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POVZETEK

V diplomskem delu je predstavljena primerjava algoritmov iskanja poti in umetne inteligence
pri reSevanju naklju¢no generiranih labirintov. Namen diplomskega dela je ugotovitev

ucinkovitosti in hitrosti razli¢nih pristopov k resevanju poti v kompleksnih strukturah.

V teoreticnem delu so obravnavani algoritmi iskanja najkrajSe poti, in sicer algoritem A*,
preiskovanje v $irino in Dijkstrov algoritem. Predstavljena je tudi teorija grafov in mrez ter
vloga hevristike pri iskanju poti. Posebno poglavje je namenjeno umetni inteligenci in njenemu

pomenu pri reSevanju problema iskanja poti.

Za empiri¢no raziskavo je bila razvita aplikacija v programskem jeziku Python z graficnim
uporabniSkim vmesnikom. Aplikacija omogoca generiranje naklju¢nih labirintov razli¢nih
velikosti ter vizualizacijo delovanja posameznih algoritmov. Za simulacijo umetne inteligence

je bil implementiran pristop globokega Q-ucenja z uporabo knjiznice PyTorch.

Testiranje je potekalo na tiso¢ naklju¢no generiranih labirintih za naslednje velikosti, in sicer
11x11, 21x21 in 31x31. Merjeni so bili cas iskanja, Stevilo obiskanih vozliS¢ in uspesno
doseganje cilja. Algoritmi iskanja poti so pokazali 100-% uspeSnost pri vseh velikostih
labirintov. Algoritem A* se je izkazal kot najbolj optimiziran z najmanjSim obiskom vozlis¢,
medtem ko je Dijkstrov algoritem najhitreje nasel koncno vozlis¢e. Umetna inteligenca je
dosegla 60,3-% uspesnost na labirintih velikosti 11x11, vendar se je njena u¢inkovitost obcutno
zmanjSala pri ve¢jih labirintih, in sicer 8,1-% uspeSnost na labirintih velikosti 21x21 in 2,8-%

uspesnost na labirintih velikosti 31x31.

Rezultati nakazujejo, da so tradicionalni algoritmi iskanja poti bolj zanesljivi in uc¢inkoviti za
prakti¢ne aplikacije, kjer je potrebna 100-% ucinkovitost in uspe$nost. Umetna inteligenca
ponuja potencialno boljSe rezultate, vendar zahteva obseznejSe ucenje na raznolikih podatkih
za doseganje primerljivih rezultatov z algoritmi iskanja poti. Diplomsko delo prispeva k
boljSemu razumevanju prednosti in omejitev razlicnih pristopov iskanja poti v kompleksnih
strukturah. V prihodnosti bi bilo smiselno raziskati Se druge metode umetne inteligence ter
optimizirati procese ucenja, da bi se dosegla vecja uspesnost pri reSevanju zahtevnejSih

labirintov.

Kljuéne besede: umetna inteligenca, strojno ucenje, mreze, grafi, algoritmi iskanja poti.



ABSTRACT

COMPARISON OF PATH FINDING ALGORITHMS AND ARTIFICIAL
INTELLIGENCE IN A RANDOMLY GENERATED MAZE

This thesis presents a comparison of pathfinding algorithms and artificial intelligence in solving
randomly generated mazes. The purpose of the thesis is to determine the effectiveness and speed

of different approaches to solving paths in complex structures.

The theoretical part deals with algorithms for finding the shortest path, namely the A*
algorithm, breadth-first search, and Dijkstra's algorithm. Graph and network theory and the role
of heuristics in pathfinding are also presented. A special chapter is devoted to artificial

intelligence and its importance in solving the pathfinding problem.

For empirical research, an application was developed in the Python programming language with
a graphical user interface. The application enables the generation of random mazes of various
sizes and the visualization of the operation of individual algorithms. To simulate artificial

intelligence, a deep Q-learning approach was implemented using the PyTorch library.

The testing was conducted on a thousand randomly generated mazes of the following sizes:
11x11, 21x21, and 31x31. The search time, number of visited nodes, and successful goal
achievement were measured. The pathfinding algorithms showed 100% success for all maze
sizes. The A* algorithm proved to be the most optimized with the fewest node visits, while
Dijkstra's algorithm found the final node the fastest. Artificial intelligence achieved 60.3%
success on 11x11 mazes, but its efficiency decreased significantly in larger mazes, with 8.1%

success in 21x21 mazes and 2.8% success in 31x31 mazes.

The results indicate that traditional pathfinding algorithms are more reliable and effective for
practical applications where 100% efficiency and success are required. Artificial intelligence
offers potentially better results but requires more extensive learning on diverse data to achieve
comparable results with pathfinding algorithms. This thesis contributes to a better
understanding of the advantages and limitations of different approaches to pathfinding in

complex structures.

Keywords: artificial intelligence, machine learning, networks, graphs, pathfinding algorithms
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1 UVOD

V dobi napredne racunalniSke tehnologije in umetne inteligence je iskanje optimalnih poti v
kompleksnih strukturah postalo klju¢no za reSevanje Stevilnih problemov. Od navigacijskih
sistemov, robotike in videoiger se algoritmi iskanja poti nenehno razvijajo in izpopolnjujejo.
Labirint kot abstraktna struktura predstavlja idealno okolje za primerjavo razli¢nih pristopov,
saj omogoca kontrolirano analizo ucinkovitosti algoritmov iskanja poti in umetne inteligence.
Nakljuéno generirani labirinti zagotavljajo nepristranske pogoje za ovrednotenje delovanja

algoritmov v nepredvidljivih okoljih.

1.1 Opis podrocja in opredelitev problema

Cormen idr. (2022) definirajo algoritem kot racunalniski postopek, ki vzame poljubno vrednost
ali niz vrednosti kot vhod in ustvari izhod ali niz vrednosti v dolo¢enem casu. Torej gre za

zaporedje racunalnisSkih postopkov, ki pretvorijo vhod v izhod.

Algoritem je orodje, ki opisuje postopek resevanja racunalniskih problemov. Doloc¢a Zeleno
razmerje med vhodi in izhodi. Definiran je kot racunalniski program, ki vsebuje postopek za

proceduro (Cormen, Leiserson, Rivest in Clifford, 2022).

Algoritem je pravilen, ¢e za vsak problem, ki ga dobimo kot vhodni podatek, ustvari in konca
racunanje v koncnem ¢asu in poda pravilen odgovor. Pravilen algoritem resi trenutni problem.
Nepravilen algoritem lahko poteka neskoncno ali poda nepravilen rezultat (Cormen, Leiserson,

Rivest, in Clifford, 2022).

Racunalniski viri so zaradi Stevilnih dejavnikov omejeni. Ucinkovitost algoritmov merimo z
uporabo racunalniskih virov. U¢inkovit algoritem optimalno uporabi ¢asovne in prostorske vire.
Prostorska uc¢inkovitost se na primer uporablja za merjenje koli¢ine pomnilnika, ki je potrebna
za izvajanje algoritma. Hitreje kot algoritem konvergira, ve¢ja je natanc¢nost algoritma in
manjSe je Stevilo iteracij. Na ucinkovitost algoritma vplivajo tudi pomnilniske zahteve
programa. S povecevanjem Stevila iteracij lahko poraba pomnilnika poslabSa ucinkovitost

sistema (Choudhury, Ghose, Islam in Yogita, 2024).

Za ucinkovite algoritme so potrebne podatkovne strukture. Te nam omogocajo shranjevanje

podatkov za lazji dostop in spreminjanje le-teh. Podatkovna struktura ne deluje dobro za vse



namene, zato je njihova ustrezna izbira klju¢na za optimalno delovanje algoritmov (Cormen,

Leiserson, Rivest in Clifford, 2022).

Internet omogoca ljudem po vsem svetu hiter dostop in iskanje velike koli¢ine informacij. S
pomocjo algoritmov spletna mesta upravljajo velike koli¢ine podatkov. Primer uporabe
algoritmov lahko najdemo v iskalnikih, kot je iskalnik Google (angl. Google search engine), in

v iskanju najkrajSe poti do cilja (Cormen, Leiserson, Rivest in Clifford , 2022).

V stevilnih primerih Zelimo primerjati dva algoritma. Na splosno lahko ucinkovitost algoritma
ocenimo glede na Cas izvajanja kot funkcijo velikosti vhodnih podatkov. Ko govorimo o
uc¢inkovitosti algoritma vedno upoStevamo najslabsi mozni rezultat. Za uc¢inkovitost algoritmov

uporabljamo notacijo Big O.

Zapis Big O je matematic¢ni zapis, ki opisuje mejno obnaSanje funkcije, ko argument tezi k
doloCeni vrednosti ali neskonc¢nosti. V racunalniStvu se zapis velikega O uporablja za
razvr$€anje algoritmov glede na to, kako se njihov Cas izvajanja ali prostorske zahteve

povecujejo z rastjo velikosti vhoda (Cormen, Leiserson, Rivest in Clifford, 2022).

V raCunalniStvu se zapis vrstnega reda uporablja predvsem za primerjavo ucinkovitosti
algoritmov. Pri analizi u¢inkovitosti algoritmov je Se posebej uporaben zapis Big O. V tem

primeru je n velikost vhoda, f (n) pa je ¢as delovanja algoritma glede na velikost vhoda.

V diplomskem delu se bomo osredotocili na primerjavo algoritmov iskanja poti in umetne
inteligence v naklju¢no generiranem labirintu. Cilj diplomskega dela je primerjava algoritmov
in umetne inteligence ter ugotovitev, kateri pristop k reSevanju problema je najhitrejsi in

optimalen.

Rezultati diplomskega dela bodo pomagali razvijalcem programske opreme pri izbiri primernih
algoritmov iskanja poti za njihove aplikacije. Diplomsko delo bo prispevalo k boljSemu
razumevanju prednosti in omejitev algoritmov iskanja poti in umetne inteligence pri reSevanju

problemov navigacije in iskanja poti v kompleksnih strukturah.

1.2 Namen, cilji in osnovne trditve

Namen diplomskega dela je pregled obstojece literature na podrocju algoritmov iskanja poti in
primerjava ucinkovitosti iskanja poti algoritmov A star, Dijkstrovega algoritma, algoritma

preiskovanja v $irino in umetne inteligence v nakljucno generiranem labirintu. Primerjava bo
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temeljila na ve¢ kriterijih, vklju¢no s ¢asom in uspeSnostjo reSevanja ter Stevilom obiskanih

vozlis¢.

Cilji diplomskega dela so naslednji, in sicer:

- Ugotoviti, ali je algoritem A star najpopularnejsi algoritem za iskanje poti.

- Primerjati algoritme iskanja poti in umetne inteligence v naklju¢no generiranem labirintu.

- Ugotoviti, ali obstaja umetna inteligenca za iskanje najkrajse poti v naklju¢no generiranem
labirintu.

- Ugotoviti, ali je umetna inteligenca najucinkovitejSa pri iskanju poti v nakljuéno
generiranem labirintu v primerjavi z algoritmi A*, Dijkstrovim algoritmom in algoritmom

BFS.

Hipoteze, ki jih bo diplomsko delo preverilo, so naslednje, in sicer:

Hipoteza 1: A* je najpopularnejsi algoritem.

Hipoteza 2: Obstaja umetna inteligenca, ki najde najkrajSo pot tudi iz takega labirinta, pri

katerem imajo ostali algoritmi omejitve.

Hipoteza 3: A* algoritem bo hitrejsi in bolj ucinkovit pri iskanju najkrajSe poti v naklju¢no

generiranih labirintih v primerjavi z drugimi algoritmi.

