen poleg seStevanja tudi
odstevanja, mnozenja in deljenja, mozno pa ga je bilo tudi programirati. Leta 1843 je Ada
Lovelace v svojih prevodih ¢lankov italijanskega matematika in inZenirja Luigija Federica
Menabreaja zasnovala prvi raCunalniSki program za analiti¢ni stroj, ki bi lahko izracunaval

Bernoullijeva $tevila. (Charles Babbage, 2025)

-

. -{’!?is.iiv:x

'Z‘j
.v.'.

Slika 3: Diferencni stroj

Vir: https://cdn.britannica.com/10/23610-050-6E34CF6B/portion-Difference-Engine-Charles-Babbage-
logarithm-tables-1832.jpg

12

Slika 4: Analiti¢ni stroj

Vir: https://cdn.britannica.com/31/172531-050-E009D42C/portion-Charles-Babbage-Analytical-Engine-death-
mill-1871.jpg
Skok v leto 1936 nam prinese novo teoreticno zasnovo sodobnega racunalnika, ki si ga je
zamislil Alan Turing. Ta naj bi imel neskoncen trak, katerega glava bi imela moznost dolocenih
operacij, in kontrolni mehanizem. Trak je razdeljen v kvadrate, ki lahko vsebujejo informacije
ali pa ne, glava pa ima moznost premikanja, branja in zapisovanja ter tudi brisanja iz kvadratov
na traku. (Turing Machine, 2025) To je kasneje postala osnova za vse nadaljnje digitalne

racunalnike, ki delujejo po Neumannovem principu. (AnZzelj in drugi, 2025, str. 216)

Pri zgodovini razvoja ra¢unalnikov je pomembno omeniti tudi raCunalnik Eniac, zasnovan leta
1943 in dokoncan leta 1945. Zasnovan je bil za izraCunavanje vrednosti v tabeli dosega
artilerije. Navodila so bila programirana s pomocjo strojnih jezikov, kar je pomenilo, da je stroj
lahko deloval z veliko hitrostjo. (Eniac, 2025) To leto predstavlja tudi nek mejnik, saj od tega
leta naprej ljudje postanejo operaterji oziroma programerji, racunalnik pa je le Se poimenovanje

za stroj. (Anzelj in drugi, 2025, str. 217)

13

Slika 5: Eniac

Vir: https://cdn.sanity.io/images/i2z8 7pbo/production/a9132a54f148d9eef366dbf5f7a8cb5c25603971 -
2500x1597.webp
V letih, ki so sledila, lo¢imo pet generacij elektronskih racunalnikov. Prva generacija, v katero
spada tudi racunalnik Eniac, temelji na tehnologiji elektronk, uporablja strojni jezik in luknjaste
kartice, programira pa se s premikanjem stikal. Druga generacija temelji na tehnologiji
tranzistorjev, uporablja luknjaste kartice, programira pa se s simbolnimi jeziki. Tretja
napravo uporablja tipkovnico in monitor, programira pa se s pomocjo postopkovnih in opisnih
programskih jezikov. Prav tako imajo radunalniki e names$¢ene operacijske sisteme. Cetrta
generacija temelji na tehnologiji mikroprocesorjev, kar pomeni, da je na eno silicijevo plos¢ico
postavljenih ogromno ¢ipov. Kot vhodne in izhodne naprave se uporabljajo miska, tipkovnica,
mikrofon, fotoaparat, monitor, tiskalnik, zvo¢niki. Programira se vecinoma v vi§jenivojskih
programskih jezikih. Peta generacija, prihodnost rac¢unalnikov, pa bo po vsej verjetnosti
vsebovala kvantne racunalnike ali pa skupine racunalnikov — oblak (angl. cloud). (AnZelj in

drugi, 2025, str. 218-220)

2.1.2 Kaj je sistemska administracija

Sistemska administracija je zelo Sirok pojem, neka strnjena definicija pa bi bila, da je to
disciplina upravljanja informacijskih sistemov. V to so vkljuceni postavitev, konfiguracija in

vzdrZevanje, saj tako poskrbimo za zanesljivo delovanje racunalniSkih sistemov in omreZzij.

14

Sistemski administratorji imajo zelo Sirok spekter nalog, ki so klju¢nega pomena za nemoteno
delovanje podjetij in organizacij. Odvisno od velikosti in kompleksnosti organizacije lahko
opravljajo razli¢ne naloge, vendar pa v vecji meri med te naloge spadajo nacrtovanje,
konfiguracija, odpravljanje tezav in vzdrzevanje kompleksnih racunalniskih sistemov, ki so
sestavljeni iz ve¢ komponent (na primer sistemi za upravljanje baz podatkov in spletni strezniki)
in ve¢ streznikov, ki so razporejeni po ve¢ omrezjih in razlicnih platformah operacijskih
sistemov. (Barrett in drugi, 2004) Prav tako pa med naloge sistemskih administratorjev spadajo
tudi zagotavljanje varnosti sistemov, pomoC kon¢nim uporabnikom, pripravljanje
dokumentacije in ne nazadnje tudi pripravljanje avtomatizacije za dolocene naloge. (What Does
a Systems Administrator Do?, 2025) Ravno pri tej zadnji nalogi sistemskih administratorjev —
avtomatizaciji — se pogosto pojavljajo razni miti, kot na primer, da je avtomatizacija nevarna in
da se raje posluzujejo rocnega upravljanja nalog, saj je s tem zagotovljena vecja kakovost.
Seveda ta trditev ne drzi, saj je pri vsaki nalogi, ki vsebuje ¢loveski dejavnik, mozno, da pride
do tezave. Naloga sistemskega administratorja je, da avtomatizacijo preveri v testnem okolju, s
tem pa zagotovi ¢im boljSe delovanje v Zivem okolju. (Limoncelli, Hogan, & Chalup, 2017, str.

74)

Kot ze omenjeno, imajo sistemski administratorji Sirok spekter nalog, zato jih lahko lo¢imo
glede na podrocje, s katerim se primarno ukvarjajo. Tako lahko imamo sistemske
administratorje za omrezja, administratorje baz podatkov, administratorje sistemov v oblaku in

podobno. (What Does a Systems Administrator Do?, 2025)

Prihodnost sistemske administracije je po eni strani polna izzivov, po drugi strani pa polna
novih priloznosti. Predvidevamo, da bodo podro¢ja, kot so avtomatizacija, umetna inteligenca,
racunalniStvo v oblaku in sploSna kibernetska varnost, mo¢no vplivala na razvoj nalog

sistemskih administratorjev.

Da bi lazje razumeli delo sistemskih administratorjev, je treba razumeti razvoj in napredek

sistemov in razli¢nih arhitektur. Ce na kratko povzamemo vrste teh sistemov:

1. Mainframe je neke vrste glavni raCunalnik, ki je kljucen za obdelavo ogromne koliCine
podatkov in izvedbo klju¢nih operacij. Sistemski administrator za tako arhitekturo je
odgovoren za vzdrZevanje, upravljanje in varnost takega sistema. Njegovo delo vkljucuje
namesSCanje razne programske opreme, nadzorovanje delovanja sistema in tudi skrb za
varnost sistema. Kot zanimivost, mainframe sega v davno leto 1937 — tako imenovani IBM

Automatic Sequence Controlled Calculator ali Harvard Mark I je bil prvi racunalnik take

15

arhitekture. Prednosti take arhitekture so predvsem v zanesljivosti in dostopnosti. (Susnjara

& Smalley, 2025)

2. Na drugi strani sistemske administracije pa se je v 70. letih pojavil UNIX. Ti sistemi so
imeli pomembno vlogo pri razvoju raCunalniStva, saj so neposredno vplivali na razvoj
marsikaterega modernega operacijskega sistema. Sistemski administratorji morajo do
dolocene mere poznati administracijo UNIX, saj se ta arhitektura oziroma neki derivati te
arhitekture pogosto pojavljajo Se dandanes. Delo administratorja tako vkljucuje vse od
namesSCanja in konfiguracij do upravljanja uporabnikov, nadzorovanja sistema ter tudi

skriptiranja in avtomatizacije. (unix.org, 2025)

3. V kontekstu sistemske administracije je pomembno omeniti Se Microsoftovo programsko
opremo, ki ne temelji na arhitekturi UNIX, vendar je kljub temu z vidika sistemske

administracije pomemben del vsakdanjika sistemskih administratorjev.

Dandanes je realnost, da se v sodobnem IT-okolju sistemski administratorji srecujejo z zelo
heterogenim delom, saj upravljanje vseh teh raznovrstnih sistemov in arhitektur zahteva Sirok

spekter znanj in spretnosti.

2.2 Pregled orodij

2.2.1 Shell skripte

Shell skripte, obicajno uporabljene v sistemih UNIX, so skripte, ki jih sistemski administratorji
tipino uporabljajo za lazje, ponavljajoce se naloge. V vecini sistemov je privzeta »lupina« ali
shell tako imenovani bash (angl. Bourne-again shell), doloCeni sistemi pa Se vedno uporabljajo
sh ali pa ksh. (Nemeth, Snyder, Hein, & Whaley, 2010, str. 29, 30) Kot Ze omenjeno, je bash
odli¢en za relativno enostavne skripte, ki sistemskemu administratorju avtomatizirajo delo, ki

bi ga obi¢ajno moral izvajati ro¢no v ukazni vrstici.

V bash skripti v prvi vrstici sistemu povemo, da gre za skripto. To storimo z zapisom
#!/bin/bash. S tem deklariramo, da bo datoteko interpretirala bash lupina, ki se nahaja v mapi
/bin. Za komentarje v skripti uporabljamo simbol »#«. (Nemeth, Snyder, Hein, & Whaley, 2010,
str. 37)

16

Enostaven primer bash skripte bi lahko bil, ko imamo kot sistemski administrator nalogo, da
uredimo avtomatizacijo brisanja vsebine mape in njenih podmap, vendar hkrati ohranjamo
strukturo samih map. V ta namen bomo kreirali skripto z imenom brisanje datotek.sh.

1 /bin/bash

#
#
Brisanje datotek

Avtor: Iztok Hladen
Datum: 20.02.2025

#
#

Nastavi mapo, v kateri se bodo brisale datoteke.

MAPA_ZA_BRISANJE="/home/iztokh/Documents/scanners"”
Preverjanje, ce mapa obstaja

if [! -d "$MAPA_ZA_BRISANJE"]; then
echo "Mapa '$MAPA_ZA_BRISANJE' ne obstaja."
exit 1

fi

Iskanje in brisanje vseh datotek v mapi
find "$MAPA_ZA_BRISANJE" -depth -type f -delete
echo "Brisanje datotek v mapi '$MAPA_ZA_BRISANJE' in podmapah je koncano."

exit O

Struktura omenjene skripte je zelo enostavna: najprej doloci, da se bo skripta izvajala z bash
lupino, sledi nekaj zakomentiranih vrstic, v katerih so zapisani glavna funkcija skripte ter tudi
avtor in datum. Sledita definicija spremenljivke lokacije mape, v kateri bo skripta izvajala
brisanje, nato pa $e hitro preverjanje, ali zapisana lokacija sploh obstaja. Ce ta ne obstaja, se
izpise sporo¢ilo o napaki, skripta pa se zakljuéi. Ce lokacija obstaja, pa bo skripta poiskala v
mapi, ki je bila dolo¢ena s spremenljivko MAPA ZA BRISANJE, vse datoteke in jih tudi
izbrisala. Skripti smo dolocili iskanje le datotek z uporabo -fype f. Skripta se zakljuci s

sporocCilom, da je bilo brisanje datotek v vnaprej dolo¢eni mapi in podmapah koncano.

Ce zelimo, da se omenjena skripta izvaja samodejno v doloéenih intervalih, lahko za to
uporabimo Cron. Za namen tega moramo urediti crontab, v katerega moramo dodati vrstico, v
kateri definiramo &as izvajanja in lokacijo skripte. Ce bi na primer Zeleli, da se skripta izvaja

vsako nedeljo ob enih zjutraj, bi ta vrstica izgledala tako:
0 1 * * 0 /home/iztokh/Documents/brisanje_datotek.sh

V prvem znaku definiramo minuto, v drugem uro, tretji in Cetrti sta dan v mesecu in mesec, z *
dolo¢imo, da se izvaja vsak dan v mesecu in vsak mesec v letu, z zadnjim znakom pa definiramo

dan v tednu. Sledi lokacija, kjer se skripta nahaja.