Hipoteza 4: Umetna inteligenca bo najucinkovitejSa pri iskanju najkrajSe poti v naklju¢no

generiranem labirintu v primerjavi z algoritmi A*, Dijkstrovim algoritmom in BFS.

1.3 Predpostavke in omejitve

V diplomskem delu se soo¢amo s predpostavkami in omejitvami, ki vplivajo na rezultate.

Predpostavke:

- Predpostavljamo, da so vse meritve algoritmov in umetne inteligence izvedene na naklju¢no
generiranih labirintih velikosti 11x11, 21x21 in 31x31. To omogoca, da so testi nepristranski
in objektivni pri analizi hitrosti ter u¢inkovitosti algoritmov in umetne inteligence.

- Predpostavljamo, da so vse informacije pridobljene iz akreditiranih virov informacij in so

relevantne za to podrocje raziskave.
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Omejitve:

V diplomskem delu bomo uporabili strojno uc¢enje za simulacijo umetne inteligence. Ucenje
bo izvedeno na labirintu velikosti 11x11, kar bo vplivalo na rezultate umetne inteligence.
Rezultati analize so odvisni od specificnih testov in meritev, ki se izvajajo. Drugacne
metode analize bi lahko privedle do drugac¢nih rezultatov.

Algoritem A* je odvisen od hevristike, boljsa kot je ta, boljsi so rezultati. V diplomskem

delu ne bomo obravnavali razlicnih moznosti vpliva hevristike na algoritem A*.

1.4 Uporabljene raziskovalne metode

V diplomskem delu smo uporabili ve¢ raziskovalnih metod, ki so pomagale pri pridobitvi

podatkov ter primerjavi algoritmov iskanja poti in umetne inteligence. Te metode so:

Pregled literature: Izvedli smo pregled trenutno znane znanstvene literature z namenom
pridobitve verodostojnih in preverjenih informacij. Pregled literature je pomagal razumeti
in primerjati algoritme iskanja poti in umetno inteligenco.

Eksperimentalno testiranje: V okviru diplomskega dela smo razvili aplikacijo v
programskem jeziku Python. Aplikacija nam je omogocala primerjavo in analizo algoritmov
iskanja poti in umetne inteligence v naklju¢no generiranem labirintu. To nam je omogocalo
izvesti analizo ucinkovitosti in hitrosti algoritmov in umetne inteligence na labirintih
razli¢nih velikosti. VeCanje labirinta nam je omogocalo simulacijo kompleksnejsih
problemov, in s tem ugotoviti, kako se obnaSajo algoritmi in umetna inteligenca pri
reSevanju le-teh.

Analiza: S pomocjo trenutno znane znanstvene raziskave in rezultatov eksperimentalnega

testiranja smo lahko odgovorili na zastavljena vprasanja v okviru diplomske naloge.
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2 ALGORITMI ISKANJA NAJKRAJSE POTI

Ljudje uporabljajo zemljevide za veliko stvari, na primer za iskanje krajev, restavracij,
bencinskih ¢rpalk ali iskanje poti do Zelenega cilja. Ko zahtevamo pot od zacetne tocke do
koncnega cilja, vedno dobimo najkrajSo pot. Problem najkrajSe poti se preucuje Ze vrsto let.
Problem najkrajSe poti je problem, ki najde najmanjSo razdaljo ali pot med vozlis¢i ali vrhovi
v grafu. Graf je abstraktni matemati¢ni objekt, ki vsebuje mnozice vrhov in robov (Kairanbay

in Jani, 2013), (Rachmawati in Gustin, 2020).

Algoritmi za iskanje poti se uporabljajo za reSevanje problema najkrajSe in optimalne poti.
Obicajno se uporabljata algoritma A* in Dijkstra kot metoda reSitve za iskanje najkrajse poti.
Iskanje poti je izrisovanje vozlis¢. Cilj algoritma je iskanje najkrajsSe poti med dvema tockama
od zacetka do cilja. Iskanje poti je glavna sestavina Stevilnih pomembnih aplikacij na podrocjih
videoiger, robotike (Hunkeler, Schér, Dornberger in Hanne, 2016), simulacije mnozic (Wolsey,
1998) in GPS (Carr, 2014) (Rafig, Tuty Asmawaty in lhsan, Pathfinding Algorithms in Game
Development, 2020).

Iskalni algoritmi so ze dolgo Casa v srediS€u zanimanja na podro¢ju racunalniStva. Iskanja
morajo biti hitra, natan¢na in u¢inkovita, vsako odstopanje od teh lastnosti pa se Steje za veliko
napako. Iskanje lahko delimo na informirano in neinformirano. NajpogostejSe iskanje je
informirano. Pri informiranem iskanju se uporablja hevristicno funkcijo, ki meri oddaljenost od

cilja za sprejemanje boljsih odlocitev (Foead , Ghifari, Kusuma, Hanafiah in Gunawan , 2021).

Iskanje optimalne poti je sicer zazeleno, vendar ni vedno nujno, odvisno od kon¢ne uporabe. V
nekaterih primerih, na primer pri sistemih za upravljanje GPS v realnem ¢asu, bodo uporabniki
bolj cenili takojSen in hiter odziv kot vedno optimalno pot (Aria, 2018), (Foead , Ghifari,

Kusuma, Hanafiah in Gunawan , 2021).

Informirana iskanja, kot so IDA*, A* in Jump Point Search IDA*, obicajno uporabljajo
nekatere zunanje podatke za povecanje ucinkovitosti in temeljijo na zmoznosti pretvorbe ciljev
v podatke. Hevristi¢ne funkcije delujejo izjemno dobro, kadar je iskalno obmocje dobro znano,
na primer zemljevid, vendar lahko trpijo, ¢e so podatki neto¢ni ali neznani (Foead , Ghifari,

Kusuma, Hanafiah in Gunawan , 2021).
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Nasprotno pa neinformirana iskanja slepo sledijo svojemu algoritmu do zakljucka, kar jih
obicajno naredi pocasnejs$a, a manj odvisna od zunanjih dejavnikov. Na primer v igrah se je
neinformirano iskanje, kot je Dijkstrov algoritem, izkazalo za izjemno neucinkovito v
primerjavi s HPA*, saj je optimalno pot naslo skoraj trikrat pocasneje (Noori in Moradi, 2015),

(Foead , Ghifari, Kusuma, Hanafiah in Gunawan , 2021).
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3 GRAFI IN MREZE

Algoritmi iskanja so predstavljeni s pomocjo grafov in mrez. V matematiki in racunalniStvu je
teorija grafov Studija grafov, ki so matematic¢ne strukture, uporabljene za modeliranje parnih

odnosov med objekti.

3.1 Graf

Graf je sestavljen iz vrhov, imenovanih tudi vozlis¢a ali tocke, ki so povezani z robovi,
imenovanimi tudi loki, povezave ali ¢rte. Razlikujemo med neusmerjenimi grafi, kjer robovi
simetri¢no povezujejo dva vrhova, in usmerjenimi grafi, kjer robovi asimetricno povezujejo

dva vrhova.

V enem omejenem, a zelo pogostem pomenu izraza je graf urejen par G = (V, E), ki vsebuje:

e V- mnozico vozlis¢;

e E-EC{{xy}lxy€Vinx # y}, mnozico povezav, imenovanih tudi robovi ali ¢rte, kjer
so povezave neurejeni pari vozliS¢, torej je povezava dolofena z dvema razlicnima
vozlis¢ema (Bender in Williamson, 2010), (Berge, 1958).

Graf je lahko usmerjen ali neusmerjen. V primeru usmerjene povezave velja, da:

{u,v} # {v,u}.
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Slika 1: Usmerjen graf

Vir: Diskretna matematika: teorija grafov. Vi§ja strokovna Sola Academia Maribor, 2024.

V primeru neusmerjene povezave velja, da:

{fu,v} = {v,u}.

Slika 2: Usmerjen graf

Vir: Diskretna matematika: teorija grafov. Vi§ja strokovna Sola Academia Maribor, 2024.
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Obtezen graf G je graf, kjer vsaki povezavi dodamo zahtevnost oziroma tezo. ZapiSemo G =

(V,E, C), kjer je C(G) mnozica obtezitev povezav grafa.

Slika 3: Obtezen graf

Vir: Diskretna matematika: teorija grafov. Visja strokovna Sola Academia Maribor, 2024.

3.2 Mreze

Algoritme iskanja optimalne poti najlazje predstavimo na mreznih povrSinah. Da lazje

primerjamo pot in uc¢inkovitost algoritma, je potrebno razumeti mrezne povrsine.

Iskanje poti je pomemben problem za Stevilne aplikacije, vklju¢no z omreznim prometom,
nacrtovanjem robotov, vojaskimi simulacijami in racunalniSkimi igrami. Najpogostejsi scenarij
je uporaba mreze ploséic. Plos¢ica ima Stiri sosednja vozlis¢a (b = 4). Zato je treba pri iskanju
poti upostevati Stiri sosednje ploscice, ki jih je treba raziskati. Ker se nikoli ne vrnemo nazaj
vzdolz optimalne poti, ni treba upostevati smeri, ki smo jo Ze obiskali. Zato je Stevilo vozliS¢,

ki jih je treba raziskati tri (b = 3) (Yap, 2002).
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Slika 4: Prikaz mreze

Vir: Yap, P. Grid-Based Path-Finding: lecture notes in computer science, 2002.

Oglejmo si Sesterokotno mrezo, kjer ima vsako vozli§€e Sest moznih smeri gibanja, in sicer
sever, severovzhod, jugovzhod, jug, jugozahod in severozahod. Na prvi pogled bi lahko
sklepali, da ima takSna mreza faktor razvejanosti enak 5, saj na vsakem koraku obstaja pet
moznih poti naprej, ¢e ne Stejemo poti nazaj. Vendar pa lahko to Stevilo zmanjSamo z
upostevanjem optimalnega iskalnega algoritma. Recimo, da se premaknemo iz plos¢ice 1 na
plosc¢ico 2 v smeri sever. Ko razmisljamo o nadaljnjih korakih z nove pozicije, upoStevamo
samo tista gibanja, ki so smiselna v kontekstu iskanja najkrajse poti. Gibanja nazaj ne Stejemo,
prav tako izlo¢imo smeri SV in SZ, ker bi v primeru optimalne poti te smeri izhajale iz drugih
odlocitev Ze prej. Tako na vsaki ploscici ostanejo le tri smiselne moznosti za nadaljnje gibanje.
Zaradi tega je efektivni faktor razvejanosti Sesterokotne mreze zmanjSan na tri (b = 3) (Yap,

2002).
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Slika 5: Prikaz Sesterokotne mreze

Vir: Yap, P. Grid-Based Path-Finding: lecture notes in computer science, 2002.

Za diplomsko delo bomo uporabili preprosto mrezo, ki omogoca Stirismerno premikanje. Mreza
bo sestavljena iz belih in sivih kvadratov. Siv kvadrat bo predstavljal oviro, ki je algoritem ne

sme preckati. Vsak kvadrat predstavlja svoje vozlisce.
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Slika 6: Prikaz preproste mreze

Vir: Yap, P. Grid-Based Path-Finding: lecture notes in computer science, 2002.

3.3 Hevristika

Obicajno se pri iskanju poti uporablja hevristika. Hevristika je nekaj, kar daje grobo oceno,
kako dalec je do cilja. Obicajno se neposredno uporablja realna evklidska razdalja do cilja, saj
je ta hitra in obi¢ajno daje razmeroma dobre rezultate. Tezava je v tem, da v primerih, ki niso
samo odprt prostor z nekaj majhnimi ovirami, raztresenimi naokoli, ta ocena ni prevec dobra.
Posledica tega je, da gre iskanje skozi veliko ve¢ vozlis¢, kot bi bilo potrebno, ¢e bi bila

hevristika boljsa.