17

2.2.2 PowerShell

PowerShell je zmogljivo Microsoftovo orodje, ki ga sistemski administratorji uporabljajo za
poenostavitev sistemskih opravil in avtomatizacijo. (What is PowerShell?, 2025) Temelji na
ogrodju .NET in za razliko od tradicionalnega ukaznega poziva (command prompt) uporablja
objekte in ne le besedilne nize. (PowerShell nadomesca ukazni poziv, 2025) Ukazi v
PowerShellu so imenovani »cmdlet« in so tako reko¢ majhni programi za izvajanje specificnih

nalog. (Chapter 1 - Getting started with PowerShell, 2025) Nekaj primerov teh cmdletov:
e Get-Childltem, ki nam na enostaven nacin izpiSe vsebino specifi¢ne mape;

e Get-Process, ki nam brez uporabe dodatnih parametrov izpiSe seznam vseh aktivnih

procesov;

e Get-Service, ki nam brez uporabe dodatnih parametrov izpiSe seznam vseh storitev v

sistemu.

PowerShell prav tako podpira skriptiranje, kar sistemskim administratorjem omogoca

avtomatizacijo kompleksnejSih nalog in tudi ustvarjanje lastnih orodij.

Preprost primer tega bi lahko bil preverjanje odprtih portov na zelenih IP-naslovih:

#
Preverjanje portov po IP naslovih
#

Avtor: Iztok Hladen
Datum: 03.03.2025

Ime log datoteke
$TogFilePath = Join-Path -Path $PSScriptRoot -ChildPath "tnclog.txt"

zapisovanje v Tog datoteko
function write-Log {
param (
[string] $Message

$Timestamp = Get-Date -Format "yyyy-MM-dd HH:mm:ss"
$LogEntry = "[$Timestamp] $Message"
Add-Content -Path $TogFilePath -value $LogEntry

) wWrite-Host $LogEntry

vnos IP naslovov, TlocCenih z vejico

$ipAddressesInput = Read-Host "vnesi IP naslove, ki jih Zeli$§ preveriti. Ce jih je
vec, jih loc¢i z vejico."

$ipAddresses = $ipAddressesInput.Split(',') | Foreach-object { $_.TrimQ 1}

vnos portov, TlocCenih z vejico

$portsInput = Read-Host "Vnesi porte, ki jih zeliS preveriti. Ce jih je vec, jih
Toc¢i z vejico."

$ports = $portsInput.split(',') | ForEach-oObject { $_.Trim(Q) }

zanka skozi IP naslove in porte
foreach ($ip in $ipAddresses) {
foreach ($port in $ports) {
try {
Izvedba TNC
$testResult = Test-NetConnection -ComputerName $ip -Port $port -
InformationLevel Quiet

18

zapisovanje rezultatov v log datoteko in izpis na zaslon
if ($testResult) {

write-Log "IP: $ip, Port: $port - odprt"
} else {

write-Log "IP: $ip, Port: $port - zaprto"

} catch {
zapisovanje napak v Tog datoteko in izpis na zaslon
write-Log "Napaka pri preverjanju IP: $ip, Port: $port -
$($_.Exc§ption.Message)"

}
}

wWrite-Log "Preverjanje portov koncano."

Struktura skripte je enostavna: sestavljena je tako, da skripta najprej kreira log datoteko z
imenom tnclog.txt v mapi, kjer se nahaja skripta. Sledi funkcija Write-Log za zapisovanje v log
datoteko, nato pa skripta od uporabnika zahteva vnos IP-naslovov in portov. Pri obeh lahko
uporabnik zapise ve¢ vnosov, loceni pa morajo biti z vejico. Sledita foreach zanki, v katerih se
izvaja cmdlet Test-NetConnection na Zelenih IP-naslovih in portih. V primeru, da je do Zelenega
IP-naslova omogocen dostop prek zapisanega porta, bo skripta izpisala, da je na doloc¢enem IP-
naslovu dolo¢en port odprt, v nasprotnem primeru pa, da je zaprt. Ce se v preverjanju pojavi
napaka, se aktivira catch blok, kjer se izpise, da je prislo pri preverjanju do napake. Na koncu

skripta Se zapiSe, da je preverjanje koncano.

2.2.3 Python

Python je odprtokodni programski jezik, ki zdruZuje razli¢ne stile programiranja — objektno
orientiranega, proceduralnega in funkcijskega. (Fister, 2023, str. 41) Znacilnost tega jezika je,
da ne vsebuje deklaracij spremenljivk in da je za skriptno programiranje dokaj enostaven,
vendar pa za naprednejSo uporabo vseeno potrebujemo doloc¢ene osnove programskega jezika.
Omogoca uporabo tako imenovanih modulov, ki v jeziku Python zdruZzujejo ve¢ programov, ki
se nanaSajo na doloceno problemsko domeno. Prednost tega je v tem, da lahko ponovno
uporabimo Ze napisano kodo, moduli pa prav tako omogocajo uporabo imenskih prostorov, kar
pomeni, da se lahko imena funkcij znotraj razlicnih modulov tudi podvajajo. (Fister, 2023, str.

42-47)
Dokaj preprost primer skripte v jeziku Python bi bil, ko v razli¢nih »blokih« skripte dolo¢imo
razli¢ne funkcije, glavna funkcionalnost skripte pa je varnostno kopiranje Zelene mape:

import os
import shutil
import datetime

19

import sys
--- Konfiguracija ---
SOURCE_DIR = r"C:\proizvodnja\Source_folder"

BASE_DESTINATION_DIR = r"C:\proizvodnja\bDestination_folder"
LOG_FILE = r"C:\proizvodnja\ARCHIVE\PRENOS_ARHIV\Logs\backup_Tlog_dated.log"

--- Funkcija za logging ---
def log_message(message, level="INF0"):
try:

Preverjanje ali mapa za Tog datoteko obstaja
log_dir = os.path.dirname(LOG_FILE)
if log_dir and not os.path.exists(log_dir):
try:
os.makedirs(log_dir)
except OSError as e:
print(f"KRITICNA NAPAKA: Ne morem ustvariti mape za log
"{Tog_dir}': {e}", file=sys.stderr)
return

Dodajanje zapisa v datoteko
with open(LOG_FILE, 'a', encoding='utf-8') as f:
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
f.write(f"{timestamp} - {level} - {message}\n")
except Exception as e:
print(f"KRITICNA NAPAKA: Ne morem pisati v log datoteko '{LOG_FILE}': {e}",
file=sys.stderr)

--- Funkcija za varnostno kopiranje ---
def perform_backup(src, base_dst):

Pridobivanje trenutnega datuma v formatu YYYY-MM-DD
today = datetime.date.today()
date_str = today.strftime('%Y-%m-%d"')

archive_folder_name = f"ARHIV_ICT_{date_str}"

Ciljna mapa
full_archive_path = os.path.join(base_dst, archive_folder_name)

Izvorna mapa

source_folder_name = os.path.basename(src)

if not source_folder_name:
source_folder_name = "root_backup"

final_destination = os.path.join(full_archive_path, source_folder_name)

Tog_message(f"zacetek varnostnega kopiranja iz '{src}' v
'{final_destination}'.")

Preverjanje, ali izvorna mapa obstaja
if not os.path.isdir(src):
Tog_message(f"Izvorna mapa '{src}' ni najdena ali ni mapa. Vvarnostno
kopiranje prekinjeno.", "ERROR"
return False

try:
os.makedirs(full_archive_path, exist_ok=True)

; Tog_message(f"zagotovljen obstoj arhivske mape: '{full_archive_path}'",
"INFO"

shutil.copytree(src, final_destination, dirs_exist_ok=True)
Tog_message(f"varnostno kopiranje uspesno zakljuceno iz '{src}' v

'{final_destination}'.")
return True

Predvidene osnovne napake
except shutil.Error as e:
Tog_message(f"Med operacijo kopiranja (shutil) je prislo do napake: {el}",
"ERROR™)
return False
except PermissionError as e:
Tog_message(f"Dovoljenje zavrnjeno med operacijo kopiranja. Preverite
dovoljenja za '{src}' ali '{fu%]_archive_path}'. Napaka: {e}", "ERROR")
return False
except OSError as e:

20

Tog_message(f"Med operacijo kopiranja je prislo do napake 0S: {e}",
"ERROR™)
return False
except Exception as e:
log_message(f"Prislo je do nepricakovane napake med kopiranjem: {e}",
"ERROR™)
return False

--- Glavna funkcionalnost ---
if _name__ == "_main__":

Tog_message("="*50, "INFO")
Tog_message("Skripta za varnostno kopiranje z datumsko mapo zagnana", "INFO'")

Izvajanje varnostnega kopiranja
success = perform_backup(SOURCE_DIR, BASE_DESTINATION_DIR)

zapisovanje koncnega statusa
if success:) o) 5 oL
log_message('"Proces varnostnega kopiranja je bil uspesSno zakljucen.",

"INFO'")
else:
Tog_message("Proces varnostnega kopiranja je bil zakljucen z napakami.
Preglejte zgornje zapise.", "WARNING")
Tog_message("sSkripta za varnostno kopiranje z datumsko mapo koncana", "INFO")
Tog_message("="%50, "INFO")

Skripta je zgrajena tako, da v prvem delu uvozimo potrebne module z uporabo import sistema.
Ta poskrbi, da v svojo kodo uvozimo kodo, ki jo je nekdo ze napisal. V nasem primeru smo
uvozili module os, shutil, datetime in sys, ki nam omogocajo razli¢ne funkcionalnosti, od
interakcije z operacijskim sistemom do dela s ¢asom in datumom. V naslednjem koraku smo
definirali spremenljivke poti, ki jih bo skripta uporabljala — izvorno mapo, ciljno mapo in mapo
za dnevniSko datoteko. Sledi funkcija za beleZenje v dnevnisko datoteko. Ta funkcija preveri,
ali log datoteka v specificirani mapi obstaja, in jo ustvari, e Se ne obstaja. Nato jo odpre in na
konec datoteke doda nove vrstice z informacijami o kopiranju datotek in morebitnih napakah.
Temu sledi funkcija varnostnega kopiranja, ki najprej pripravi ciljne mape, zapiSe v dnevnisko
datoteko, da se je kopiranje zacelo, preveri, ali izvorna mapa obstaja, nato pa zacne kopirati
vsebino izvorne mape v ciljno mapo. Ob uspesnem kopiranju bo skripta to sporocilo zapisala v
dnevnisko datoteko. Ce bo med postopkom kopiranja prislo do specifiénih napak, na primer
tezave z dovoljen;ji ali drugimi sistemskimi napakami, bo skripta te napake ujela in zapisala
podrobnosti v dnevniSko datoteko, funkcijo pa koncala z neuspehom. Avtomatizacijo te skripte
lahko uredimo z uporabo Task Schedulerja v okolju Windows ali pa z uporabo Cron v okolju
Linux. V primeru okolja Linux bi seveda morali popraviti poti izvorne in ciljne mape ter mape

dnevniske datoteke.

21

Source_folder Properties X
General Sharing Security Previous Versions Customize General Sharing Security Previous Versions Customize
Source_folder Destination_folder
Type File folder Type: File folder
Location: Ci\proizvodnja Location: Ci\proizvodnja
Size: 439 KB (450.000 bytes) Size: 0 bytes
Size ondisk: Obytes Size ondisk: 0 bytes
Contains: 10.000 Files. 10 Folders Contains: 0 Files, 0 Folders
Created Monday. 24 February 2025, 19:19:13 Created: Monday, 24 February 2025, 19:32:27
Attributes [W] Read-only (Only applies ta files in folder) Aftributes: [W] Read-only (Only applies to files in folder)
[JHidden Advanced... [JHidden Advanced..
Cancel Apply OK Cancel Apply

Slika 6: Stanje v izvorni in ciljni mapi pred zagonom skripte

Vir: Lasten

General Sharing Securty Previous Versions Customize General Sharng Security Previous Versions Customize
Source_folder Destination_folder
Type: File folder Type File folder
Location Ci\proizvodnja Location: Ci\proizvodnja
Size: 439 KB (450.000 bytes) Size: 439 KB (450.000 bytes)
Size ondisk: 0 bytes Size ondisk. Obytes
Contains: 10.000 Files. 10 Folders Contains 10.000 Files, 12 Folders
Created Monday, 24 February 2025, 19:19:13 Created Monday, 24 February 2025, 19:32:27
_| backup_log_dated.log - Notepad - O x

File Edit Format View Help
2025-085-13 17:@@:57 - INFO -
2025-@5-13 17:00:57 - INFO - Skripta za varnostno kopiranje z datumsko mapo zagnana
2025-05-13 17:80:57 - INFO - Zacetek varnostnega kopiranja iz 'C:\proizvodnja\Source_folder’
v 'C:\proizvodnja\Destination folder\ARHIV ICT 2025-05-13\Source folder'.

2025-@5-13 17:80:57 - INFO - Zagotovljen obstoj arhivske mape:
'C:\proizvodnja\Destination_folder\ARHIV ICT 2025-85-13'

2025-05-13 17:01:07 - INFO - Varnostno kopiranje uspedno zakljuceno iz
‘C:\proizvodnja\Source_folder’

v 'Ci\proizvodnja\Destination folder\ARHIV_ ICT 2025-05-13\Source folder'.