Hevristi¢na funkcija h(n) podaja ocenjeni stroSek od trenutnega vozlis¢a do ciljnega vozlisca,

deluje kot informirano ugibanje algoritma o preostali poti.
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V mreznih ali kartografskih problemih se uporablja Manhattanska in Evklidska funkcija za

racunanje razdalje od zacetnega do kon¢nega vozlisca.
Manhattansko razdaljo lahko izra¢unamo z naslednjo funkcijo:
h(n) = |x; — x| + [y, — yal.

Evklidsko razdaljo lahko izra¢unamo z naslednjo funkcijo:

h(n) = \/(x1 —x2)% + (y1 — ¥2)*
Konc¢no oceno poti lahko naredimo s funkcijo:

f(m) = g(n) + h(n).

Kjer je:

f(n) - ocenjevalna funkcija,

g(n) - razdalja od zaCetnega vozlis¢a do trenutnega vozlis¢a,

h(n) - hevristika od vozli§¢a n.
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4 ALGORITEM A*

Algoritem A* je preizkuSena metoda, ki se uporablja kot osnova za reSevanje problemov iskanja
poti. Obicajno se algoritem A* uporablja za splosne in strateSke igre, njegova stabilnost in
hitrost pa sta se v zadnjem desetletju dodatno izboljsali (Foead , Ghifari, Kusuma, Hanafiah in

Gunawan, 2021).

Foead idr. (2021) navajajo, da se algoritem Ze dolgo uporablja v raziskovalni skupnosti za
iskanje poti. Njegova ucinkovitost, preprostost in modularnost so pogosto poudarjene kot
prednosti v primerjavi z drugimi algoritmi. Zaradi svoje vsesploSne in raz§irjene uporabe je A*
postal standard za raziskovalce, ki poskusajo resiti probleme iskanja poti. Vendar ni zanesljiv,
saj v Stevilnih primerih potrebuje dodaten algoritem ali spremembo svojih osnovnih funkcij, da
lahko opravi te zapletene naloge. Algoritem ni optimalen pri Multi-agent pathfinding
problemih, saj se srecuje s Stevilnimi ovirami, kot so nasprotujoce si poti med agenti (Felner

idr., 2018).

Na splos$no je A* obiCajno dosleden pri reSevanju razlicnih problemov, vendar zahteva
prilagoditev, da doseze najboljSe rezultate. Kljub temu je Se vedno izjemno ucinkovit pri
Sirokem naboru iskalnih nalog, dokler njegova glavna slabost, odvisnost od hevristicne
funkecije, ni bistvena ali ne predstavlja tezave (Foead , Ghifari, Kusuma, Hanafiah in Gunawan,

2021).

4.1 Prednosti algoritma A*

Pomemben dejavnik iskanja z algoritmom A* je njegova ucinkovitost. Medtem ko lahko vecina
dobro zasnovanih algoritmov za iskanje poti najde reSitev, bodo mnogi pri tem porabili vec
Casa, virov ali obojega v primerjavi z A*. Razlika v splos$ni u€inkovitosti lahko znaSa ve¢ kot
40 %, v nekaterih primerih pa do 30 % (Barnouti, Al-Dabbagh in Naser, 2016), (Foead , Ghifari,

Kusuma, Hanafiah in Gunawan, 2021).

Algoritem A* lahko najde pot veliko hitreje kot neinformirano iskanje, vendar ne zagotavlja,
da bo rezultat najkrajSa pot. Raziskava je pokazala, da bo algoritem A* v nekaterih primerih
strateSkih zemljevidov in labirintov pokazal le 85 % Casa rezultat, pri katerem najde najkrajSo

pot (Barnouti, Al-Dabbagh in Naser, 2016).
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Poleg tega je A* izjemno modularen in ga je mogoce prilagoditi Sirokemu spektru potreb.
Vendar pa niso vse prilagoditve nujno izboljSave, nekatere optimizacije, ki dajejo prednost
hitrosti, lahko vodijo do tega, da ne najdejo najboljSe poti. To je pokazal eksperiment z 29
sicer ni nasel najhitrejSe poti, a je zakljucil izracun izjemno hitro, medtem ko so bili drugi

algoritmi poc¢asne;jsi, vendar so dosegli optimalen rezultat.

Algoritem A* je samostojno Se vedno bolje opravil kot Dijkstrov algoritem, saj je optimalno
pot naSel dvakrat hitreje. Ta primer jasno prikazuje potencialno povecano ucinkovitost

hevristi¢ne funkcije (Foead, Ghifari, Kusuma, Hanafiah in Gunawan , 2021).

A* lahko najde optimalne in skoraj optimalne resitve ucinkoviteje, tako da usmeri iskanje k
cilju s pomocjo hevristi¢nih funkcij, s Cimer se bistveno zmanjsa njegova c¢asovna zahtevnost

(Soltani, Tawfik, Goulermas in Fernando, 2002).

4.2 Slabosti algoritma A*

Ena glavnih slabosti algoritma A* je njegova slabsa zmogljivost pri dvosmernem iskanju. V
eksperimentu o dvosmernem iskanju v grafih so raziskovalci ugotovili, da se je dvosmerni A*
odrezal zelo slabo v primerjavi z dvosmernim BFS. Se posebej se je BFS izkazal pri ve&jih
mrezah velikosti 16x16, medtem ko je A* v€asih imel prednost pri manjs$ih mrezah velikosti

8x8 (Kumar, 2019), (Foead, Ghifari, Kusuma, Hanafiah in Gunawan, 2021).

Na splosno tradicionalni osnovni algoritem A* ne more slediti vse vecjim zahtevam iskanja
poti. Vendar pa lahko s pravilnimi prilagoditvami in izboljSavami Se vedno konkurira drugim

algoritmom.

Zaradi ogromnega Stevila razlicnih situacij pri iskanju poti ni mogoce razviti univerzalne
resitve, ki bi delovala v vseh primerih. Jasno je, da klasicni A* postopoma izgublja
priljubljenost pri reSevanju kompleksnih problemov, medtem ko njegove izboljSane razlicice Se
vedno dosegajo visoko hitrost in ve¢jo ucinkovitost. Prihodnji razvoj algoritma A* bo moral
vkljucevati prilagoditve, kot je uporaba zgoScevalnih tabel (angl. hash tables) ali zanasanje na
druge algoritme za natancnejSe hevristike, saj te spremembe neposredno odpravljajo njegove

slabosti (Foead, Ghifari, Kusuma, Hanafiah in Gunawan, 2021).
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Uspesnost in uc¢inkovitost A* iskalnega algoritma je moc¢no odvisna od kakovosti hevristicne
funkcije. Zato postane oblikovanje optimalne hevristine funkcije glavni cilj pri razvoju

iskalnega algoritma (Yiu, Du in Mahapatra, 2018).

4.3 Psevdokoda in nacrt implementacije algoritma A*

Algoritem A* uporablja dve funkciji, in sicer funkcijo razdalje g(n) in hevristi¢no funkcijo

h(n). Ti stakljuéni za oceno uspeSnosti algoritma.

Kon¢no oceno poti lahko naredimo s funkcijo:

fm) = g(n) + h(n).

Kjer je:

f(n) - ocenjevalna funkcija,

g(n) - razdalja od zacetnega vozliséa do trenutnega vozlisca,

h(n) - hevristika od vozli$¢a n.

Algoritem implementiramo s pomocjo psevdokode, zapisane v programskem jeziku Python.
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B & b _Shar_pamidn_coge pamaco

functiom H_Staristart, goall
apenlist = [start]
closediist = []

start.g = B
start.h = hevristiclstart, goal)
start.f = sTart.g + start.h
start parent » null
while openlist iz not empty!
current = node in openlist wmith Lowest § valee

if curront = goal:
return recansteust_path{current)

reADvE current fran openlise
gdd current to closedllist

for each neighbor of current.
1f neighbor im closedlist;
continug

tentative_g = eurrant.g + distancelourrant, neighbor)

if neighbor not in openlist:
aod meighbor to opanlbist

elze if tontative_g == neighbor.q
continue

neighbor parent = current

neighbor.g = tentative_g

neighbor.h = hevristic{neighhar, goall
neighbor. ¥ = meighbor.g + neighhar.h

return fallure
function FecansteuEt_pathicurrent):
path = []
while cwrrent is nat owll:
afd current to beginning of path
currant = eurrent. parent
eaturn path

Slika 7: Psevdokoda algoritma A star

Vir: https://www.datacamp.com/tutorial/a-star-algorithm, 2025
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5 ALGORITEM BREADTH-FIRST SEARCH

Algoritem preiskovanja v §irino (angl. Breadth-First Search) je algoritem za iskanje vozli§¢a v
drevesni podatkovni strukturi, ki izpolnjuje dolocen pogoj. Zacne pri korenu drevesa in preisce
vsa vozlis€a na trenutni globini, preden preide na vozlis€a na naslednji globinski ravni. Za
shranjevanje otroskih vozlis¢, ki so bila odkrita, a Se niso raziskana, uporablja dodaten
pomnilnik, obicajno vrsto (angl. queue). Preiskovanje v S$irino lahko posploSimo na

neusmerjene in usmerjene grafe z dolo¢enim zacetnim vozlis¢em.

Preiskovanje v §irino je pomemben gradnik mnogih algoritmov na grafih. Pogosto se uporablja
za preverjanje povezanosti ali izra¢un najkrajSih poti z enim virom v neutezenih grafih (Beamer,

Asanovi¢ in Patterson, 2013).

Algoritmi za grafe (angl. Graph algorithms) postajajo vse pomembnejsi. V velikih
racunalniskih sistemih se izvajajo algoritmi za analizo ogromnih koli¢in podatkov. Na mobilnih
aplikacijah so algoritmi za grafe uporabljeni za strojno ucenje. Zal so aplikacije pogosto
omejene s skupnim pomnilnikom (angl. shared-memory systems). Iskanje po Sirini, ki je
pomemben gradnik Stevilnih drugih grafnih algoritmov, ima nizko racunsko zmogljivost, kar Se
poslabsa pomanjkanje lociranosti in posledi¢no nizko skupno zmogljivost. Za pospesitev BFS
je bilo veliko predhodnega dela, kjer so spreminjali algoritme in podatkovne strukture, v
nekaterih primerih tudi z dodajanjem dodatnega racunalniSkega dela, da bi izboljSali lokalnost
in povecali sploSno zmogljivost. Vendar pa nobena od teh metod ni poskusala zmanj$ati Stevila
pregledanih povezav. Da bi pospesili BFS, je bilo v preteklosti opravljeno veliko dela za
spremembo algoritma in podatkovnih struktur, v nekaterih primerih z dodatnim racunskim
delom, da bi povecali lokacijo in skupno zmogljivost (Agarwal, Petrini, Pasetto in Bader, 2010),
(Bulug in Madduri, 2011), (Hong, Ogunteb in Olukotun, 2011), (Yoo in drugi, 2005), (Beamer,

Asanovi¢ in Patterson, 2013).