2025-05-13 17:@1:07 - INFO - Proces varnostnega kopiranja je bil uspedno zakljucen.
2025-85-13 17:01:07 - INFO - Skripta za varnostno kopiranje z datumsko mapo koncana
2025-085-13 17:@1:07 - INFO -

Slika 7: Stanje v izvorni in ciljni mapi po zagonu skripte in vsebina dnevniske datoteke

Vir: Lasten

2.2.4 Ansible

Ansible je odprtokodno orodje, napisano v jeziku Python, ki ga uporabljamo za avtomatizacijo

IT-nalog. Glavni namen je avtomatizacija ponavljajo¢ih se nalog, kar zmanjSuje moZnost

22

¢loveskih napak. Ansible se od konkuren¢nih orodij pogosto razlikuje po tem, da ne potrebuje
agentov — to pomeni, da nam na ciljnih sistemih ni treba namescati dodatne programske opreme.
(Introduction to Ansible, 2025) To v praksi pomeni, da potrebujemo le en streznik, na katerega
namestimo orodje Ansible, nato pa prek tega streznika in povezave SSH upravljamo vse ostale,

ki nam to omogocajo.

Ansible za svoje delovanje uporablja tako imenovane Playbooke, ki so zapisani v obliki YAML,
kar je primerno za zacetnike, saj je prag vstopa dokaj nizek. Klju¢ne komponente Playbooka

SO:

1. Hosts —ta komponenta so ciljni sistemi za izvedbo nalog, lahko so posamezni sistemi, lahko

pa so skupine sistemov;

2. Tasks — ta komponenta vsebuje seznam nalog, ki jih bo orodje Ansible izvajalo na ciljnih

sistemih;
3. Vars — ta komponenta definira spremenljivke, ki jih je mogoce uporabiti v nalogah;

4. Handlers — v tej komponenti so posebne naloge, ki se izvajajo le v primeru, da jih sprozi

druga naloga.
5. Roles — ta komponenta nam omogoca organizacije Playbooka v logi¢ne enote.

Kljub relativni enostavni uporabi, aktivni skupnosti in nizkemu pragu vstopa pa ima orodje
Ansible tudi nekatere slabosti. Kompleksni scenariji zahtevajo zapletene Playbooke, odvisnost
od povezave SSH pa lahko v podjetjih s strogimi varnostnimi politikami predstavlja dolo¢eno

mero tveganja.

Namestitev orodja je preprosta: v ta namen smo pripravili Stiri streznike, na katere je namescen
operacijski sistem Ubuntu Server 24.04 LTS. Ker orodje za svoje delovanje ne zahteva
ogromno racunalniskih virov, smo za streZnike uporabili po 2 jedri CPU, 2GB pomnilnika in

20GB trdega diska.

Na glavnem strezniku je bilo najprej treba dodati repozitorij Ansible, kar smo naredili z uporabo
ukaza »sudo add-apt-repository --yes --update ppa:ansible/ansible«, nadaljevali pa smo z
ukazom »sudo apt install ansible«. Uspesno namestitev smo na koncu preverili z uporabo ukaza

»ansible —version«.

23

:~$ sudo add-apt-repository —-yes ——update ppa:ansible/ansible

'Types: deb

: https://ppa.launchpadcontent.net/ansible/ansible/ubuntu/

Suites: noble
Components: main

Description:

Ansible is a radically simple IT automation platform that makes your applications and systems easi to deploy. Avoid wr
iting seripts or custom cede to deploy and vpdate your applications— automate in a language that approaches plain Englis

h, using SSH, with no agents to install on remote systems.

http: //ansible.com/

If you face any ues while installing Ansib
https: //github.com/ansible-community/ppa/issu
More info: https://launchpad.net/~ansible/+ar

Adding repository.

.ubuntu.com/ubuntu noble InRelease

= vbuntu.com/ubuntu nob

3 http://si.ar .ubuntu.com/ubuntu noble
http: //sect y u.com/ubuntu noble-s

5 https://ppa.launchpadcontent.net/ansibl

ar

, file an is

/ubuntu/ansible

updates InRelease

curity InRelease
nsible/ubuntu noble InRelease [17.8 kB]

https://ppa.launchpadcontent.net/ansible/ansible/ubuntu noble/main amdé4 Packages [7

https: //ppa.launchpad
Fetched 19.1 kB in (39.3
Reading package lists...

) bl] bile n:~$ ansible
ansible [core 2.]

config file = /etc/ansible/ansible.cfg

Slika 8: Dodajanje repozitorija Ansible

version

Vir: Lasten

configured module search path = ['/home/ansible/.ansible/plugins/modules’, '/usr/share/ansible/plugins/modules’]
ansible python module location = /usr/lib/python3/dist-packages/ansible
ansible collection location = /home/ansible/.ansible/collections:/usr/share/ansible/collections

executable locaticen = /usr/bin/ansible
4 2825, 14:48:35) [6CC 13.3.8] (/usr/bin/pytho

python version = 3.12.3 (main,
jinja version
libyaml = True

Feb

Slika 9: Razli¢ica Ansible

Vir: Lasten

V hosts datoteki smo nato dodali naSe streznike, prav tako pa uporabnisko ime in geslo za

uporabnika, ki smo ga kreirali za namene uporabe orodja Ansible.

[Tar

vers]

192.168.233.131
192.168.233.132
192.168.233.133

ansible_user=ansible
ansible_password=admin

Slika 10: Konfiguracija Ansible hosts

Vir: Lasten

Prvi ukaz za preverjanje delovanja sistema je uporaba modula »ping«, za kar smo uporabili

ukaz »ansible linux_servers -m ping«. S tem smo definirali, da naj Ansible izvede modul ping

24

na skupino »linux_servers, ki je definirana v datoteki hosts. Rezultat tega ukaza je prikazan

na naslednji sliki.

ible$ ansible linux_servers -m ping

Slika 11: Ansible ping
Vir: Lasten

Kreirali smo tudi testni Playbook za izklop vseh streznikov naenkrat. Kot vidimo, smo mu
definirali ime, ciljne streznike, da lahko ukaz zaZene kot skrbnik sistema, nato pa definirali Se
samo nalogo. Ta zazene ukaz »sudo shutdown -h now«, nakar nas sistem vprasa za

administratorsko geslo, ob vnosu gesla pa izpiSe rezultat izvedbe Playbooka.

Izklop streznikov
hosts: linux_servers

Izklop sistema
shutdown -h now

Slika 12: Izklop sistema Playbook

Vir: Lasten

25

g5 305 31 e ok Aok oo e e e ek

TASK [GAtRering Facts] ok s iom s s som s s o o sh ook ookt ok e o i s o s st s e e o s ok st sk e e e e e e e o e R o o ok e R e ek ek R e e

TASK [IZKLOp SISTEMA] *hkrktrmirmsseesedtsnd dar ki iiorioh kR E AR TR X R TR R A AR AR Ak R R AR TR R RR I S ook ok R ke s
... dgnoring

...dgnoring

...ignoring

PLAY RECAP snrsioksk
changed=0 1 alleds=
changed=0 unreacha failed=0 skippe
changed=0 unreachab : failed=0 skipped=0

Slika 13: Rezultat Playbooka

Vir: Lasten

2.2.5 Checkmk

Checkmk je orodje za nadzor IT-infrastrukture, ki nam omogoca spremljanje delovanja naprav
v na$i infrastrukturi. To orodje sistemskim administratorjem ponuja celovit nadzor nad
infrastrukturo, saj z zbiranjem in analiziranjem podatkov o stanju in zmogljivosti naprav
omogoca hitro zaznavanje tezav, posledi¢no pa avtomatizira proces obvescanja sistemskih

administratorjev o stanju naprav. (Checkmk 2.3, 2025)

Postopek namestitve tega orodja je precej preprost. Najprej potrebujemo streznik, na katerem
bo storitev Checkmk zagnana — uporabimo lahko streznik Linux Ubuntu ali pa storitev

namestimo z Dockerjem.

Za testno namestitev smo uporabili Ubuntu Server 24.04 LTS, ki smo mu dodelili 2 jedri CPU,
2 GB pomnilnika in disk v velikosti 20 GB.

[@che :~$ wget hitps://download.checkmk.com/checkmk/2.3.0p29/check-mk-raw-2.3.0p29_0.noble_amdés4.deb
-03-19 18:087: - https://download.checkmk.com/checkmk/2.3.0p29/check-mk-raw-2.3.0p29_0.noble_amdé4.deb

Resolving download.checkmk.com (download.checkmk.com) ... 45.133.11.29

Connecting to download.checkmk.com (download.checkmk.com)|45.133.11.29|:443... connected.

HTTP request sent, awaiting response... 208 OK

Length: 213335842 (203M) [application/x-debian-packagel

Saving to: ‘check-mk-raw-2.3.0p29_0.noble_amdés.deb’

check-mk-raw-2.3.8p29_0.noble 106%[== semnmnssssasrEssemnnssan 3.45M 64.3MBfs in 3.3s

2625-83-19 18:07:29 (62.3 MB/s) - ‘check-mk-raw-2.3.0p29_6.noble_amdb4.deb® saved [213335842/213335842]

Slika 14: Pridobivanje orodja Checkmk

Vir: Lasten

Iz zgornje slike je razviden enostaven proces pridobivanja potrebnih instalacijskih datotek za

namestitev orodja Checkmk. Za to smo uporabili ukaz wget.

26

heckmk@checkmk:~$ sudo apt install ./check-mk-raw-2.3.0p29_0.noble_amdé4.deb
[sudo] password for checkmk:
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
Note, selecting 'check-mk-raw-2.3.0p29' instead of './check-mk-raw-2.3.0p29_0.noble_amdé4.deb'
The following NEW packages will be installed:
check-mk-raw-2.3.0p29
6 upgraded, 1 newly installed, 8 to remove and 8 not upgraded.
Need to get @ B/213 MB of archives.
After this operation, 1,115 MB of additional disk space will be used
Get:1 /home/checkmk/check-mk-raw-2.3.0p29_0.noble_amdé4.deb check-mk-raw-2.3.0p29 amdé4 0.noble [213 MB]
Preconfiguring packages .
Selecting previocusly unselected package check-mk-raw-2.3.0p29.
(Reading database ... 137972 files and directories currently installed.)
Preparing to unpack .../check-mk-raw-2.3.0p29_6.noble_amdé4.deb ...
Unpacking check-mk-raw-2.3.0p29 (8.noble) ...
Setting up check-mk-raw-2.3.0p29 (8.noble) ...
New default version is 2.3.0p29.cre.
update-alternatives: using /omd/versions/2.3.0p29.cre to provide /omd/versions/default (omd) in manual mode
Scanning processes...
Scanning linux images...

Slika 15: Namestitev orodja Checkmk

Vir: Lasten

Za namestitev uporabimo ukaz sudo apt install ./check..., saj za namestitev potrebujemo
administratorske pravice. Temu sledi kreiranje tako imenovanega nadzornega mesta
(monitoring site) z ukazom sudo omd create $monitoring site_name, nato pa sledi sudo omd
start $monitoring site name. Vmes nam sistem izpiSe lokacijo, kje v naSem omrezju se to

mesto nahaja, prav tako dobimo geslo za vpis v spletno mesto.

Ko se prijavimo v spletno mesto, bo to izgledalo dokaj prazno, dokler ne dodamo nekaj
yklientovg, ki jih Checkmk spremlja. V vmesniku imamo navodila za dostop do tako

imenovanih agentov, ki jih namestimo na kliente.

Linux, Solaris, AlX files

Related Display Help
il

Monitor

am ~ Packaged Agents

check-mk-agent_2 .3 0p28&-1_all.deb 435 MiB check-mk-agent-2 3 0p28-1_noarch.rpm 4 46 MiB

Customize

:’ v~ flinux

cmk-agent-ctl 10.78 MiB cmk-ageni-ctl.gz 4.33 MiB
mk-sql 3.66 MIB

Slika 16: Prikaz pridobivanja agentov v orodju Checkmk

Vir: Lasten

Ko na klientu namestimo agenta, ga lahko dodamo v glavno Checkmk aplikacijo.

27

Hosts Folder Reilated Display Help

Monitor

Add host i Add felder

Customize

checkmk_server 192.168.233 128

Test_Server_1 192.168.233.129

WinServ2019 192.168.233.130

Slika 17: Prikaz dodanih klientov v orodju Checkmk

Vir: Lasten

Ko imamo v aplikacijo dodane kliente, jih lahko spremljamo prek ve¢ razliénih prikazov. En
od njih nam prikazuje stanje klientov, prav tako nam prikaze morebitna opozorila in kriticne

napake.

0 All hosts

Monitor

Commands Hosis Export Display Help

X Acknowledge problems A Schedule downtimes ¥ Filter ®® Show checkboxes

Local site frosty_mon

DOWN Test_Server_1 [}

DOWN WinServ2019

Slika 18: Prikaz stanja klientov v orodju Checkmk

Vir: Lasten

Orodje nam omogoca tudi kreiranje lastnih pravil, na podlagi katerih nas avtomatsko opozori v

primeru napak ali teZav.

~ Rules in folder Main (1)

Host name is Test_Server_1 or Levels on CPU load: 1 minute 1.0 per core, 3.0 per
checkmk_server average: core

CPU Load

Slika 19: Pravilo za obves¢anje v orodju Checkmk
Vir: Lasten
Na zgornji sliki je vidno pravilo, ki bo sistemskega administratorja, ¢e je na strezniku
omogoceno posiljanje e-poste, opozorilo v primeru, da CPU load na klientu Test Server 1 ali

checkmk server doseze kriticno raven.

28

Za: [T Alerts

Host: -KV8-5W1
Alias: -KV8-SW1

Address: |

Service: CPU utilization

Event: OK -> WARN

Qutput: Total CPU: 88.0% (warn/crit at 80.0%/90.0%)
Perfdata: util=88;80;90;0;100

Total CPU: 88.0% (warn/crit at 80.0%,/90.0%)

Slika 20: Primer opozorila orodja Checkmk prek e-poste 1

Vir: Lasten

Za: IT Alerts

Host: -SRX
Alias: -SRX

Address: x

Service: CPU utilization node1 Routing Engine

Event: OK -> WARN

Output: Total CPU: 87.00% (warn/crit at 80.00%/90.00%)
Perfdata: util=87;80;90;0;

Total CPU: 87.00% (warn/crit at 80.00%,90.00%)

Slika 21: Primer opozorila orodja Checkmk prek e-poste 2

Vir: Lasten

29

All hosts IT pos

Slika 22: Primer prikaza stanja klientov v orodju Checkmk v podjetju

Vir: Lasten

Iz zgornjih slik je razvidno, da lahko s pravilno konfiguracijo orodja Checkmk in tudi
konfiguracijo poSiljanja e-poStnih sporoc€il sistemski administratorji hitreje odreagirajo ob

morebitnih teZavah v IT-infrastrukturi podjetja.

2.3 Umetna inteligenca v sistemski administraciji

Umetna inteligenca prinasa velike spremembe na podroc¢je sistemske administracije, saj prinasa
nove moznosti avtomatizacije, optimizacije in izboljSanja zanesljivosti informacijskih
sistemov. Ce zelimo prepoznati potencial umetne inteligence in to u¢inkovito implementirati v

praksi, pa je potrebno razumevanje doloc¢enih temeljnih konceptov.

Umetna inteligenca je dokaj Siroko podrocje, ki se ukvarja z razvojem racunalniskih sistemov
in strojev, ki so sposobni izvajanja nalog, ki obicajno zahtevajo ¢loveski dejavnik. Med te
naloge spadajo sklepanje, ucenje, razumevanje jezika in resSevanje problemov. V poslovnem
okolju med orodja umetne inteligence spadajo orodja, ki ra¢unalnikom omogocajo izvajanje
naprednih funkcij, vklju¢no z analizo podatkov, razumevanjem govornega in pisnega jezika in
podobno. Ceprav se podrobnosti med razli¢nimi metodami umetne inteligence razlikujejo, pa
je osnova v vecini enaka — velike koli¢ine podatkov. Sistemi umetne inteligence se na podlagi
ogromne koli¢ine podatkov ucijo, prepoznavajo razne vzorce in povezave med podatki, ki jih

¢lovesko oko morda prezre. (What is Artificial Intelligence (AI)?, 2025)

30

Ko govorimo o umetni inteligenci, ne smemo pozabiti klju¢ne veje umetne inteligence, to je
strojnega ucenja in podvrste le-tega, to je globokega ucenja. Pri tej veji umetne inteligence
sistemi niso eksplicitno programirani za vsako nalogo, temvec se ucijo iz podatkov. Algoritmi
analizirajo velike koli¢ine podatkov, prepoznajo vzorce in na podlagi teh vzorcev sprejemajo
odlocitve. (Deep Learning in Cybersecurity: Threat Detection and Defense, 2025) V kontekstu
sistemske administracije to pomeni, da lahko sistemi strojnega ucenja napovedo morebitne
okvare strojne opreme na podlagi analize preteklih podatkov o delovanju, prav tako se taki

sistemi uporabljajo pri resitvah, kot sta Darktrace in QRadar.

Ker umetna inteligenca, kot ze omenjeno, omogoc¢a samodejno odkrivanje anomalij, omogoca
ta zmoznost IT-ekipam moznost ukrepanja, preden majhne tezave preidejo v vecje tezave in
izpade. AIOps izkoriS¢a strojno ucenje za obdelavo podatkov za odkrivanje anomalij v realnem
¢asu, zgodnje in natan¢no odkrivanje le-teh pa je prvi korak k ucinkovitemu reSevanju tezav.

(What is AIOps?, 2025)

2.4 Avtomatizacija in varnostna skladnost

Ob danalnjih vedno StevilénejSih sistemih in povezavah med njimi je bistvenega pomena
smiselno in varno urediti avtomatizacijo upravljanja uporabniskih racunov in pristopov ter s

tem zagotoviti informacijsko varnostno skladnost podjetja.

Roc¢no upravljanje uporabniskih raCunov prinaSa Stevilna tveganja, ki lahko resno ogrozijo
varnost in skladnost organizacije. Med najpogostejSe napake spadajo tipkarske napake pri
vnosu podatkov, napa¢ne dodelitve pravic za dostope do podatkov in pozabljeni odvzemi pravic
uporabnikom, ki so zapustili podjetje. (How Automation Simplifies User Access Reviews for
Remote and Hybrid Workforces, 2025) Z avtomatizacijo upravljanja uporabniskih raCunov pa
lahko tako Ze vnaprej dolofimo to¢no dolocene pravice, ki jih nov uporabnik na podlagi
delovnega mesta in delovnih nalog potrebuje — te spreminjamo ob morebitnem napredovanju
uporabnika, prav tako pa ob integraciji z drugimi sistemi avtomatiziramo deaktivacijo

uporabniSkega racuna v primeru, da uporabnik zapusti podjetje.

31

3 AVTOMATIZACIJA SISTEMSKIH OPRAVIL

3.1 Primeri avtomatizacije s PowerShellom

3.1.1 Brisanje specificnega direktorija s pomocjo PowerShell skripte in Task Schedulerja

Powershell skripta za brisanje datotek iz izvorne mape in podmap

Datum: 18.02.2025
Avtor: Iztok Hladen o)]))
Za testiranje napak odkomentiraj write-verbose in Write-Host vrstice

HHFH I

+:

Pot do mape Scanners (spremeni, ce je potrebno)
$sourceFolder = "\\10.0.1.158\Scanners"

Pot do log datoteke
$logFilepPath = "C:\Logs\delete_scanners_folder.log"

Preverjanje ali mapa Scanners obstaja
if (! (Test-Path -Path $sourceFolder -PathType Container)) {

$errorMessage = "Mapa '$sourceFolder' ne obstaja!"

wWrite-Error $errorMessage

Add-Content -Path $TogFilePath -value "$(Get-Date -Format 'yyyy-MM-dd
HH:mm:ss') - ERROR: $errorMessage"

exit

zapisovanje v 1og datoteko
Add-Content -Path $TlogFilePath -value "$(Get-Date -Format 'yyyy-MM-dd HH:mm:ss') -
Skripta za brisanje datotek se je zacela."

Stevec napak
$errorsoccurred = $false

Seznam vseh datotek v mapi in podmapah)
$filesToDelete = Get-ChildItem -Path $sourceFolder -Recurse -File

Brisanje datotek
foreach §$f11e in $filesTobelete) {
try
Remove-Item -Path $file.FullName -Force -ErrorAction Stop
Write-vVerbose "Izbrisana datoteka: $($file.FullName)"

catch {
$errorsoccurred
$warningMessage
$($_.Exception.Message)"
Write-warning $warningMessage
Add-Content -Path $logFilePath -value "$(Get-Date -Format 'yyyy-MM-dd
HH:mm:ss') - OPOZORILO: $warningMessage"

}

if ($errorsoccurred) {
Add-Content -Path $TogFilePath -value "$(Get-Date -Format 'yyyy-MM-dd
?H:Tm:s?') - Skripta za brisanje datotek se je koncala z OPOZORILI."
else
Add-Content -Path $TogFilepath -value "$(Get-Date -Format 'yyyy-MM-dd
HH:mm:ss') - Skripta za brisanje datotek se je uspesno koncala."

$true # Belezenje napake
"Napaka pri brisanju datoteke: $($file.FulIName) -

write-Host "Skripta za brisanje datotek v mapi '$sourceFolder' je koncana."
Write-Host "Struktura map je ostala nespremenjena."

32

Skripta je enostaven primer brisanja vsebine specificne mape. V trenutni izvedbi jo

uporabljamo v namene brisanja Ze skeniranih dokumentov, ki jih uporabniki po skeniranju

shranijo v svojo lokalno shrambo oziroma na streznik. Namen skripte je tako brisanje

dokumentov, ki niso ve€ v uporabi, s tem pa povetamo preglednost v ciljni mapi in prav tako

privar¢ujemo s prostorom na strezniku.

Skripta je sestavljena iz nekaj enostavnih sklopov:

1.

v prvem sklopu definiramo pot do mape, iz katere Zelimo brisati datoteke, in pot do mape,

v katero bomo zapisovali log datoteko;

v drugem sklopu preverjamo, ali izvorna mapa (v nasem primeru \\10.0.1.158\Scanners)
sploh obstaja. Tu se pojavi prvo preverjanje, ali je skripta pravilno zastavljena. V primeru,
da mapa ne obstaja (preverjanje z »if« stavkom in negacijo »!«), nam skripta zapiSe v log

datoteko sporocilo napake;

sledi zacetek zapisovanja v log datoteko, v katero se najprej zapiSe, kdaj se je skripta zacela

izvajati v formatu »leto-mesec-dan in ura-minuta-sekunda;

v &etrtem sklopu se definira §tevec napak na vrednost $false. Ce bo v prihodnosti prislo do

kakrsnekoli napake, se bo ta vrednost spremenila na $true;

v petem sklopu skripta pridobi seznam vseh datotek (z uporabo Get-Childltem in -File) v

glavni mapi in podmapah (z uporabo -Recurse), ki jih je treba izbrisati;

v Sestem sklopu se zaZene zanka foreach za brisanje vsake datoteke. Blok try catch je v
nasem primeru prisoten za obravnavo napak. Ce se v #ry bloku pojavi napaka, se bo v catch
bloku spremenljivka SerrorsOccured nastavila na true, hkrati pa se bo ustvarilo sporocilo

o napaki v log datoteki;

v zadnjem, sedmem sklopu se zakljuci zapisovanje v log datoteko s sporocilom o koncu

izvajanja skripte.

Sledi Se prikaz nastavitev Task Schedulerja.

33

-

Name Status Triggers Next Run Time
(B Delete Scanners Folder Ready At 01:00 every day 19/02/2025 01:00:00 .

< >

General

Triggers Actions Conditions Settings History

Name: Delete Scanners Folder

Location: \
Author: FROSTY\Administrator

Description: | Brisanje vsebine Scanners mape

Security options

When running the task, use the following user account:
Administrator

Run only when user is logged on
Run whether user is logged on or not

Do not store password. The task will only have access to local resources

Run with highest privileges

Hidden Configure for. Windows Vista™, Windows Server™ 2008

Slika 23: Splos$ne nastavitve Task Schedulerja — PowerShell brisanje vsebine mape

Vir: Lasten

Name Status Triggers Next Run Time

(® Delete Scanners Folder Ready At 01:00 every day 19/02,/2025 01

<

General Triggers Actions Conditions Settings History

When you create a task, you can specify the conditions that will trigger the task. To change these triggers, open the task
property pages using the Properties command.

Trigger Details Status
Daily At 01:00 every day Enabled

Slika 24: Trigger nastavitve Task Schedulerja — PowerShell brisanje vsebine mape

Vir: Lasten

34

Name Status Triggers Next Run Time .
(D Delete Scanners Folder Ready At 01:00 every day 19/02/2025 01:0000 .

< >

General Triggers Actions Conditions Settings History

When you create a task, you must specify the action that will occur when your task starts. To change these actions, open the
task property pages using the Properties command.