5.1 Prednosti algoritma BFS

Delovanje BFS se zacne pri izvorni tocki, nato pa se iskalna meja postopoma §iri navzven, pri
¢emer na vsakem koraku obisce vsa vozlis€a na isti globinski ravni, preden preide na globljo

raven (Beamer, Asanovi¢ in Patterson, 2013).
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Pri klasi¢nem pristopu od zgoraj navzdol vsako vozli§¢e preveri vse svoje sosednje tocke, da
ugotovi, ali so e neobiskane. Vsaka neobiskovana tocka se doda v iskalno mejo in se oznaci
kot obiskana tako, da se nastavi spremenljivka starSa. Ta algoritem ustvari BFS drevo, ki
pokriva povezano komponento z izhodiS¢nim vozlisS¢em (Beamer, Asanovi¢ in Patterson,

2013).

Vecina racunske obremenitve pri iskanju v §irino je preverjanje povezav na sosednji tocki, da
se ugotovi, ali je ciljno vozlis¢e Ze bilo obiskano. Skupno Stevilo preverjanj povezav v
klasi¢nem algoritmu od zgoraj navzdol (angl. top-down) je enako Stevilu povezav v povezani
komponenti, ki vsebuje izvorno vozli§ce, saj se pri vsakem koraku preveri vsaka povezava na

vozliscu (Beamer, Asanovic¢ in Patterson, 2013).

Pristop od spodaj navzgor (angl. bottom-up) odpravi potrebo po nekaterih operacijah v paralelni
implementaciji. Pri pristopu od zgoraj navzdol (angl. top-down) bi lahko ve¢ niti hkrati pisalo
v istega otroka, zato so potrebne atomske operacije za zagotovitev medsebojne izkljucitve. Pri
pristopu od spodaj navzgor pa piSe otrok sam vase, s ¢imer se odpravi vsakr$no tekmovanje. Ta
prednost, skupaj z morebitnim zmanjSanjem Stevila pregledanih povezav, pride na racun
serijske obdelave dela za posamezno vozlisce, vendar Se vedno obstaja velika mera paralelizma
med deli za razli¢na vozlis¢a. Pristop od spodaj navzgor je prednosten, ko je velik delez vozlis¢

v fronti, vendar povzroci ve¢ dela, ¢e je fronta majhna (Beamer, Asanovi¢ in Patterson, 2013).

Zato mora ucinkovita implementacija iskanja v $irino zdruzevati tako pristop od zgoraj navzdol
kot tudi pristop od spodaj navzgor. Ce je graf neusmerjen, izvajanje pristopa od spodaj navzgor
ne zahteva nobenih sprememb v podatkovnih strukturah grafa, saj staze predstavljeni obe smeri
povezav. Ce pa je graf usmerjen, bo korak od spodaj navzgor zahteval inverzni graf, kar lahko

skoraj podvoji pomnilniski odtis grafa (Beamer, Asanovi¢ in Patterson, 2013).

Algoritem je ucinkovit, kadar je cilj blizu zacetnega vozlisca, kar je znacilno zanj, saj obiskuje

vsa vozlis¢a na istem vrhu (Elkari idr., 2024).

5.2 Slabosti algoritma BFS

Iskanje po Sirini, ki zagotavlja najkraj$o pot v natehtanih grafih, ima v navigaciji po labirintu
precejSnje omejitve. Njegova glavna pomanjkljivost je velika poraba pomnilnika, saj shrani vsa
vozlis¢a na trenutni globini, preden nadaljuje na naslednjo raven. Ta znacilnost povzroci

eksponentno rast pomnilnika, zlasti v Sirokih ali zapletenih labirintih. Poleg tega BFS nima
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hevristicnega vodenja, zaradi Cesar raziskuje Stevilne nepomembne poti in v velikih okoljih

povecuje racunski ¢as (Elkari idr., 2024).

5.3 Psevdokoda in nacrt implementacije algoritma BFS

Algoritem BFS raziskuje graf, tako da najprej obiS¢e vsa sosednja vozlis¢a. Zacne na zacetni
tocki (angl. Root level) in nadaljuje pot na istem nivoju, dokler ne obisce vse tocke. To lahko

zapiSemo na naslednji nacin:

BFS(v) = 1+ Xy e sosednje vozliste(w) BFS(W).
Kjer je:
e v - trenutni vrh (angl. Vertex),
e u-sosednje vozlisce,

e BFS(u) - vrstni red obiska vrha (Elkari, in drugi, 2024).

S pomocjo psevdokode lahko implementiramo algoritem BFS.
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BES nseudo_code.psaudo

from collections import degue

def bfs{graph, start_vertex):
visited = setl)
queve = dequel)

visited.add(start_vertex)

gueve.append(start_vertex)

while gueus:
U = gueue.popleftl(]
print{u)

for neighbor in graphiu]:
if neighbor not in visited:

visited.add{neighbor)
gueaue.append{naighbor)

Slika 8: Psevdokoda algoritma BFS

Vir: https://www.datacamp.com/tutorial/breadth-first-search-in-python, 2025
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6 DIJKSTROV ALGORITEM

Dijkstrov algoritem se uporablja za iskanje najkrajSe poti na grafu, kjer imamo eno izhodno

tocko (Wahyuningsih in Syahreza , 2018), (Rachmawati in Gustin, 2020).

Dijkstrov algoritem najde najkrajSo pot od danega izvornega vozlis¢a do vsakega vozlisca.
Uporabimo ga lahko za iskanje najkrajSe poti do doloCenega ciljnega vozlisca, tako da po
dologitvi najkrajse poti do ciljnega vozlis¢a algoritem zaklju¢imo. Ce na primer vozlis¢a grafa
predstavljajo mesta, stroSki robov pa razdalje med pari mest, ki jih povezuje neposredna cesta,
lahko Dijkstrov algoritem uporabimo za iskanje najkrajSe poti med enim mestom in vsemi
drugimi mesti. Pogosta uporaba algoritmov za najkrajSe poti so omrezni usmerjevalni protokoli,
predvsem IS-IS (angl. Intermediate System to Intermediate System) in OSPF (angl. Open
Shortest Path First). Uporablja se tudi kot podprogram v algoritmih, kot je Johnsonov algoritem
(Kurt in Sanders, 2008).

Dijkstra (Dijkstra, 1959) je optimizacijski algoritem, ki se predvsem uporablja za dolo¢anje
najkrajsih poti. Dijkstrov algoritem je neinformiran iskalni algoritem za iskanje najkrajSih poti,
ki se zanaSa zgolj na lokalne stroSke poti in zagotavlja najkrajSo pot od zacetnega do ciljnega

vozlis¢a v grafu (Soltani, Tawfik, Goulermas in Fernando, 2002).

Algoritem uporablja podatkovno strukturo cakalne vrste z najmanjSo prioriteto za izbiro
najkrajsih do zdaj znanih poti. Preden so bile odkrite naprednejse strukture prioritetnih Cakalnih
vrst, je Dijkstrov izvirni algoritem deloval v @(|E| + [V|log|V|) ¢asu, kjer |V| predstavlja

Stevilo vozliS¢ (Schrijver, 2012).

Fredman in Tarjan (1984) sta predlagala prednostno ¢akalno vrsto s Fibonaccijevo kupo za
optimizacijo ¢asovne zapletenosti delovanja 6 (|E| + |V|log|V]). To je asimptoti¢no najhitrejsi
znani algoritem najkrajSe poti z enim virom za poljubne usmerjene grafe z neomejenimi
nenegativnimi utezmi. Ce je dovoljena predhodna obdelava, so lahko algoritmi, kot so

hierarhije kréenja (angl. contraction hierarchies), bistveno hitrejsi.

Dijkstrov algoritem se obic¢ajno uporablja na grafih, kjer so utezi robov pozitivna cela ali realna

Stevila. Lahko ga posploSimo na katerikoli graf, kjer so utezi robov delno urejene, ¢e so
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zaporedne oznake monotono napadajoce (angl. monotonically non-decreasing) (Szcze$niak,
Jajszczyk in Wozna-Szczesniak, Generic Dijkstra for optical networks, 2019), (Szcze$niak in

Wozna-Szczesniak, Generic Dijkstra: correctness and tractability, 2023).

Na $tevilnih podrocjih, zlasti na podro¢ju umetne inteligence, Dijkstrov algoritem ali njegova
razli¢ica ponuja iskanje po enotnih stroSkih in je oblikovan kot primer splo$nejSe zamisli o
iskanju po nacelu najboljsi prvi (angl. best-first search) (Felner, Position Paper: Dijkstra's

Algorithm versus Uniform Cost Search or a Case Against Dijkstra's Algorithm, 2011).

6.1 Prednost Dijktrovega algoritma

Prednost Dijkstrovega algoritma je, da v nasprotju z nekaterimi osnovnimi hevristi¢nimi
algoritmi zagotavlja najkrajSo pot. Algoritem je precej ucinkovit, saj deluje v ¢asu O(E log(V)),
kjer E pomeni Stevilo robov v grafu, V pa Stevilo vrhov v grafu. To ucinkovitost je mogoce
nekoliko povecati z uporabo ¢akalne vrste z najmanjSo prioriteto za shranjevanje vozlis¢ (Nico,

2020).

V raziskavi, ki sta jo naredila Noto in Sato leta 2000, sta predlagala, da algoritem zacne z
iskanjem na zaCetnem in kon¢nem vozlis¢u. To zniza obmocje iskanja vozli$¢ in s tem zmanjsa
racunski Cas algoritma. Ta sprememba algoritma omogoca, da se Stevilo obiskanih vozlis¢
zmanjSa za polovico. Z zmanjSanjem Stevila obiskanih vozliS¢ se je ¢as iskanja zmanjSal za

petino.

6.2 Slabost Dijkstrovega algoritma

Glavna tezava Dijkstrovega algoritma je, da izvaja slepo iskanje, ki je lahko dolgotrajno in
potratno v smislu izraCunavanja. Dijkstrov algoritem je pogosto uporabljen za reSevanje
problema najkrajse poti. Ce je pot kompleksna in velika, kar se obiajno zgodi v prakti¢nem
okolju, algoritem pri iskanju najkrajSe poti vzame preve¢ Casa. Vecina iskanih vozlis¢ je
nepomembnih, saj tane morejo biti del reSitve. Zato algoritem zapravi veliko racunskega Casa
(angl. computation time). Ceprav je ta algoritem uinkovit, bo iskanje celotnega grafa s tiso¢i

vozli$¢, da bi nasli najkrajSo pot, Se vedno trajalo dolgo ¢asa (Liu, idr., 1994).

Pomanjkljivost algoritma je, da ¢e do Zeljenega cilja ni vozliS€a, se mora algoritem pred

zaklju¢kom ponovno sprehoditi po celotnem grafu. Algoritem je pohlepen (angl. greedy
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alghorithm), kar pomeni, da bo vedno izbral moznost, ki je na prvi pogled vidna kot optimalna.

To lahko vodi v iskanje poti, ki ne obstaja (Nico, 2020).

Dijkstrov algoritem lahko najde optimalne reSitve s sistemati¢énim ustvarjanjem vozlis¢ in
njihovim testiranjem glede na cilj, vendar postane neucinkovit za obsezne probleme (Soltani,

Tawfik, Goulermas in Fernando, 2002).

6.3 Psevdokoda in nacrt implementacije DijkStrovega algoritma

Casovna kompleksnost algoritma je odvisna od §tevila vozlig¢, ki jih mora obiskati. Ker
algoritem iS¢e na slepo, je vecje Stevilo vozliS¢ omejitveni dejavnik. Omejitve ¢asa delovanja
Dijkstrovega algoritma na grafu z robovi E in vrhovi V je mogoce izraziti kot funkcijo Stevila
robov, oznageno z | E|, in §tevilom vozlis¢|V|. Casovna kompleksnost je odvisna od podatkovne

strukture, ki se uporablja za predstavitev mnozice Q.