Action Details
Start a program Powershell.exe -File "C:\PowerShell Scripts\Delete_scanners_folder.ps1”

Slika 25: Actions nastavitve Task Schedulerja — PowerShell brisanje vsebine mape

Vir: Lasten

3.1.2 Premikanje datotek v arhivsko mapo s pomocjo PowerShella

Premikanje datotek z uporabo orodja Robocopy

Avtor: Iztok Hladen
Datum: 20.01.2025

FHH

Doloc¢imo poti do datotek

$source_dest_file =
"\\10.0.1.158\proizvodnja\ARCHIVE\PRENOS_ARHIV\ICT_LOCATIONS.txt"

fdate = Get-Date -Format "yyyy-MM-dd"

$Tog_fiTle = "\\10.0.1.158\proizvodnja\ARCHIVE\PRENOS_ARHIV\Logs\ICT_LOG_$date.txt"

Preberemo poti iz datoteke)
$paths = Get-Content -Path $source_dest_file

foreach ($path in $paths) {
$split_path = $path -split ";"
$source_folder = $split_path[0]
$destination_folder = $split_path[1]

Preverimo, ali oba folderja obstajata
$source_exists = Test-Path -Path $source_folder
$destination_exists = Test-Path -Path $destination_folder

if (-not $source_exists -or -not $destination_exists) {
zapisSemo napako v Tog datoteko
$error_message = "Napaka: "
if (-not $source_exists) {
$error_message += "Source folder ne obstaja: $source_folder. "
if (-not $destination_exists) {
$error_message += "Destination folder ne obstaja: $destination_folder."

Add-Content -Path $log_file -value S$error_message
continue

}

Preverimo, ali sta source in destination folder enaka
if ($source_folder -eq $destination_folder) {
zapisemo napako v Tog datoteko
$error_message = "Napaka: Source in destination folder sta enaka:
$source_folder."
Add-Content -Path $log_file -value $error_message
continue

Zapisemo datum zacetka v log datoteko
$start_date = Get-Date

35

Add-Content -Path $log_file -value "Datum zacetka: $start_date"

zapiSemo ime source folderja v log datoteko
Add-Content -Path $Tog_file -value "Source folder: $source_folder"

PreStejemo .txt datoteke v source folderju in zapisSemo Stevilo v log datoteko

$file_count_before = (Get-ChildItem -Path $source_folder -Recurse -File -Filter
"+ txt").Count

Add-cContent -Path $Tog_file -value "Stevilo .txt datotek pred premikanjem:
$file_count_before"

Ustvarimo_novo mapo v destination folderju z imenom "ARHIV_ICT_$date"
$archive_folder = "$destination_folder\ARHIV_ICT_$date"
New-Item -ItemType Directory -Path $archive_folder

Ustvarimo enako strukturo podmap v destination folderju

Get-Childitem -Path $source_folder -Directory | ForEach-object {
$subfolder = $_.FullName.Substring($source_folder.Length)
New-Item -ItemType Directory -Path "$archive_folder$subfolder"

Premaknemo samo .txt datoteke z uporabo robocopy

$robocopy_Tlog =
"\\10.0.1.158\proizvodnja\ARCHIVE\PRENOS_ARHIV\Logs\ICT_robocopy_log_S$date.txt"

robocopy $source_folder $archive_folder *.txt /E /MOV /MT:8 /R:10 /w:20
/1og+:$robocopy_log /nfl /np

PreStejemo .txt datoteke v destination folderju po premikanju

$file_count_after = (Get-ChildItem -Path $archive_folder -Recurse -File -Filter
" txt").Count

Add-Content -Path $log_file -value "Destination folder: $archive_folder"

Add-Content -Path $Tog_file -value "Stevilo prekopiranih .txt datotek:
$file_count_after"

zapiSemo cas konca v Tog datoteko

fend_date = Get-Date

Add-Content -Path $log_file -value "Cas konca: $end_date"

Preverimo napake in jih zapisemo v log datoteko

$errors = select-String -Path $robocopy_log -Pattern "ERROR"

if ($errors) {
Add-cContent -Path $log_file -value "Napake: $errors"”

Dodamo prazno vrstico na koncu log datoteke
Add-content -Path $log_file -value ™"

Skripta je aktualen primer avtomatizacije prenosa podatkov v Zivem okolju. Razdeljena je na
vec logi¢nih delov, uporablja pa orodje Robocopy za premikanje datotek in hkrati ohranja enako
strukturo podmap tako v izvorni kot v ciljni mapi. Skripta je uporabna v primerih, ko dolo¢enih
informacij ne moremo izvoziti v bazo SQL, vendar moramo datoteke vseeno hraniti dolo¢eno

Stevilo let.

V skripti najprej definiramo datoteko, iz katere skripta bere pot izvorne in pot ciljne mape, nato
pa definiramo pot dnevniske datoteke. Prav tako za potrebe avtomatiziranega poimenovanja
definiramo Se trenutni datum z uporabo ukaza Get-Date. Skripta nato bere poti iz datoteke,

poimenovane ICT _LOCATIONS.txt, v kateri sta poti loceni s podpi¢jem.

36

;l ICT_LOCATIONS - Notepad - O X

File Edit Format View Help
\\10.@.1.158\proizvodnja\source_folder;\\10.0.1.158\proizvodnja\Destination_folder

Windows (CRLF) Ln 1, Col 1 100%

Slika 26: Primer vsebine datoteke ICT LOCATIONS.txt

Vir: Lasten

Sledi foreach zanka, v kateri skripta procesira en par izvorne in ciljne mape. Poti nato razdeli
na dva dela z uporabo ukaza -split, lo¢ilo pa je definirano kot podpicje. Vrednosti nato shrani v
spremenljivki Ssource folder in $destination_folder. Sledi kratko preverjanje, ali izvorna in
ciljna mapa sploh obstajata ter ali sta morda po uporabniski napaki vneseni isti lokaciji za
izvorno in ciljno mapo. Sledita Stetje datotek v izvorni mapi in njenih podmapah ter belezenje
v dnevnisko datoteko, nato pa je na vrsti ustvarjanje arhivske mape v ciljni mapi, v kateri ohrani
strukturo podmap iz izvorne mape. Nato z uporabo ukaza robocopy zane premikati datoteke
iz izvorne v ciljno mapo. Uporablja vrsto parametrov, s katerimi smo dolocili premikanje map
(/MOV), uporabo ve¢ niti za hitrejSe premikanje (/MT:8), v primeru napake pa ponovni poskus
do desetkrat (/R:10), z razmikom 20 sekund med poskusi (/W:20). Kreira tudi svojo dnevnisko
datoteko, saj omogoca preglednejsi zapis morebitnih napak. Skripta nato presteje Se Stevilo
datotek v ciljni mapi in to tudi zapiSe v dnevniSko datoteko. S tem lahko sistemski administrator
hitro preveri, ali je morda priSlo do napak pri prenosu. Skripto po zelji s pomocjo Task
Schedulerja lahko izvajamo avtomatsko ob dolo¢enem dnevu in uri — ker gre za izvajanje v

zivem okolju je to lahko na primer ob nedeljah ob 8. uri zjutraj, ko proizvodnja miruje.

Vsekakor je za velike koli¢ine datotek smiselno uporabiti dolo¢eno vrsto avtomatizacije, saj s
tem bistveno prihranimo na ¢asu, ki bi ga po nepotrebnem porabili, ¢e bi namesto skripte rocno

premikali posamezne datoteke in mape.

37

Q Source_folder Properties

File Home
General Security Previous Versions Cus| General | Security Previous Versions Customize

« - v 1R Nework > 100.1.1

Destination_folder Source_folder
B System32 Name
OneDrive - Person B ARCHIVE Type File folder Type: File folder
. l [BESTETils] Location: 110.0.1.158\proizvodnja Location 1110.0.1.158\proizvodnja
5 This PC o
@ 20 Objects B Source_fol Q. O byles Size: 439 KB (450.000 bytes)
M Deskiop Size ondisk: Obytes Size on disk: 0 bytes
E Documents Contains O Files, 0 Folders Contains: 10.000 Files, 10 Folders
Downloads
Created: Today, 24 February 2025, 26 11 Created Today, 24 February 2025, 38 minutes ago
Atfributes: [m]Read-only (Only appliestd ~ Attributes [W]Read-only (Only applies to files in folder)
["|Hidden ["]Hidden Advanced...

¥ Network

3items | 1item selected | oK q Cancel Apply

Slika 27: Lastnosti map pred premikanjem

Vir: Lasten

!', j Source_folder Properties

File Home Share View
) General Security Previous Versions General Secuiity Previous Versions Cuslomize

« > v 1 B Network > 10011

Destination_folder Source_folder

B System32 MName
OneD - Person B ARCHIVE Type: File folder Type: File folder
TR M Destinatio Location: 1,10.0.1.158\proizvadnjal Location: 1110.0.1.158\proizvodnja
= This PC n
Source_fol
. - Size 439 KB (450.000 bytes Size 0 bytes
M 3 Objects ¢ ytes) th
B Deskiop Size ondisk: O bytes Size ondisk: Obytes
E Documents Contains 10.000 Files. 11 Folders| Contains 0 Files. 10 Folders|
Downloads .
Created Today. 24 February 202 Created: Today. 24 February 2025, 41 minutes ago
Attributes: [m]Read-only (Only apy ~ Attributes: [m] Read-only (Only applies to files in folder)
\ Videos [JHidden [Hidden Advanced...

e Local D

¥ Network

Slika 28: Lastnosti map po premikanju

Vir: Lasten

38

| ICT_robocopy_log_2025-02-24 - Notepad

File Edit Format View Help

Started : Monday, 24 February 2025 20:00:10
Source : \\1@.@.1.158\proizvodnja\Source folder\
Dest : \\18.@.1.158\proizvodnja\Destination folder\ARHIV ICT 2025-82-24)\
Files : *.txt
Options : /NFL /S /E /DCOPY:DA /COPY:DAT /MOV /NP /MT:8 /R:10 /uW:2@

Total Copied Skipped Mismatch FAILED Extras

Dirs : 11 11 11 e e %]
Files : 1980 1@e00 a e e %]
Bytes : 439.4 k 439.4 k a e e %]
Times : @:02:23 Q:o0:14 0:00:00 @:00:01
Speed : 31748 Bytes/sec.

Speed : 1.816 MegaBytes/min.

Ended : Monday, 24 February 2825 20:00:26

Slika 29: Vsebina dnevniske datoteke robocopy po premikanju

Vir: Lasten

3.1.3 [Izdelek — program AD-Toolkit v PowerShellu

V prilogi diplomskega dela je skripta preprostega PowerShell programa » AD-Toolkit.ps1", s
katerim lahko uporabnik ureja dolo€ene vidike v Active Directoryju. S tem programom lahko
kreira nov uporabniski racun, omogoci ali onemogoc¢i Ze kreiran uporabniski racun, izpise
osnovne podatke o specificnem uporabniSkem racunu glede na izbran filter, spreminja
informacije o oddelku in nazivu uporabnika ter uvozi datoteko CSV, s katero lahko kreira vecje

Stevilo uporabnikov naenkrat.

39

> |

Izberite moznost:

1. Ustvarjanje uporabnika

2. Omogocanje/onemogocanje uporabnika

3. Pridobivanje informacij o uporabnikih
4. Spreminjanje informacij o uporabnikih
5. Uvoz uporabnikov iz CSV datoteke

x. Izhod

vasa izbira:

Slika 30: Osnovni prikaz AD-Toolkit
Vir: Lasten

vasa izbira: 1

Vnesite uporabnisko ime (SamAccountName): janezn
Vhesite ime uporabnika: Janez

Vnesite priimek uporabnika: Novak

1. Leadership

2. Employees

Izberite skupino:

2

Uporabnik 'janezn' je bil dodan v skupino 'Employees’.
Uporabnik 'Janez Novak' je bil uspesno ustvarjen.
Pritisnite Enter za nadaljevanje:

Slika 31: Kreiranje novega uporabnika v AD-Toolkit

Vir: Lasten

vasa izhira: 2
Vnesite uporabnisko ime: janezn
Informacije o uporabniku:

DispTlayName : Janez Novak
SamAccountName 1 janezn

Enabled 1 True
UserPrincipalName : janezn@frosty.si
Department :

Title

EmaiTAddress

Uporabniski racun je trenutno omogocen. Onemogocim racun? (Y/N): Y
Uporabniski racun 'janezn' je bil onemogocen.
Pritisnite Enter za nadalievanie:

Slika 32: Onemogocanje uporabnika v AD-Toolkit

Vir: Lasten

40

vasa izbira: 3

Izberite skupino (Employees/Leadership/Pustite prazno za vse): Employee
Izberite oddelek (Finance/Marketing/HR/Sales/IT/Pustite prazno za vse):
Uporabniki:

DisplayName SamAccountName Enabled Department Title

Guest False
Ana Novak anan True Finance
Luka Horvat Tukah True Finance Head of Finance
Maja Kovaci¢ majak True sales
Peter Krajnc peterk False
Nina zupanci¢ ninaz True Marketing Head of Marketing
Marko Vidmar markov True Sales
Jan Kos jank True Sales Head of Sales
sara Mlakar saram True Sales
Maja Kavéic¢ majakl True Sales
David Golob davidg True Finance
Igor Medved igorm True Finance
Simon Belec simonb False
NeZa Zajc nezaz True Marketing
Ursa Kavéi¢ ursak True Sales
Matic Rojc maticr True IT
Tanja Hribar tanjah True Marketing
Domen Sustar domens True IT
Karin Knez karink True HR
Jasmina Ceh jasminac True HR Head of HR
Gasper Novak gaspern True IT
Pia Kos piak True Sales
Teo Krajnc teok True IT
Tadej Vvidmar tadejv True IT Head of IT
Janez Novak janezn False

Pritisnite Enter za nadaljevanie:
Slika 33: Izpis podatkov o uporabnikih v AD-Toolkit

Vir: Lasten

vasa izbira: 4
Wnesite uporabnisko ime (SamAccountName): janezn

[Department;
Job Title:

Izberite oddelek:
. Finance
. Marketing

HR

5ales

IT

. Odstrani oddelek

. Pustite nespremenjenc

vasa izbira: 4

Wnesite nov naziv, pustite prazno, ¢e ga ne Zelite spremeniti, ali wnesite "x’ za odstranitev naziva:

[=FET ey

wrributi so bili uspeino spremenjeni
Pritisnite Enter za nadaljevanje:

Slika 34: Urejanje informacij o uporabnikih v AD-Toolkit
Vir: Lasten
vasa izbira: 5) _ ;
Uporabnik 'markok' je bil uspesno obdelan.