Zgornje meje lahko poenostavimo, ker |E| je O(|V|?) za vsak preprost graf. Za katerokoli
podatkovno strukturo za mnozico vrhov Q je ¢as delovanja O(|E| * Tgx + |V| * Top), Kjer Ty

in T,,, predstavljata kompleksnost operacij algoritmov (Cormen idr., 2022).

S pomocjo psevdokode lahko implementiramo Dijkstrov algoritem.
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Hjkstra_pssudo_cods, pseudo

function DijkstralGraph, source):
for each vertex v in Graph.Vertices:
dist{v] ~ INFINITY
previv] = UNDEFIMNED
add v to 0
dist[source} - 0

while 25 not empty;

U~ vertex in { with min distiu]
remove v from Q

for each neighbor v of u 5till in Q:
alt - dist[u] + Graph._Edgesiu, v)
if alt < distlv];

dist[v] =~ alt
prev|v] - u

return dist[], prev[]

Slika 9: Psevdokoda algoritma Dijkstra

Vir: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm, 2025
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7 UMETNA INTELIGENCA

Umetna inteligenca se nanasa na sposobnost ra¢unalniskih sistemov, da opravljajo naloge, ki
so obicajno povezane s Clovesko inteligenco, kot so ucenje, sklepanje, resevanje problemov,
zaznavanje in odlocanje. Je podro¢je v raCunalniStvu, ki razvija in preucuje metode in
programsko opremo, ki strojem omogocajo zaznavanje okolja ter uporabo uc¢enja in inteligence

za ukrepanje, ki povecuje moznosti za doseganje dolocenih ciljev (Russell in Norvig, 2022).

Razli¢na podpodroc¢ja umetne inteligence se osredotocajo na posebne cilje in uporabo posebnih
orodij. Primarni cilji raziskav umetne inteligence vkljucujejo ucenje, sklepanje, predstavitev
znanja, nacrtovanje, obdelavo naravnega jezika, zaznavanje in podporo robotiki. Eden izmed
dolgoro¢nih ciljev podro¢ja umetne inteligence je doseci raven splosne umetne inteligence
(angl. general intelligence). Splosna umetna inteligenca je zmoznost opravljanja naloge z enako

zmogljivostjo kot ¢lovek (Russell in Norvig, 2022).

Za doseganje teh ciljev so raziskovalci umetne inteligence prilagodili in povezali Stevilne
tehnike, vklju¢no z iskanjem in matemati¢no optimizacijo (angl. search and mathematical
optimization), formalno logiko, umetnimi nevronskimi mrezami in metodami, ki temeljijo na
statistiki, operacijskih raziskavah in ekonomiji. Umetna inteligenca se tudi osredotoca na

psihologijo, jezikoslovje, filozofijo, nevroznanost in druga podrocja (Russell in Norvig, 2022).

Aplikacije in naprave, opremljene z umetno inteligenco, lahko vidijo in prepoznajo predmete.
Razumejo lahko ¢loveski jezik in se nanj odzivajo. U¢ijo se lahko na podlagi novih informacij
in izkuSenj. Uporabnikom in strokovnjakom lahko pripravijo podrobna priporocila. Delujejo
lahko samostojno in nadomestijo potrebo po ¢loveski inteligenci ali posredovanju, na primer

samovoze¢i avtomobili.

Neposredno pod umetno inteligenco spada strojno ucenje, ki vkljucuje ustvarjanje modelov z
usposabljanjem algoritma za napovedovanje ali odloc¢anje na podlagi podatkov. Zajema Siroko
paleto tehnik, ki raCunalnikom omogocajo ucenje in sklepanje na podlagi podatkov, ne da bi

bili izrecno programirani za dolo¢ene naloge.
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7.1 Umetna inteligenca in razumevanje

Russell in Norvig (2019) opisujeta, da predstavljanje in inzeniring znanja (angl. knowledge
engineering) omogocata programom umetne inteligence, da inteligentno odgovarjajo na
vprasanja in sklepajo o dejstvih iz resnicnega sveta. Formalne predstavitve znanja se
uporabljajo pri indeksiranju in iskanju na podlagi vsebine, interpretaciji prizora, podpori

kliniénim odlo¢itvam in odkrivanju znanja iz velikih podatkovnih baz.

Predstavljanje znanja in inZeniring znanja je podroc¢je umetne inteligence, ki poskusa posnemati
presojo in vedenje ¢loveka na dolo¢enem podrocju. InZeniring znanja je tehnologija, ki stoji za
ustvarjanjem sistemov za pomoc¢ pri vpraSanjih, povezanih z njihovim podro¢jem znanja.
Sistemi vkljucujejo veliko, razsirljivo bazo znanja, integrirano z mehanizmom pravil, ki doloca,
kako uporabiti informacije v vsaki posamezni situaciji. InZenirji znanja lahko ustvarijo sistem,
ki vklju€uje strojno ucenje (angl. machine learning), tako da se lahko uci iz izkuSenj na enak
nacin kot ljudje. Strokovni sistemi se uporabljajo na razli¢nih podro¢jih, vkljucno z zdravstvom,

storitvami za stranke, finan¢nimi storitvami, proizvodnjo in pravom (Lutkevich, 2022).

Da umetna inteligenca poskusa posnemati ¢lovesko vedenje, potrebuje bazo podatkov. Baza
znanja je zbirka znanja, predstavljena v obliki, ki jo lahko uporablja umetna inteligenca.
Ontologija je niz predmetov, odnosov, pojmov in lastnosti, ki se uporabljajo v dolo¢eni domeni
znanja. Baze znanja morajo predstavljati stvari, kot so predmeti, lastnosti, kategorije in odnosi
med predmeti, situacije, dogodki, stanja in Cas, vzroki in posledice, znanje, privzeto sklepanje,

ter Stevilne druge vidike in domene znanja (Russell in Norvig, 2022).

7.2 Umetna inteligenca in strojno ucenje

Strojno ucenje je Studija programov, ki lahko samodejno izboljsajo svoje delovanje pri doloceni
nalogi. Je del umetne inteligence Ze od samega zacetka njenega razvoja (Russell in Norvig,

2022).

Strojno ucenje vsebuje ustvarjanje modelov za usposabljanje algoritma za napovedovanje ali
dolocanje rezultatov na podlagi vnosnih podatkov. Zajema Sirok nabor tehnik, ki raCunalnikom
omogocajo uc¢enje in sklepanje na podlagi podatkov, ne da bi bili neposredno razviti za dolo¢ene

naloge (Stryker in Kavlakoglu, 2024).
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Strojno ucenje vsebuje veliko vrst tehnik ali algoritmov strojnega ucenja, vklju¢no z linearno
regresijo (angl. linear regression), logistino regresijo (angl. logistic regression), drevesi
odloCanja (angl. decision trees), naklju¢nim gozdom (angl. random forest), podpornimi
vektorskimi stroji (angl. support vector machines), k-najblizjim sosedom (angl. k-nearest

neighbor) in grozdenjem (angl. clustering) (Stryker in Kavlakoglu, 2024).

Ena izmed najbolj uporabljenih vrst algoritmov za strojno ucenje je nevronska mreZza.
Nevronske mreze so oblikovane po strukturi in delovanju ¢loveskih mozganov. Nevronsko
omrezje je sestavljeno iz medsebojno povezanih plasti vozlis¢, ki sodelujejo pri obdelavi in
analizi kompleksnih podatkov. Nevronske mreze so primerne za naloge, ki vkljucujejo
prepoznavanje zapletenih vzorcev in povezav v velikih koli¢inah podatkov (Stryker in

Kavlakoglu, 2024).

Obstaja vecC vrst strojnega ucenja. Nenadzorovano ucenje analizira tok podatkov in iS¢e vzorce
ter napoveduje brez drugih navodil. Nadzorovano ucenje zahteva oznacevanje uc¢nih podatkov
s pricakovanimi odgovori in se deli na dve glavni vrsti, in sicer klasifikacijo, kjer se mora
program nauciti napovedati, v katero kategorijo spada vhodni podatek, in regresijo, kjer mora

program na podlagi Stevil¢nega vnosa dolociti Steviléno funkcijo (Russell in Norvig, 2022).

1.3 Umetna inteligenca in iskanje

UI lahko resi veliko problemov z inteligentnim iskanjem S$tevilnih moZznih reSitev. V UI se
uporabljata dve razli¢ni vrsti iskanja, in sicer iskanje v prostoru stanj in lokalno iskanje (Russell

in Norvig, 2022).

Iskanje v prostoru i$¢e po drevesu moznih stanj, da bi naslo ciljno stanje. Na primer algoritmi
za nacrtovanje i8¢ejo po drevesih ciljev in podciljev, pri ¢emer poskusajo najti pot do ciljnega
stanja, kar se imenuje analiza sredstev in ciljev (angl. means-ends analysis) (Russell in Norvig,
2022).

Preprosto iz¢rpno iskanje (angl. simple exhaustive searches) redko zadostuje za vecino realnih
problemov, saj iskalni prostor hitro naraste. Rezultat je iskanje, ki je prepoc€asno ali pa se nikoli

ne konca. Za izboljSanje Casa iskanja nam lahko pomaga hevristika (Russell in Norvig, 2022).
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Lokalno iskanje uporablja matemati¢no optimizacijo za iskanje reSitve problema. Zac¢ne se z

neko obliko ugibanja in ga postopoma izpopolnjuje (Russell in Norvig, 2022).

Gradientno spusS¢anje je vrsta lokalnega iskanja, ki optimizira niz numeri¢nih parametrov z
njihovim postopnim prilagajanjem, da se ¢im bolj zmanjSa funkcija izgube. Razlicice
gradientnega spusc¢anja se pogosto uporabljajo za usposabljanje nevronskih mrez z algoritmom

povratnega Sirjenja (angl. backpropagation) (Russell in Norvig, 2022).

Druga vrsta lokalnega iskanja je evolucijsko ra¢unanje, katerega cilj je iterativno izboljsati niz
kandidatnih reSitev z njihovo mutacijo in rekombinacijo, pri ¢emer se v vsaki generaciji izberejo

le najprimerne;jsi, ki prezivijo (Russell in Norvig, 2022).

1.4 Umetna inteligenca in iskanje najkrajSe poti

UI je ena od klju¢nih delov videoiger (Ostrowski, 2015). Yannakakih (2018) opisuje, da so
zgodnje raziskave Ul v iskanju najkrajSe poti vkljucevale Sah in druge druzinske namizne igre.
V igrah je opredeljeno, kako se obnasa raCunalniSki nasprotnik do igralca. ObnaSanje
racunalniSkega nasprotnika je segalo od preprostih do kompleksnih vzorcev gibanja s pomocjo
algoritmov iskanja poti. Ena izmed morebitnih implementacij Ul v videoigrah je posnemanje
igralca na podlagi njegovih naklju¢nih dejanj in posledi¢no racunalniski nasprotnik lahko z

uporabo Ul prilagodi svoje gibanje (Iskandar, Diah in Ismail, 2020).

Igralniska industrija Se naprej hitro raste zaradi tehnoloskega napredka, predvsem na podroc¢ju
umetne inteligence. Ul se v sodobnih videoigrah uporablja za razli¢ne igralne like. Primarni cilj
UI je igralcu zagotoviti izziv pri sprejemanju odloCitev in povecati stopnjo tezavnosti. Ul
omogoca prilagajanje raznih igralnih likov znotraj videoigre na igral¢eve odlocitve (Lawande,

Jasmine, Anbarasi in Izhar, 2022).