Uporabnik 'Tukau' je bil uspesno obdelan.
Pritisnite Enter za nadaljevanje:

Slika 35: Uvoz iz datoteke CSV v AD-Toolkit
Vir: Lasten

Zgornje slike prikazujejo delovanje PowerShell skripte AD-Toolkit, s katero lahko do dolo¢ene
mere avtomatiziramo dodajanje novih uporabnikov v Active Directory, omogoca pa nam tudi
omogocanje in onemogocanje uporabnikov, izpis informacij o uporabnikih in spreminjanje

informacij o uporabnikih.

41

3.2 Primeri integracije umetne inteligence v avtomatizacijo

Uporaba umetne inteligence lahko moc¢no olajsa delo sistemskih administratorjev Ze od samega
zaCetka njihove karierne poti. Prva »postaja« sistemskih administratorjev je tako imenovani
»helpdesk« oziroma prva podpora strankam in uporabnikom. Primer uporabe umetne
inteligence v take namene je na primer IBM watsonx Assistant —izdelek, ki ga lahko uporabimo
za pogovor s stranko/uporabnikom, ki lahko na podlagi baze znanja svetuje in pomaga pri
enostavnih tezavah, kot so zamenjava gesla pred potekom le-tega, reSevanje tezav pri tiskanju
in podobno. Bistvena prednost takega orodja je v tem, da je dosegljivo 24 ur na dan, 7 dni v

tednu, brez Cakalnih vrst, ¢e infrastruktura to podpira. (Watsonx Assistant, 2025)

Se eno orodje, ki za svoje delovanje uporablja umetno inteligenco, je Darktrace. Darktrace je
orodje, ki uporablja strojno u€enje za analizo ogromne koli¢ine podatkov o omreZznem prometu,
na podlagi tega pa si kreira neko podobo normalnega stanja in obnasanja naprav v omrezju. V
naslednjem koraku, ¢e orodje zazna vedenje, ki odstopa od normalnega vzorca, sprozi
opozorilo, ki ga nato posreduje administratorjem. (Darktrace - Network, 2025) Kompatibilen

je tudi z orodjem QRadar, ki je orodje oziroma platforma za varnostno analizo.

42

Slika 36: Prikaz orodja Darktrace

Vir: https://cdn.prod.website-
files.com/6261f19cdd07d1258d49238d/67865d9beae5d46856f5397 Homepage%20w-Highlighted%20Path.png
Tako orodje lahko sistemskim administratorjem zelo olajsa delo, seveda le v primeru pravilne
vpeljave v IT-infrastrukturo podjetja, saj je bistveno pri zagotavljanju varnosti IT-okolja

podjetja.

3.3 Avtomatizacija varnostnih kopij

V sodobni infrastrukturi podjetja dandanes vidimo vedno ve¢ uporabe virtualizacije. Kjer
virtualni stroji in kontejnerji gostijo kriticne podatke in aplikacije, so varnostne kopije
nepogresljiv element zanesljive IT-infrastrukture. [zguba teh sredstev, bodisi zaradi odpovedi
strojne opreme, napak v programski opremi, ¢loveskih napak ali vse pogostejSih zlonamernih
napadov, lahko povzro¢i znatno Skodo. Vecina hipervizorjev Ze sama po sebi omogoca
kreiranje varnostnih kopij, prav tako pa marsikateri omogoca tudi integracijo namenske opreme

za varnostno kopiranje podatkov, med katere spadata Veeam in Rubrik.

Za potrebe primera prikaza avtomatizacije varnostnih kopij smo uporabili hipervizor tipa 1
Proxmox, ki sam po sebi nudi osnovno funkcionalnost varnostnega kopiranja, ki pa se ob

uporabi Proxmox Backup Serverja Se znatno poveca.

43

General Retention Note Template Advanced

Node: pve Notification

Default (Auto)
mode:

Storage: hdd-files-dir

Send email fo:
Schedule: tue 01:00

Selection mode: Include selected VMs
Compression: ZSTD (fast and good)

Mode: Snapshot
Enable:

Job Comment:

Status Name Type

stopped TestUbuntu Virtual Machine

stopped Kali Virtual Machine

Slika 37: Konfiguracija avtomatizacije varnostnih kopij

Vir: Lasten

Kot je razvidno iz zgornje slike, smo kreirali novo opravilo za avtomatizacijo varnostnih kopij,

kjer smo dolocili shrambo, urnik in nacin selekcije, izbrali, kateri virtualni stroj Zelimo

varnostno kopirati, prav tako pa smo dolo¢ili, koliko varnostnih kopij naj program ohrani.
Storage "hdd-files-dir’ on node ‘pve’

& Summary Restore Show Configuration Edit Notes Change Prolection Prune group gemu/101 Remove Search

Name Notes U Dale | Format Size

vzdump-gemu-101-2025_05_20-01_00_29vmazst Kal 2025-05-20 01:00:29 vma.zst 1013 GB

Slika 38: Rezultat avtomatizacije varnostnega kopiranja

Vir: Lasten

Na zgornji sliki je viden rezultat konfiguracije avtomatizacije varnostnega kopiranja — ob
vnaprej doloceni uri se je ustvarila enostavna varnostna kopija izbranega virtualnega stroja. Ker
smo za varnostno kopiranje uporabili le Proxmox Virtual Environment brez Proxmox Backup
Serverja, se je ustvarila celotna varnostna kopija virtualnega stroja. V primeru uporabe
Proxmox Backup Serverja pa bi lahko vzpostavili kreiranje inkrementalnih varnostnih kopij,
kjer bi se po prvi polni varnostni kopiji varnostno kopirali le tisti podatki, ki so se od prejSnje

razli¢ice spremenili.

44

3.4 Avtomatizacija posodabljanja programske opreme

Posodabljanje programske opreme je ena kljucnih nalog sistemskih administratorjev, saj s tem
zagotovimo, da so morebitne varnostne luknje zastarele programske opreme pokrpane. Ko
govorimo o IT-okolju, ki Steje ve¢ deset ali celo ve€ sto streznikov, pa se soofimo s ¢asovnimi
tezavami. Posodabljanje operacijskih sistemov in programske opreme na taksni koli¢ini naprav
je lahko zelo zamudno, vendar obstajajo orodja, kako sistemski administratorji vse to
poenostavijo. Eno teh orodij smo ze omenili — to je Ansible, s katerim lahko naenkrat posljemo
ukaze na veliko Stevilno streznikov naenkrat ter s tem poskrbimo za hitro in ucinkovito

posodobitev tako operacijskega sistema kot namescene programske opreme.

Kot primer smo pripravili Playbook za Ansible z imenom update upgrade.yml, ki bo posodobil

tri vnaprej pripravljene streznike, ki so v skupini »linux_servers«, z enim samim ukazom.

ansible@ansiblemain:~/playbooks$ cat update_upgrade.yml
- hosts: linux_servers
become: yes
tasks:
- name: Update apt cache
apt:
update_cache: yes

- name: Upgrade all packages
apt:
upgrade: yes

Slika 39: Ansible update in upgrade
Vir: Lasten
Za zagon tega Playbooka moramo na streZzniku, kjer je nameS¢en Ansible, zagnati ukaz
»ansible-playbook update upgrade.yml -K«. Na spodnjih slikah je mozno videti stanje moZznih

posodobitev na strezniku pred zagonom Playbooka, sam Ansible izpis ob zagonu Playbooka ter

stanje moznih posodobitev na strezniku po zagonu Playbooka.

45

ssh ansible@192.168.233.133
ansible@192.168.233.133's password:
Welcome to Ubuntu 24.04.2 LTS (GNU/Linux 6.8.0-55-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://1landscape.canonical.com
* Support: https://ubuntu.com/pro

System information as of Wed Apr 2 04:06:51 PM UTC 2025

System load: 0.0 Processes: 216

Usage of /: 31.0% of 14.66GB Users logged in: e

Memory usage: 14% IPv4 address for ens33: 192.168.233.133
Swap usage: 0%

Expanded Security Maintenance for Applications is not enabled.
71 updates can be applied immediately.

20 of these updates are standard security updates.

To see these additional updates run: apt list --upgradable
Enable ESM Apps to receive additional future security updates.

See https://ubuntu.com/esm or run: sudo pro status

Last login: Wed Apr 2 16:06:53 2025 from 192.168.233.134
L€ w9§2'$

Slika 40: Stanje streznika pred zagonom Playbooka

Vir: Lasten

) - /books$ ansible-playbook update_upgrade.yml
BECOME password:

PLAY [LINUX_SEPrVers] #dkidokdokokdioktokdok ko kok ko iok dok feok fok dokdor oo ok dekokookook sk deok Aok feok Rk heok ok ok ot deok deok deokodok ok ok ok ok
KEkFREARARAAEAAA

TASK [Gathering Facts] swsssxsdsdsttdtrhrdrdrddhhrhdhhhshrkekhdikrdrrkitetirbrkskratikbrhtirkrrrdsss

vk o ok ok v ok e ok e v e ok ek ok

TASK [Update apt cache] okkskkskikiokskdokhokhor ko sk dookhokdok dotoh bk o deok dook ok koo ek deok deok ok Aok ok ok ek ok Aok deok ook ok e ok ek
Kk kkk ok Rk krkkkxk

[192.

[1
changed: [1

TASK [Upgrade all

o e o e e e ok e ok e K

changed unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
192.168 2 : changed=2 unreachable=@ failed=0 skipped=0 rescued=0
ignored=0
192.168.233.133 ; chang 2 unreachable=06 failed=0 skipped=0 rescued=0
ignored=80

Slika 41: Stanje ob zagonu Playbooka

Vir: Lasten

46

’ ssh anéible@192.168.233.133
ansible@192.168.233.133's password:
Welcome to Ubuntu 24.84.2 LTS (GNU/Linux 6.8.8-55-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https: //landscape.canonical.com
% Support: https: //ubuntu.com/pro
System information as of Wed Apr 2 B84:11:26 PM UTC 2025
System load: 0.39 Processes: 220
Usage of /: 35.6% of 14.66GB Users logged in: 0
Memory usage: 22% IPv4 address for ens33: 192.168.233.133

Swap usage: 0%

* Strictly confined Kubernetes makes edge and IoT secure. Learn how MicroK8s
just raised the bar for easy, resilient and secure K8s cluster deployment.

https: //ubuntu.com/engage/secure-kubernetes-at-the-edge
Expanded Security Maintenance for Applications is not enabled.
0 updates can he applied immediately.

Enable ESM Apps to receive additional future security updates.
See https: //ubuntu.com/esm or run: sudo pro status

**% System restart required x*x
Last login: Wed Apr 2 16:09:19 2025 from 192.168.233.134
sible3:~$ |

' - S |
anNslblL

Slika 42: Stanje streznika po zagonu Playbooka
Vir: Lasten
Rezultat tega primera je, da smo z uporabo enega ukaza in vnaprej pripravljenega Playbooka
istoCasno zagnali posodabljanje sistemske in programske opreme na treh streznikih. S tem smo

prihranili dragocen Cas, ki bi ga zapravili ob ro¢nem posodabljanju vseh treh streznikov

posebe;j.

47

4 SKLEP

Med pisanjem diplomskega dela smo prisli do dolo¢enih ugotovitev pri vseh sedmih hipotezah
— pri nekaterih skozi teorijo in Ze dokazanih primerov, pri drugih pa skozi prakti¢ne teste na

lastnih virtualnih strojih. Sledijo zastavljene hipoteze in potrditve ali zavrnitev le-teh.
Hipoteza 1:

Avtomatizacija varnostnega Kopiranja podatkov bistveno zmanjSa tveganje izgube

podatkov v primeru sistemskih napak.

Prvo hipotezo smo potrdili — to smo dokazali z implementacijo in preizkusom treh razli¢nih
avtomatiziranih pristopov k varnostnemu kopiranju. Z uporabo PowerShell skripte
(podpodpoglavje 3.1.2) smo avtomatizirali proces premikanja pomembnih datotek iz delovne
mape na namensko arhivsko lokacijo, kar zmanjSuje tveganje izgube podatkov v primeru
napake na primarnem mestu shranjevanja. Prav tako smo z uporabo Python skripte
(podpodpoglavje 2.2.3) implementirali reSitev varnostnega kopiranja iz primarne na
sekundarno lokacijo. Kot zadnjo implementacijo smo uredili tudi avtomatizacijo kreiranja
varnostnih kopij celotnega sistema znotraj virtualizacijskega okolja Proxmox VE. To v praksi
pomeni, da bi lahko v primeru sistemske napake na virtualnem stroju hitro obnovili celoten

stroj v zadnje delujoce stanje iz shranjene varnostne kopije.

Vsi trije primeri jasno kazejo, da avtomatizacija varnostnega kopiranja prispeva k zmanjSanju

tveganja izgube podatkov.
Hipoteza 2:

Avtomatizacija posodabljanja sistema in programske opreme zmanjsa Stevilo varnostnih

ranljivosti v informacijskem sistemu.

Drugo hipotezo smo potrdili na podlagi prakticnega preizkusa z uporabo orodja Ansible
(podpoglavje 3.4) na treh virtualnih strojih. Pred izvedbo avtomatiziranega procesa
posodabljanja je bilo na te stroje mozno namestiti 71 posodobitev, od tega 20 varnostnih
popravkov. Vsak tak nenamesceni popravek predstavlja varnostno ranljivost, ki bi jo lahko
izkoristili potencialni napadalci. Razvili smo enostaven Ansible Playbook, prilagojen za
avtomatizirano namescanje vseh cakajocih posodobitev na vnaprej definiranih virtualnih
strojih, ki smo ga kasneje tudi zagnali. Po pregledu stanja na omenjenih virtualnih strojih smo

ugotovili, da je bilo nameScenih vseh 71 popravkov. Ta rezultat dokazuje veljavnost hipoteze,

48

saj smo z avtomatizacijo namestitve varnostnih popravkov u¢inkovito odpravili specificne,
znane varnostne pomanjkljivosti, ki so jih ti popravki naslavljali. Z avtomatizacijo procesa
posodabljanja zagotovimo, da bodo sistemi dosledno posodobljeni z najnovejSimi varnostnimi

popravki, kar neposredno zmanjsuje Stevilo obstojecih varnostnih ranljivosti v sistemu.

Hipoteza 3:

Wew W

Samodejno ¢iS¢enje zacasnih datotek vodi k znatnemu izboljSanju zmogljivosti sistema in

zmanjSanju porabe diskovnega prostora.

Tudi tretjo hipotezo smo potrdili, za kar smo razvili Shell skripto (primer v podpodpoglavju
2.2.1), ki ob pomoc¢i pravilno konfiguriranega cronjoba skrbi za brisanje vseh datotek v vnapre;j
dolocenih mapah v rednih ¢asovnih intervalih. S tem smo zagotovili manjSo porabo diskovnega
prostora, posledicno tudi izboljSanje delovanja sistema, prav tako pa na tak nacin skrbimo za
higieno in organizacijo v mapi. Ceprav v tem delu nismo izvajali meritev zmogljivosti sistema
pred in po ¢is¢enju, je vseeno splosno sprejeto dejstvo, da lahko prekomerno kopicenje zacasnih
datotek negativno vpliva na sistemsko zmogljivost. Zaklju¢imo lahko, da avtomatizirano
¢iS€enje zacasnih datotek neposredno prispeva k manjsi porabi diskovnega prostora in hkrati

pozitivno vpliva na ohranjanje oziroma izboljSanje zmogljivosti sistema.
Hipoteza 4:

Spremljanje sistemskih virov in samodejno obves¢anje o preseZenih pragovih zmanjsa

odzivni ¢as na sistemske tezave.

Za dokazovanje in potrditev te hipoteze smo v testnem okolju implementirali sistem za nadzor
CheckMK (podpodpoglavje 2.2.5). V sistem je bilo vklju¢eno spremljanje treh testnih
streznikov, spremljali pa smo CPU Load in dosegljivost streznika. Ko je sistem CheckMK
zaznal mejne vrednosti, je to tudi ustrezno signaliziral v svojem vmesniku. Ceprav v nasem
okolju ni bilo mozno v celoti konfigurirati poSiljanja e-postnih sporo€il, smo ta klju¢ni vidik
samodejnega obves€anja uspeSno ponazorili s praktiénimi primeri iz delovnega okolja. S
pridobljenim soglasjem smo prikazali primere dejanskih e-poStnih obvestil, ki jih CheckMK ob
pravilni konfiguraciji poslje sistemskim administratorjem ob preseganju nastavljenih pragov.
Pridobili smo tudi soglasje za prikaz primera osnovnega vmesnika CheckMK, ki prikazuje

stanje doloCenega dela IT-infrastrukture podjetja.

49

Hipoteza 5:

Avtomatizacija upravljanja uporabniskih ra¢unov vodi do vecje varnostne skladnosti in

manj napak v upravljanju pravic dostopa.

Hipoteze v okviru prakticnega dela tega diplomskega dela zaradi omejitev strojne in
programske opreme nismo mogli neposredno preizkusiti z implementacijo demonstracijskega
primera, vendar pa smo hipotezo potrdili na podlagi teoreti¢nega pregleda relevantne literature
in uveljavljenih praks na podro¢ju informacijske varnosti in sistemske administracije. V
teoreticnem delu smo izpostavili, da v kompleksnih okoljih ro¢no upravljanje uporabniskih
racunov postane zamudno, neucinkovito in predvsem podvrzeno Ccloveskim napakam.
Teoreticne ugotovitve kazejo, da ravno Cloveski dejavnik predstavlja najvecje tveganje za
varnostno skladnost. Pravilno zastavljena avtomatizacija, na primer z uporabo reSitev za

upravljanje identitet in dostopa, pa te tezave bistveno zmanjsuje.
Hipoteza 6:

Vpeljava avtomatizacije obnovitve po napakah ne izboljSa ¢asa obnovitve sistema v

primerjavi z ro¢nimi postopki.

Hipotezo smo na podlagi nasSih ugotovitev s prakticnim primerom avtomatizacije varnostnih
kopij zavrgli. Na§ primer jasno nakazuje, da avtomatizirani oziroma delno avtomatizirani
postopki obnove bistveno pripomorejo k skrajSanju Casa, potrebnega za ponovno vzpostavitev
delovanja sistema. Ro¢na obnova je dolgotrajen proces, ki lahko vkljuc¢uje ponovno namestitev
operacijskega sistema in potrebnih aplikacij, konfiguracijo nastavitev ter obnovo podatkov. V
nasprotju s tem pa moznost hitre obnove celotnega virtualnega stroja iz popolne varnostne
kopije, ki jo omogo&a Proxmox, predstavlja bistveno izboljsavo. Ceprav morda sam sprozilec
obnove ni vedno popolnoma avtomatiziran brez cCloveSke intervencije, pa Ze sama
avtomatizacija kreiranja konsistentnih varnostnih kopij in moznost hitre povrnitve sistema v
delujoce stanje predstavljata bistveno izboljSavo v asu obnovitve. Pomembno je tudi poudariti,
da mora biti pri nacrtovanju avtomatizacije obnove po napakah pozornost namenjena tudi
varnostnim in kontrolnim mehanizmom, saj no¢emo, da se ti po nepotrebnem sproZzijo zaradi

morebitnih kratkotrajnih moten;.

50

Hipoteza 7:

Uporaba umetne inteligence pri avtomatizaciji sistemske administracije poveca

ucinkovitost pri odkrivanju in odpravljanju napak.

Hipoteze v okviru prakticnega dela tega diplomskega dela nismo mogli neposredno preizkusiti
z lastno implementacijo resitev zaradi sistemskih in programskih omejitev. Kljub temu pa lahko
na podlagi teoretinega dela relevantne literature hipotezo potrdimo. V sklopu tega smo
raziskali orodje Darktrace, ki po javno dostopnih informacijah s strani proizvajalca uporablja
umetno inteligenco in strojno ucenje za ucenje normalnega obnasanja omrezja in sistemov. Na
podlagi naucenega pa naj bi Darktrace sistemske administratorje kasneje opozarjal na
morebitne zaznane anomalije, kibernetske napade in ostale groznje v realnem ¢asu. TakSen
pristop neposredno vpliva na zmanjSanje Casa, ki je potreben za odkrivanje in odpravljanje

morebitnih napak in incidentov.

Prihodnost sistemske administracije, kot smo ugotovili v diplomskem delu, ni v izginotju vlioge,
temve€ v njeni preobrazbi, ki jo poganjajo trije klju¢ni dejavniki: napredna avtomatizacija,
umetna inteligenca in hibridna obla¢na okolja. Sistemskemu administratorju bo pri delu v
neizogibno pomo¢ umetna inteligenca, ki ne bo ve¢ samo zaznavala anomalij, ampak bo
napovedovala mozZne okvare, avtomatsko dolocala vzroke tezav in do neke mere samostojno
izvajala ukrepe. Sistemski administrator bo novo vlogo opravljal v vse bolj kompleksnih
hibridnih okoljih, saj trendi kaZejo, da prihodnost ni zgolj v javnem oblaku, temvec¢ v
premisljeni kombinaciji lokalnih in oblaénih virov. Posledi¢no bodo znanja avtomatizacije,
orkestracije med raznimi platformami in optimizacije stroSkov klju¢ne vesc¢ine, ki definirajo

uspesnega sistemskega administratorja prihodnosti.

51

S LITERATURA

Anzelj, G., Brank, J., Brodnik, A., Buli¢, P., Ciglari¢, M., Buki¢, M., . . . Sterle, P. (2. februar
2025). E-Ucbenik za informatiko v gimnaziji. Pridobljeno iz https://lusy.fri.uni-
lj.si/ucbenik/book/index.html

Barrett, R., Kandogan, E., Maglio, P. P., Haber, E. M., Takayama, L., & Prabaker, M. (2004).
Field studies of computer system administrators: Analysis of system management tools
and practices. Proceedings of the 2004 ACM Conference on Computer Supported
Cooperative Work, (str. 388-395). Chicago.

Chapter 1 - Getting started with PowerShell. (3. marec 2025). Pridobljeno iz Microsoft Learn:
https://learn.microsoft.com/en-us/powershell/scripting/learn/ps101/01-getting-

started?view=powershell-7.5

Charles Babbage. (2. februar 2025). Pridobljeno iz Britannica:
https://www .britannica.com/biography/Charles-Babbage

Checkmk 2.3. (19. marec 2025). Pridobljeno iz checkmk: https://checkmk.com/product/latest-

version

Darktrace - Network. (18. marec 2025). Pridobljeno iz Darktrace:

https://darktrace.com/products/network

Deep Learning in Cybersecurity.: Threat Detection and Defense. (20. maj 2025). Pridobljeno iz

xenonstack.com: https://www.xenonstack.com/blog/deep-learning-in-cybersecurity

Eniac. (2. februar 2025). Pridobljeno iz Britannica:
https://www.britannica.com/technology/ENIAC

How Automation Simplifies User Access Reviews for Remote and Hybrid Workforces. (25. maj
2025). Pridobljeno iz securends.com: https://www.securends.com/blog/automate-user-

access-reviews/

Introduction to Ansible. (1. april 2025). Pridobljeno iz ansible.com:

https://docs.ansible.com/ansible/latest/getting_started/introduction.html

Fister, I. (2. 11 2023). Sistemska administracija v Linuxu. Univerzitetna zaloZzba Univerze v

Mariboru.

52

Limoncelli, T. A., Hogan, C. J., & Chalup, S. R. (2017). The Practice of System and Network
Administration. Addison Wesley.

Nemeth, E., Snyder, G., Hein, T. R., & Whaley, B. (2010). UNIX and Linux System

Administration Handbook. Boston: Prentice Hall.