Iskanje poti se nanaSa na koncept iskanja optimalne poti od izvornega do ciljnega vozlis¢a v
najkrajSem Casu. Za iskanje najkrajSe poti od izvornega do ciljnega vozlis¢a je bilo zasnovanih
ve¢ algoritmov, ki se poskus$ajo izogniti vsem oviram na poti. Za iskanje poti lahko uporabljajo
tudi Ul (Rafiq in Kadir, Pathfinding Algorithms in Game Development, 2020), (Lawande,

Jasmine, Anbarasi in Izhar, 2022).
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Razvoj Ul in iskanja poti je dosegel velik napredek, vendar ima Se vedno doloc¢ene probleme.
Eden izmed tak$nih problemov je zahteva po visoki zmogljivosti, ki jo morajo ti algoritmi
zagotoviti v videoigrah. Ob visoki zahtevi zmogljivosti morajo pogosto ti algoritmi izraCunati
poti za veC komponent, in ker so viri, dodeljeni tem algoritmom, omejeni, obstaja
povprasSevanje po algoritmih z visoko zmogljivostjo v krajSem Casu reSevanja problema iskanja

poti (Lawande, Jasmine, Anbarasi in Izhar, 2022).

1.5 Stroski razvoja in implementacije umetne inteligence

Pri razvoju in implementaciji umetne inteligence v interne procese podjetja naletijo na
nepric¢akovano povecane stroske. Hitro narascajoci stroski racunalnistva lahko ovirajo nadaljnji

razvoj in inovacije podjetja (Brodsky, 2024).

Ekonomski pritisk ¢utijo tudi vodilni pri razvoju umetne inteligence. Podjetje OpenAl naj bi
zabelezil eksponentno rast prihodkov, saj je v mescu avgustu leta 2024 doseglo 300 milijonov
ameriSkih dolarjev prihodka. V zafetku oktobra je podjetje OpenAl objavilo, da so v novem
krogu financiranja zbrali 6,6 milijarde ameriskih dolarjev, s Cimer bi pokrili rast podjetja in

stroske razvoja ter implementacije Ul (Brodsky, 2024).

Ekonomski vidik UI postaja kljuéni dejavnik pri dolo¢anju njenega poslovnega u¢inka. Stevilna
podjetja zaradi narascajocih stroSkov Ul prestavljajo svoje interne produkte na hibridno obla¢no

arhitekturo (angl. hybrid cloud architectures) (Brodsky, 2024).

Eden glavnih dejavnikov stroskov je vrsta reSitve Ul. Vsak sistem Ul ni zgrajen z enako

tehnologijo, razlike med njimi so velike. Poznamo ve¢ sistemov, in sicer:

e Sistemi, ki temeljijo na pravilih (angl. rule-based systems), so preprosti za razvoj in
implementacijo. Ti sistemi upoStevajo preprosta pravila in zahtevajo minimalno
racunalnisko moc (Le, 2025).

e Resitve za strojno ucenje, ki jih uporabljajo podjetja, se s casom izboljSujejo. Te potrebujejo
kakovostne podatke in stalno prilagajanje, kar vodi do vi§jih stroskov razvoja in

implementacije (Le, 2025).
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e Modeli globokega ucenja so odli¢ni za reSevanje zapletenih nalog, kot je prepoznavanje slik
ali glasu. Zahtevajo veliko koli¢ino podatkov, napredne algoritme in vrhunsko strojno

opremo, zato je njihov razvoj najdrazji (Le, 2025).

Na stroske vplivata tudi obseg in zapletenost projekta. Projekti Ul so razli¢ni, pri ¢emer so
Stevilo funkcij, toCke integracije in zahtevane ravni zmogljivosti zelo pomembne. Enostavno
orodje za analizo povratnih informacij stranke obicajno stane med dvajset tiso¢ in Stirideset
tiso¢ ameriSkih dolarjev. Srednje zahtevne aplikacije, ki potrebujejo naprednejSe algoritme za
analizo vedenja in preferenc uporabnikov, stanejo med petdeset tiso¢ in sto tiso¢ ameriskih
dolarjev. Napredne aplikacije UI, kot so vecjezi¢ni modeli, lahko presezejo sto petdeset tiso¢
ameriSkih dolarjev za implementacijo v podjetje. Te aplikacije so zapletene zaradi zahtev po

visoki zmogljivosti ve¢jezicnih modelov (Le, 2025).

Stevilo zaposlenih je pogosto najbolj spremenljiv dejavnik pri dologanju stroskov razvoja in
implementacije UI v podjetju. Velikost stroSkov je odvisna od $tevila zaposlenih in lokacije
podjetja. Interni razvoj omogoca popolni nadzor in tesnejSe sodelovanje razvijalcev Ul Vendar
to vodi do vi§jih stroskov razvoja. Najem zunanjih razvijalcev omogoca dostop do

specializiranega kadra, kar vodi do dolgoroc¢no nizjih stroSkov dela (Le, 2025).
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8 PRIPRAVA OKOLJA

Za testiranje in primerjavo algoritmov iskanja najkrajSe poti smo razvili aplikacijo za
vizualizacijo mreZe in iskanje poti do kon¢nega vozlis¢a. Aplikacija je razvita v programskem
jeziku Python. Aplikacija bo vsebovala grafi¢ni uporabniski vmesnik (angl. graphical user
interface), kjer bo uporabnik lahko generiral naklju¢no mrezo z ovirami. Na voljo bo moznost
izbire algoritma za iskanje najkrajse poti. Konéni rezultat iskanja bo zapisan v tabeli. Casovna
enota merjenja je milisekunda. Za programiranje uporabniskega vmesnika bomo uporabili

knjiznico Tkinter.

Ker v diplomskem delu primerjamo umetno inteligenco in algoritme iskanja najkrajSe poti,
bomo za to uporabili knjiznico PyTorch. Knjiznica nam omogoca, da program u¢imo resevati

problem s pomoc¢jo nevronske mreze.

8.1 Struktura izvorne kode

Struktura izvorne kode je razdeljena v vec¢ logi¢nih enot. To omogoca lazji pregled logike.
Razdelili smo kodo na ve¢ manjsih delov, ki imajo vsak svojo logiko. Modularna koda omogoca

lazje sledenje logiki, lazje nadgrajevanje in njeno razhroscevanje.
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Slika 10: Struktura izvorne kode

Vir: Lasten
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8.2 Uporabniski vmesnik aplikacije

Graficni vmesnik vsebuje moznost izbora algoritma, prikaz labirinta in tabelo za zapis

podatkov.

ST ST (AN ER D D

Slika 11: Uporabniski vmesnik aplikacije

Vir: Lasten

Za prikaz uporabniskega vmesnika smo razvili razred App. Razred implementira graficni
uporabniski vmesnik z uporabo knjiznice Tkinter, ki omogoca uporabniku izbiro algoritma,
velikosti labirinta in vizualno spremljanje izvajanja iskanja poti. Ob kliku na gumb Start se
ustvari nov labirint iz razreda Maze, nato se izvede izbrani algoritem iz objekta algorithms,
medtem ko se obiski vozli$¢ sproti prikazujejo z modro barvo, najdena pot pa z zeleno. Rezultati
se prikaZejo v tabeli Treeview. Vizualizacija in logika iskanja sta loceni z uporabo niti, da GUI
ostane odziven. Canvas prikazuje mrezo, ovire in pot, s ¢imer aplikacija omogoca interaktivno

primerjavo ucinkovitosti razli¢nih algoritmov.
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Slika 12: Prikaz iskanja algortima v aplikaciji

Vir: Lasten

g
from .app import App
if name =m ¥ mailr

app App
app.mailnloop

Slika 13: Izvorna koda razreda App.py

Vir: Lasten
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class App(th.Tk):
def __dinit__[self):
super().__init__(]
self title("Haze Pathfinding: Diplomsko delo")
self.create_widgets()
self.run_times = []

Slika 14: Izvorna koda razreda App.py

Vir: Lasten

app-pE

ldss dpplrk, Tak
mif srart{salf]

Ty
8129 = AnClsE1F. KEE ain. patil)

pEGHET YelimErrpr
BESSHENE . oRErEn e "Amr el Lee wnon” Tellkaat sars BiTl cale Etowilo."]
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ihrrading, Threadl
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Slika 15: Izvorna koda metode start() razreda App.py

Vir: Lasten

SPETY
clmam Aps bk, Ta):
det spEats_tahls]ea|F]s
for 4 wn aelf_tree get_cEiidrmd )
el ¥, trap delinbels

for olgo neap, size, durstian, nedes. SeComss in SeLT.run Tises
Erl#F trae. Lnnert ]
=il roluFsziales agws. sifpe. T '{dprim: . &7} i | FETEES]

Slika 16: Izvorna koda metode update_table() razreda App.py

Vir: Lasten
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class Appltk.Th):
def dras_celllself, =, ¥, color]:
size = Llenfsalf.griz)
padding = 78
canvas_a = self.canwas. minfo_widisi) - 2 & padding
ganvas_h = self. comwas.winfo_Redpght() - 2 « padding
call W = canvas W |/ size
cgll_h = canuas_h |/ aise
Wl = padding & ¥ = zall_w
wi = padding + y = Zall_h
®2 = al + call W
¥2 = yl + call_h
aalf.canvoa, craate_rectengleisl, §1, &7, yi. Fiil=zcolor, outlines"")

Slika 17: Izvorna koda draw_cell() razreda App.py

Vir: Lasten

LR FPETE

clegm Apalth.TH);
det create widpety[nelf];
Tra ¢ tth,Fresielf, r|n||:1nqr|.i:|
fra. gridirousg, snlome=0, gtdceye ")

Ttk Lebel{trm, Sextz"dlgeeiten: ) griflren=d, colime=l, sticky="w"]

solf plga var = th.-Strinsie (vales=lint (alywratioey meys () 5101

row = 1

for olge in slgorithes, keysll:
rktn = itk Radiobuttenifre, tartzalos, weriobliessel® algo_sar, eofoezalgal
rivtn.gridirov=ran, celsenzl. stiey="")
rew += 1

tik.Labelides, taxtesalibset "] gridirowsres, colisnsd, stiokys"s")
self.eire_sais = th.Salnpaxifrd, fras_sS, te<dfi. iscresents2]
galf. stee_cpis daletald, “end®|

solf.size_sgis, laseetid, =)

sl slze_cpim, grioiriweros, folasnel, padyss)

Balf . RTET_BuE = TEE BurtoRifre, TedT="Jalewrae®, gEsahidsaeld. a1es T
sElF. pert_gva. grloffaseroe ¢ 1 doluswis®, golumndpined. mely=d6)

aalf . camian = th. Convanisali, siftiebDl, heagei=f8h, bgenihlie®]
anlf,oamink . grid(roesd, tolunhe]l, orsiessrss & §, saiceld, pesSedi)

columsm = | "algurifzs™;, Twrilkact™, “ftas™; "verlldfs™, “wapadmai )
anlf. trem = bW, Treavionlssif, colusni=caloens, shree"hesiings®, hoigii=i)
anlf Erea. grizl

remmrme & 2, columed, culussspan=d, sticepenmes®, padi=ll, paeye(d. JE)

sal T . tree, eseingl"algoratee™, TexTz"ELoariten” |

sk, tres . benstngl"ueliksai®, tewtx"yelisont™]

3oLt trre  eaEkngl"Sns ", tear="tam [n]"]