PowerShell nadomesca ukazni poziv. (3. marec 2025). Pridobljeno iz Microsoft Support:
https://support.microsoft.com/sl-si/windows/powershell-nadome%C5%A1%C4%8Da-
ukazni-poziv-fdb690cf-876c-d866-2124-21b6fb29a45f

Susnjara, S., & Smalley, 1. (10. februar 2025). What is a mainframe? Pridobljeno iz IBM:

https://www.ibm.com/think/topics/mainframe

Turing Machine. (2. Februar 2025). Pridobljeno iz Britannica:

https://www.britannica.com/technology/Turing-machine

unix.org. (12. februar = 2025). Pridobljeno iz History and Timeline:

https://unix.org/what is unix/history timeline.html

Watsonx Assistant. (18. marec 2025). Pridobljeno 1z IBM:

https://www.ibm.com/products/watsonx-assistant

What Does a Systems Administrator Do? (3. Februar 2025). Pridobljeno iz Florida National

University: https://www.fnu.edu/what-does-a-systems-administrator-do/

What is AlOps? (22. maj 2025). Pridobljeno iz = aws.amazon.com:

https://aws.amazon.com/what-is/aiops/

What is Artificial Intelligence (AI)? (20. maj 2025). Pridobljeno iz cloud.google.com:
https://cloud.google.com/learn/what-is-artificial-intelligence

What is PowerShell? (3. marec 2025). Pridobljeno iz Microsoft Learn:

https://learn.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.5

53

6 PRILOGE

Priloga 1: I1zdelek AD-Toolkit.ps1

FHHFHHHHH

Simple AD user management script

Avtor: Iztok Hladen
Datum: 13.03.2025

Import AD module

Import-Module ActiveDirectory

Funkcija za ustvarjanje uporabnika
function Create-ADUser {

Pridobivanje uporabnisSkega imena in preverjanje zasedenosti
do {
$Username = Read-Host "Vnesite uporabnisko ime (SamAccountName)"
if (Get-ADUser -Filter "SamAccountName -eq '$Username'")]
Write-Host "Uporabnisko ime '$Username' je Ze zasedeno. Izberite

drugo."

} while (Get-ADUser -Filter "SamAccountName -eq '$Username'")

Pridobivanje imena in priimka)
$Ime = Read-Host "vVnesite ime uporabnika")
$Priimek = Read-Host "vnesite priimek uporabnika"

Izbira skupine

write-Host "1. Leadership"
write-Host "2. Employees"”
write-Host "Izberite skupino:"
$GroupChoice = Read-Host

DolocCanje skupine
if ($Groupchoice -eq "1") {
$GroupDN = "CN=Leadership,CN=Users,DC=frosty,DC=si"
} elseif ($GroupcChoice -eq "2") {
$GroupDN = "CN=EmpTloyees,CN=Users,DC=frosty,DC=si"
} else {
write-Host "Napacna izbira. Uporabnik ne bo dodan v nobeno skupino.”

Ustvarjanje DisplayName
$displayName = "$Ime $Priimek"

Default geslo] .
$Password = (ConvertTo-SecureString "FrOsty.0l" -AsPlainText -Force)

Ustvarjanje AD uporabnika
New-ADUser
-SamAccountName $Username
-Name $displayName °
-DisplayName $displayName
-GivenName $Ime
-Surname $Priimek °
-UserPrincipalName $Username@frosty.si
-AccountPassword $Password
-Path "CN=Users,DC=frosty,DC=si"
-ChangePasswordAtLogon $true °
-Enabled $true

Dodajanje v skupino

if ($GroupbDN) {
Add-ADGroupMember -Identity $GroupDN -Members $Username
write-Host "Uporabnik '$Username' je bil dodan v skupino

'$($§roupDN.Sp1it(',')[O].Sp1it('=')[l])'."

Write-Host "Uporabnik '$displayName' je bil uspeSno ustvarjen."

Funkcija za omogocanje/onemogocanje uporabnika
function Enable-Disable-ADUser {

Pridobivanje uporabniskega imena

$Username = Read-Host "Vnesite uporabnisko ime"

Pridobivanje informacij o uporabniku)]
$User = Get-ADUser -Identity $Username -Properties Enabled, DisplayName,
SamAccountName, UserPrincipalName, Department, Title, EmailAddress

Preverjanje, ali je uporabnik najden
if ($user) {
Izpis informacij o uporabniku
write-Host "Informacije o uporabniku:"
$User | Format-List DisplayName, SamAccountName, Enabled,
UserPrincipalName, Department, Title, EmailAddress

Vprasanje o omogocanju/onemogocanju racuna
if ($User.Enabled)
do {
$Action = Read-Host "Uporabniski racun je trenutno omogocen.
onemogocim racun? (Y/N)"
} while ($Action -notin ("Y", "N"))

if ($Action -eq "Y") {)
Disable-ADAccount -Identity $username)) 5
Write-Host "Uporabniski racun '$uUsername' je bil onemogocen."

} else {
write-Host "Onemogocanje uporabnisSkega racuna je bilo preklicano."

}
} else {
do {
$Action = Read-Host "Uporabniski racun je trenutno onemogocen.
omogocim racun? (Y/N)"
} while ($Action -notin ("Y", "N"))

if ($Action -eq "Y") {)
Enable-ADAccount -Identity $Username)) .
Write-Host "Uporabniski racun '$uUsername' je bil omogocen."

} else {
write-Host "OmogocCanje uporabniskega racuna je bilo preklicano."

}
} else {
Write-Host "Uporabnik '$username' ni bil najden."

}

Funkcija za izpis podatkov o uporabnikih
function Get-User-Info { .
Izbira skupine (prazno za vse skupine)])
$GroupChoice = Read-Host "Izberite skupino (Employees/Leadership/Pustite prazno
za vse)"
while ($GroupChoice -notin ("Employees", "Leadership") -and $GroupChoice -ne
mn {
write-Host "Napacna izbira. Izberite Employees, Leadership ali pustite
prazno.")))))
$GroupChoice = Read-Host "Izberite skupino (Employees/Leadership/Pustite
prazno za vse)"

Izbira oddelka (prazno za vse oddelke)
$pepartmentChoice = Read-Host "Izberite oddelek
(Finance/Marketing/HR/Sales/IT/Pustite prazno za vse)"
while ($DepartmentChoice -notin ("Finance", "Marketing", "HR", "sales", "IT") -
and $DepartmentChoice -ne "")
write-Host "Napacna izbira. Izberite Finance, Marketing, HR, Sales, IT ali
pustite prazno."
$DepartmentChoice = Read-Host "Izberite oddelek
(Finince/Marketing/HR/Sa1es/IT/Pust1te prazno za vse)"

Dolocanje skupin
$LeadershipDN = "CN=Leadership,CN=Users,DC=frosty,DC=si"
$EmpToyeesDN = "CN=Employees,CN=Users,DC=frosty,DC=si"

Pridobivanje vseh uporabnikov

~ $Users = Get-ADUser -Filter * -Properties DisplayName, Department, Enabled,
DistinguishedName, Memberof, Title

Filtriranje
$Filteredusers = @O

foreach ($user 1in $users) {
$GroupMatch = $true
$DepartmentMatch = $true

Preverjanje pripadnosti skupini
if ($GroupcChoice -eq "Leadership™) {

$GroupMatch = ($User.MemberOf -contains $LeadershipDN)
} elseif ($GroupcChoice -eq "Employees™) {

$GroupMatch = ($User.Memberof -contains $EmpToyeesDN)

Preverjanje oddelka
if ($pepartmentChoice -ne "") {
$DepartmentMatch = ($User.Department -eq $DepartmentChoice)

Ce oba kriterija ustrezata, dodamo uporabnika v seznam
if ($GroupMatch -and $DepartmentMatch) {
$Filteredusers += $uUser

}

Izpis uporabnikov
if ($Filteredusers.cCount -gt 0) {
Write-Host "Uporabniki:"
$FiTteredusers | Format-Table DisplayName, SamAccountName, Enabled,
Department, Title
} else {
wWrite-Host "Ni uporabnikov z izbranimi kriteriji."

}

Funkcija za spreminjanje oddelka in naziva
function Change-Info {
Pridobivanje uporabniskega imena
fUsername = Read-Host "Vnesite uporabnisko ime (SamAccountName)"

Preverjanje, ali_uporabnik obstaja
if (Get-ADUser -Filter "SamAccountName -eq '$Username'") {

Pridobivanje informacij o uporabniku) _
fUser = Get-ADUser -Identity $Username -Properties Department, Title

Izpis trenutnih atributov

write-Host

write-Host "Department: $($User.Department)"”
write-Host "Job Title: $($user.Title)"
write-Host

Meni za izbiro oddelka

write-Host "Izberite oddelek:"
write-Host "1. Finance"

Write-Host "2. Marketing"

write-Host "3. HR"

write-Host "4. Sales"

write-Host "5. IT"

write-Host "x. Odstrani oddelek"
Write-Host "O. Pustite nespremenjeno"

$DepartmentChoice = Read-Host "vasSa izbira"

Prever%anje izbire oddelka
switgh ({Departmentchoice) {

" { $Department = "Finance" }
"2" { $pepartment = "Marketing" }
"3" { $pepartment = "HR"
"4" { $Department = "Sales" }
"5" { $pepartment = "IT" }
"x" { $pepartment = $null }
"0" { $pepartment = $User.Department }

default {

write-Host "Napacna izbira. oddelek bo ostal nespremenjen."
$Department = $User.Department

}

vnos novih atributov za naziv]))
$JobTitle = Read-Host "vnesite nov naziv, pustite prazno, Ce ga ne zelite

spremeniti, ali vnesite 'x' za odstranitev naziva"

Spreminjanje atributov
try {
1t ($pepartment -eq $null) {
Set-ADUser -Identity $Username -Clear Department
} else {
Set-ADUser -Identity $Username -Department $Department

if ($JobTitle -ne ")
if ($JobTitle -eq "x") {
Set-ADUser -Identity $Username -Clear Title
} else {
Set-ADUser -Identity $Username -Title $JobTitle

}
Write-Host "Atributi so bili uspeSno spremenjeni."
} catch {
Write-Error "Napaka pri spreminjanju atributov:
$($_.Exception.Message)"

}else { . L .
Write-Host "Uporabnik '$username' ni bil najden."

}

Funkcija za uvoz CSV datoteke ki kreira uporabnike
function Create-ADUser-csv {
Privzeto geslo
$pefaultPassword = ConvertTo-SecureString "FrOsty.0l" -AsPlainText -Force

Uvoz CSV datoteke L
$fUsers = Import-Csv -Path "C:\temp\uporabniki.csv"

Obdelava vsakega uporabnika
foreach ($user 1in $users) {
try {
odstranjevanje skritih znakov in presledkov
$samAccountName = $User."uporabnisko ime".Trim()
$Ime = $user.ime.TrimQ)

$Priimek = $user.priimek.Trim()
$skupina = $user.skupina.Trim()
$oddelek = $user.oddelek.Trim()

$Naziv = $user.naziv.Trim(Q

Ustvarjanje DisplayName in Name
$DisplayName = "$Ime $Priimek"
$Name = $DisplayName

Ustvarjanje AD uporabnika
$NewUser = New-ADUser -SamAccountName $SamAccountName
-Name_ $Name °
-DisplayName $DisplayName
-GivenName $Ime °
-Surname $Priimek -
-UserPrincipalName "$SamAccountName@frosty.si"

-AccountPassword $DefaultPassword
-Enabled $true °
-ChangePasswordAtLogon $true
-Path "CN=Users,DC=frosty,DC=si"

zagotovimo, da je $NewUser pravilno nastavljen

if (-not $NewUser -and (Get-ADUser -Identity $SamAccountName)) {
$NewUser = Get-ADUser -Identity $SamAccountName

Dodajanje v skupino

if ($skupina -eq "Leadership") {
Add-ADGroupMember -Identity
"CN=Leadership,CN=Users,DC=frosty,DC=si" -Members $NewUser
} elseif ($skupina -eq "Employees™) {
Add-ADGroupMember -Identity "CN=Employees,CN=Users,DC=frosty,DC=si'
-Members $NewUser
} else {
write-warning "Opozorilo: Nepravilna skupina '$Skupina' za
uporabnika '$SamAccountName'."

Nastavitev_oddelka in naziva
if ($NewuUser))])
Set-ADUser -Identity $NewUser -Department $0ddelek -Title $Naziv
} else {
o write-warning "Opozorilo: Uporabnika '$SamAccountName' ni bilo
mogoCe najti za nastavitev atributov."
}

wWrite-Host "Uporabnik '$SamAccountName' je bil uspesno obdelan."
} catch {
Write-Error "Napaka pri obdelavi uporabnika '$samAccountName':
$($_.Exception.Message)"
}

}
}
Glavna zanka
do {

Write-Host "Izberite moznost:"

write-Host "1. Ustvarjanje uporabnika"

Write-Host "2. Omogocanje/onemogocanje uporabnika"
Write-Host "3. Pridobivanje informacij o uporabnikih"
wWrite-Host "4. Spreminjanje informacij o uporabnikih"
write-Host "5. Uvoz uporabnikov iz CSV datoteke"

write-Host "x. Izhod"
$Choice = Read-Host "vasa izbira"
switch (%Choice) {

ll1ll

Create-ADUser

Enable-Disable-ADUser

ll3ll {
Get-User-Info

ll4ll
Change-Info
ll5ll {
; Create-ADUser-CcSV
llel {
! write-Host "Izhod iz skripte."
default {

wWrite-Host "Napacna izbira. Poskusite ponovno.'

}

if ($choice -ne "x") {] .
Read-Host "Pritisnite Enter za nadaljevanje"

} while ($choice -ne "x™)