Ll eee. headbingl"wnzliece™, Epei="dkevilo vaalide" )
sall ee eankng{"unsadmeer™, iz tapadng sadel oli]®)

salf o cabven [ algaelies® . slathaiig]

salf. tree, calewen " @ Lihost®, wifth=38, oawcherz"center®)

saLT : trie, pdllamn i “fas®, wlerhebMd, anchers“center=]

salf. tree. (alvwnl“vorli88a®, width=bBE, anpkar="pentar |
SALT . trm . cdLeln [ waprtdnadn ™, wlannsidd, anohers®oesters]

Slika 18: Izvorna koda metode create_widgets() razreda App.py
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Vir: Lasten

L I ] i [y

class Appltk. Th):
def run_mazelsalfl, size, algl_raess) :

pazn = Hazalaimal
grid = maze, qoemarate] )
ael T grid = grid
start = maze.start
and = wore. end
017, after(8, labbda: oLF. Srae_sade(grid, start, ond)}
yisited_gount = [F]

def wisitls, vi:
wigitod_count[8] =a §
self.after(d, lapbaa: s=if.dres_celli=, ¥, "blue”]
tima. slaaplB . G&1)

algo_fn = algarbtnemg | sl _res |

start_tiee = tiee timol)

path = alga_falgels, wietestaert, gool=end, wlslt_cellback=sisiti)
duration = time timel] - start_tine

roached_goal = lenipath] = 8 @od gath(-1] == ond
succosa_teat = "Ja" AF reached_goal oloe “Hp~

1f path and lenipatni = L
for x, y im path:
salf after(d, Laskds xen, yay! sELf_draa_cell{x; ¥, "grean™])

aal¥, run_iimas appaad|
[algo_nams, size, deratiem, vislted_count{0], suocags_towt)

galf.afitoriB, salf_ update_itsile)

17 reashed_goal:
ragult_kag « F B {algo_nasal 3@ uspadno madel ofl]a®
result_mag += F Cas: Jouration:  &FF sewundyn®
roaault_Eag ee Folnishans o LiEE! {visited_count]B]Fyn"
result_esg += P ODolfirs poti: {LenCpainl} korakow™

alan;
rasult_msg = F*¥ {olgo_name} ni nafel potl oo cilja.'m"
Faault_mag o= Folad J@uration: &FF pekundin®
result_gsg += F Obhdishans wooldde: {vizited_countlBi}™

galf.aftier(B, lasbda® messsgrbor_showinfoi"Rerultat”, result_ssgll
Wl afracild;, Lambds: dalf.slary Sin,canfigletale="noraal™}}

Slika 19: Izvorna koda metode run_maze() razreda App.py

Vir: Lasten
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3pp.PY

from .bfs import bfs

from .astar import astar

from .dijkstra import dijkstra

from ..zi.solve import solwve_with_dgn

algorithms = 4
"BFS™: bfts,
Akl astap,

"Dijkstra”: dijkstra,
"AI": solwve_with_dgn,

Slika 20: I1zvorna koda objekta algorithms

Vir: Lasten
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slasn Appith. Tk
gef @raw_maze(snlf, grdd, start, sndl:
e f canvas deletal“all>)
#lza = lamineidl
padding = 20
sanwid_w = aulf . cafvid . winfo_widihij « § = paddling
canwas_h = self. canves. winfo_height(] - 1 & pedding
Rl W = chAnvas_& f slze
coll kK = canvas_h [ size

welf canvas . oreste rectangled

il Ly

paild b

padileg + cell W & Blia,
padding + sell h & &ize,
it fne=grpy™

for y in rangeinize]:
far 8 Ln rangelaire]
11 = paddimg + x & cell_w
¥l = paddirg + ¥ = cell h
A2 = 2l + opll_w
¥2 = yl & cell_h

iFf (%, v} == start:
cakor = “graEen”
alif [x. %) == =nd:
ealor = "pag"
elif grid{y]lx] == 1
Gakor = “bLack™
else!:
cuntinue
self.canvas.oreate_rectangleixl, ¥1, »2, ¥I. Till=catlor]

Slika 21: Izvorna koda metode draw_maze() razreda App.py

Vir: Lasten
e B O app.gy
if __name__ == *__main__"=:

App () .mainloopl)

Slika 22: 1zvorna koda razreda App.py

Vir: Lasten
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8.3 Izvorna koda labirinta

Za prikaz naklju¢no generiranega labirinta smo naredili razred Maze, ki omogoca ustvarjanje
mreze s prehodnimi in neprehodnimi polji. Razred vsebuje metode  init (self, size) in
generate(self). Razred vsebuje spremenljivke size, grid, start in end. S spremenljivkami

dolo¢amo velikost labirinta z zacetno in kon¢no tocko.

Metoda init__ (self,size) je konstruktor razreda, ki ustvari mrezo poljubne velikosti. Definira

zacetno in konéno to¢ko razreda.

Metoda generate(self) s pomocjo algoritma ustvari prehodni labirint. S pomocjo stack in visited
spreminjamo vozliS¢a iz neprehodnih v prehodne. V vsakem koraku zanke se preveri, ali obstaja
Se neobiskano sosednje vozlis¢e, ki ga nato nakljucno izbere in nadaljuje z ustvarjanjem

labirinta. Rezultat razreda je dvodimenzionalen labirint z zacetno in kon¢no tocko.
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NN ] Bl

Ljrart randon

class Maze:
gaf __dimit_ {=elf. sipe):
splf.slen = size
self.grid = [[1 for _ in rengelsize}] fer _ in rangeisiza)]
solf.start = {1, 1)
saLlf.end = {(glze - 7, Bize - 2}

def gencrate{selr):
stack = []
wigited = setl)
£, ¥ = spL¥.start
stack, append{{x, vl
wisited.odd{{x, wi)
self.grid[yl[x] = A

whila stachk:
£, ¥ = otack[-1]
neighbore = [
for dx, gy dm [(1, &¥, (-1, &), (@, 1), (&, -1}):
nE, py = ¥ & g &« 2§ + gy & 3
if
1 == nx = self.size - 1
and 1 <= iy € self.sife - 1
prnd [nk, my)] not in wisited
¥
neighbors . sppend{{nx, ny, di, oyl
if neighbars:
ng, ny, dx, dy = randon. chaice{raighbors)
self.gridiy + dyl[x + da] = @
self. grialny] [nx] = 8
viglted. addlise, Ayll
gtach.appendl (nx, ny))
FAR-T
stick . popi ]
end_x, end_y = self.end
seLf.grid(end_yi[end x] = B
for dx, dy in [C-1, @), {8, -11]:
nx, ny = oemd_X = dE, end_y + dy
1f 1 <= p < gelF.gize = 1 Bo0g 1 <= my < gelf.s5lze - 1:
self, gridiny][nx] = B

retorn self. grid

Slika 23: Izvorna koda razreda Maze.py

Vir: Lasten
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8.4 Izvorna koda algoritma BFS

Algoritem iskanje po Sirini smo implementirali z metodo bfs(grid, start, goal,
visit_callback=lambda x, y; None). Na zacetku iteracije metoda ustvari prazno mnozico visited,
vrsto queue ter objekt prev. V vsaki iteraciji se iz vrste vzame trenutno vozlis¢e in preveri, ali
ustreza cilju. Ce je cilj doseZen, se iteracija prekine. Ce cilj ni doseZen, se preverijo vsa sosednja
vozlis¢a. Ce je vozlis¢e neobiskano in je prehodno, se doda v vrsto queue in se oznadi kot
obiskano. Nato se ta povezava shrani v objekt prev. Ko se iskanje zakljuci, se rekonstruira pot
do cilja na podlagi vozliS¢ v objektu prev. Rezultat metode je seznam vozlis¢, ki predstavljajo

najkrajso pot.
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o8 bn.oy

from collections import deque

daf bfs(grid, start, goal, wvisit_callbackslanbda %, y: MNone):
size = Llen{grid)
wisited = setl}
gueve = deguel|start]]
prev = {}

wisited, add{=tert}

shile gueue:
current = guoun, popleft(]
¥, ¥ = current
wigit callbackix, w)

if cuPrPEft == goal:
bresh

for dx, dy in [{1, @), (-1, @), €&, 1), (@, -1})}:
e, ny = Ko+ dx, ¥ o+ ody
neigher = {nx, ny)

if (
B = nx = size
and B <= ny < s5iza
end gridiny][nx] == @
and neighbor not in wisited

J e
ylslted. addin=ighbor)
previneighbar] = eurrent
guewe . appand (nalghbior )
path = [1

node = goal
mwhile mode in prev:
path. append [node )
node = previnode]
if path:
path. appond{start]
path.reverssl )
return path

Slika 24: Izvorna koda algoritma BFS

Vir: Lasten
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8.5 Izvorna koda algoritma A*

A star algoritem smo implementirali z metodo astar(grid, start={1,1}, goal=None,
visit_callback=None). Funkcija uporablja strosek poti od zacetka in oceno razdalje do cilja. Na
zacetku se doloci cilj in pripravi prioritetno vrsto, kamor vstavi zacetno vozlisce. Zanka nato

vedno izbere vozlis¢e z najmanjSo skupno oceno.

curreni, path heapn . Sespper

o in [0l i P=1.0 BT i {8 11]
g = K o+ g, § o+ dy
= nx = m mad O ez ny « n oand gridiny] [nz]

wighbo [as. iyl

LF tentoflve g Q_Sopre.gat
f_neore amighhor Femtative_g
f = Bentathum g & B

heapsy dgpEuEh

Slika 25: Izvorna koda algoritma A star

Vir: Lasten
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8.6 Izvorna koda algoritma Dijkstra

Funkcija Dijkstra i§¢e najkrajSo pot v mrezi, pri ¢emer za vsako vozlis¢e vodi slovar dist z
z najmanj$im trenutno znanim stroSkom. Zac¢ne pri zacetku z razdaljo 0, nato v vsaki iteraciji
iz vrste vzame vozliS¢e z najmanjSim cost, ga oznaci kot obiskano, in poklic¢e visit_callback.
Ce je cilj dosezen, prekine zanko, sicer pregleda vse sosednje obi¢ajne premike, izraduna nov
potencialni strosek (new cost = cost + 1) in, ¢e je ta manjsi od prej znanega za soseda, posodobi
dist, shrani predhodnika v prev in ga vstavi v vrsto. Ko zanka konca, se najdena pot rekonstruira

iz slovarja prev, se obrne in vrne kot seznam koordinat od zacetka do cilja.
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dof dijkstra{grid, stort, goal. wizit callback=lambda ®, y: Moned
glze = Lan id]
vigiraa aEt
dist = {start: B
prey =

hoop = ({0, stert}]

gniils hnap
cost,  furrant heapa . hasppnn Lhaa
if current in wisited
oeEntinues

wisited . sddicurrane

K, ¥ = current
vizit_ooallbaschkix

if currant anal

break

for dx, day in [81, 02, (-3, @83, (@, 1}, (@ 13
fim . iy £ b IE ¥ o iy
if B <= nx < size and B <= ny < size and grid{mg][nk] == 4
neighbor = {(nx, nyl
e _cnef = ol =
i mEighber not in dist or new_cost di=t |muighhar
distimeighbor] = now_cost
pravinaighbar] curr@nt
hespn  hesppushChesh, (nes_coat, neighb
path 1]
node = goal
¢hille mode in prew
path. sppendinoc
ndn Py L nodo
math. Appang T
path. reversel ]

~zturn path

Slika 26: Izvorna koda algoritma Dijkstra

Vir: Lasten

8.7 Izvorna koda strojnega ucenja

Implementacija strojnega ucenja simulira umetno inteligenco. Za reSevanje naklju¢no
generiranega labirinta smo uporabili DQN pristop (angl. Deep Q-Network). Izvorna koda je
sestavljena iz vec razredov, in sicer DQN, MazeEnv, SolvingMazeEnv in samostojne funkcije

train_dqn.
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nil__py

from .Traln iRport Traln_dgn

1F ame e madr

train_dgniepisodes=508)

Slika 27: Izvorna koda za strojno ucenje

Vir: Lasten

Razred DQN implementira globoko Q-mrezo DQN kot nevronsko mrezo z veliko povezanimi
sloji. Za implementacijo smo uporabili knjiznico PyTorch. Konstruktor razreda vsebuje
parametre self, input size=13, hidden_ size=128, output size=4. Ti parametri definirajo
arhitekturo mreze. Vhodni sloj sprejme 13-razsezni vektor, dva skrita sloja z ReLU funkcijami

procesirata informacije. Izhodni sloj vrne Q-vrednost $tiri mozne akcije.

impoart terch
AMpGrT TOrEH. A &5 nn
s JF A i I
T LT T | =15, hid 1 = 1] I
1T}
a1, mid 1. 5 1

Slika 28: Izvorna koda razreda DQN

Vir: Lasten

Metoda forward(self) definira prehod podatkov skozi mrezo in vrne Q-vrednost za vse mozne

akcije v danem stanju.
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Slika 29: Izvorna koda razreda MazeEnv

Vir: Lasten

Razred MazeEnv predstavlja okolje za ucenje pri reSevanju labirintov s strojnim ucenjem.
Razred implementira vmesnik za okolje u¢enja z metodami reset, step in get state. Konstruktor
razreda vsebuje parametre self, grid, start in goal. To omogoca inicializacijo labirinta za ucenje

z zacetno in konéno tocko.
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Slika 30: Izvorna koda razreda MazeEnv

Vir: Lasten

Metoda reset(self) poenostavi labirint v zacetno stanje. Pozicijo agenta postavi na zacetno

tocko, Stevilo korakov spremeni na Stevilo ni€ in vrne okolje v prvotno stanje.

Metoda get state(self) ustvari predstavitev trenutnega stanja okolja, kot 13-razsezni vektor, ki
sluzi kot vhod za nevronsko mrezo. Metoda doloci trenutno pozicijo agenta in definira velikost
lokalnega okna velikosti 3x3. K velikosti okna se doda $e eno polje, ki predstavlja neprehodni
rob mreze. Izvle€eni lokalni pogled se nato splos¢i iz 2D-matrike v 1D-vektor z 9 elementi, kjer
vsak element predstavlja vrednost posameznega polja v okolici agenta. Trenutna pozicija agenta
se normalizira z delitvijo s skupno velikostjo mreze minus ena, kar zagotavlja vrednosti v
intervalu [0, 1]. Ta normalizacija omogoca boljse delovanje nevronske mreZe, saj so vsi vhodni

podatki v enotnem merilu.
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& b a8 SgivingMazeEnv.py

class SolvingHazeEnv:
def __init__({self, grid, start, goal):
galf.grid = np.arrayigrid)
self.start = start
self.goal = goal
self.reset(]

Sika 31: Konstruktor razreda SolvingMazeEnv

Vir: Lasten
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Sika 32: Izvorna koda metode _get_state()

Vir: Lasten
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- N N SohvingMazeEne.py

class SolvingHazeEnv:
def resetlself):
self.position = self.start
self.steps = B
return self._get_statel)

Sika 33: Izvorna koda metode reset()
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SalvingMazeEny py

class SolvingMazeEnv:
def stepi{self, action):
¥, ¥ = salf.position
movas = [(1, 8, (-1, B8), (8, 1), (B, -1)]
dx, dy = moves[action]
Ax, my = % + dx, y + dy

salf.steps += 1
done = False

if
B == nx < self.grid.shape[1]
and B <= ny < self.grid.shapelB]
and self. gridinyl[nx] ==
):
self.position = (nx, ny)

if self.position == self.goal:
done = True
oLif self.steps »= Len(solf.grid) s 2 & 3;

done = True

return self._get_state(), 8, done, {}

Sika 34: Izvorna koda metode step()

Vir: Lasten
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Metoda step(self, action) izvede premik agenta v okolju glede na podano akcijo. Za razliko od
ucnega okolja ta metoda vraca poenostavljeno nagrado 0 in ne izratunava kompleksnih nagrad,

saj se uporablja le za evalvacijo nau¢enega modela.

Selvingtaredne
iafF Solve_mil Inlgr i # 1 gaa i ElE allSack=fones)
Fry
widak DL Lr 1
mailel . Laed_§tets_jicl| sl 1 i th il it i Hi
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maa b tempts

BET_EJTh [scaerr, gaal]

Sika 35: Izvorna koda metode solve_with_dgn()
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STuck_counter = B
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Sika 36: Izvrona koda metode solve_with_dqn()

Vir: Lasten
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Sika 37: Izvrona koda metode solve_with_dqn()
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return pais

Sika 38: Izvrona koda metode solve_with_dqn()

Vir: Lasten
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tlass SalvingMazeEnw:

detf solve_mith_dgnigrid, start, goal, vizit_callback=Kone]:
b it
for atftempt 1n rang 1ttt
while not done and stops < max_steps
1t loni th] > Lanlibost

best_path = path

return best_path
Keapt FiloMatFoundError

raturn [start, goal)

axcept Exception as e;
impart tracehack
tracehack. print_pxeil

Feturn [atart, goal]

Sika 39: Izvrona koda metode solve_with_dqn()

Vir: Lasten

Funkcija solve with_dqn(grid, start, goal, visit_callback=None) uporablja predhodno naucen
model DQN za iskanje poti skozi labirint. Funkcija nalozi shranjeni model iz datoteke
dgn model.pth, ga postavi v nacin evalvacije in izvede do tri poskuse iskanja poti. Med
iskanjem uporablja epsilon-greedy strategijo z dodanim Sumom za izboljSanje raziskovanja in
implementira mehanizem zaznavanja, ko se agent zatakne v zanki. Ce agent ostane na istem

obmocju predolgo, funkcija izvede naklju¢ne premike za izhod iz zanke.
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> Do rain_sdgn,ny

import torch

import torch.nn,.functional as F
import torch.optim as optim
import random

from collections import deque
import numpy as np

from al.dgn import DON

from ai.env ismport MazeEnv

from maze import Maze

def train_dgn(
episodes=5080,
gamma=8.%9%,
gpsilon_start=1.6,
epsilon_min=9.01,
epsilon_decay=0.9995,
1lr=8.08885,
bateh_size=b4,
target_update=280,
memary _size=2E80806

Sika 40: Izvorna koda metode train_dgn()

Vir: Lasten
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Slika 41: Izvorna koda metode train_dqn()
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Sika 42: Izvorna koda metode train_dgn()

Vir: Lasten
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Sika 43: Izvorna koda metode train_dgn()
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Sika 44: Izvorna koda metode train_dgn()

Vir: Lasten
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Sika 45: Izvorna koda metode train_dgn()
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Sika 46: Izvorna koda metode train_dgn()
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def train_dgnl
episodes=5A08
oEnNE=E. 77
gpellon_start=1l,d
epsllon_min=0_.31
gpsllon_decaysd, 99545
Lr=0 . 0005
bateh_sizesas
target_update=234

NEnCry_s1ze=20030

Lrport shutil
ghutil.capy i "idg del e [} |
ecept

torch. saval i ctato_dict(] lqn_mada

roturn nodel

Sika 47: Izvorna koda metode train_dgn()
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Funkcija train_dqn implementira algoritem globokega Q-ucenja za treniranje nevronske mreze.
Funkcija uporablja replay memory za shranjevanje izkuSenj, ciljno mrezo za stabilizacijo
ucenja in epsilon-greedy strategijo za ravnovesje med raziskovanjem in izkori§¢anjem.
Parametri vklju€ujejo Stevilo epizod ucenja, diskontni faktor gamma, u¢no hitrost in velikost
batcha. Med ucenjem funkcija uporablja Double DQN pristop, kjer glavna mreza izbere akcije,
ciljna mreza pa ocenjuje njihove vrednosti. Funkcija implementira postopno zmanjsevanje u¢ne

hitrosti in shrani model z najboljSo uspesnostjo med ucenjem.
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9 PRIMERJAVAALGORITMOV INUMETNE INTELIGENCE
V NAKLJUCNO GENERIRANEM LABIRINTU

Za empiricno primerjavo algoritmov iskanja poti smo oblikovali testno okolje s S$tirimi
naklju¢no generiranimi labirinti razli¢nih velikosti, in sicer 11x11, 21x21 in 31x31. Posamezne
velikosti predstavljajo razlicne stopnje kompleksnosti in omogocajo sistemati¢no primerjavo
uc¢inkovitosti algoritmov v razli¢nih primerih. Rezultate smo dokumentirali v tabelah za lazjo
interpretacijo. Pri vsakem testu smo spremljali klju¢ne parametre, in sicer ¢as iskanja, dimenzije
labirinta, Stevilo obiskanih vozlis¢ in uspe$no obiskano ciljno vozlis¢e. Za objektivno
primerjavo algoritmov smo vsak algoritem testirali na tiso¢ naklju¢no generiranih labirintih za

vsako velikost.

V okviru diplomske naloge smo implementirali pristop globokega Q-ucenja DQN (angl. Deep
Q-network) za simulacijo inteligentnega iskanja. Proces ucenja je potekal na obseznem naboru
pet tiso¢ naklju¢no generiranih labirintov v standardizirani velikosti 11x11. UspeSnost
naucenega agenta dosega 32,4 %, kar je pomemben dejavnik pri interpretaciji in analizi
nadaljnjih rezultatov diplomskega dela. Pricakujemo lahko, da bo umetna inteligenca imela

najboljsi rezultat na velikosti labirinta 11x11.

9.1 Rezultati algoritmov iskanja poti in umetne inteligence v nakljucno

generiranem labirintu

Tabela 1: Rezultati algoritmov iskanja poti in UI v labirintu velikosti 11x11

. Uspesn Povprece Povprecn
Stevilo Neuspesn Uspeh
Algorite Velikos 0 n ¢as o Stevilo
testiran onajden algoritma(%
m t _ najden . ) iskanja  obiskanih
J cily
cilj (ms) vozli§¢
BFS 11 1000 1000 0 100.0 0.029 29
A* 11 1000 1000 0 100.0 0.028 26
Dijkstra 11 1000 1000 0 100.0 0.024 29
Ul 11 1000 603 397 60.3 13.47 28
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Tabela 2: Rezultati algoritmov iskanja poti in UI v labirintu velikosti 21x21

N Uspes$n Povprece Povprecn
Stevilo Neuspesn Uspeh
Algorite Velikos 0 n ¢as o Stevilo
testiran onajden algoritma(%
m t _ najden iskanja obiskanih
] cilj )
cilj (ms) vozli§¢
BFS 21 1000 1000 0 100.0 0.071 115
A* 21 1000 1000 0 100.0 0.107 105
Dijkstra 21 1000 1000 0 100.0 0.089 120
Ul 21 1000 81 919 8.1 55.80 84
Vir: Lasten

Tabela 3: Rezultati algoritmov iskanja poti in UI v labirintu velikosti 31x31

. Uspes$n Povprece Povprecn
Stevilo NeuspesSn Uspeh
Algorite Velikos 0 n ¢as o Stevilo
testiran o najden algoritma(%
m t _ najden " ) iskanja obiskanih
J cilj
cilj (ms) vozlis¢
BFS 31 1000 1000 0 100.0 0.16 267
A* 31 1000 1000 0 100.0 0.26 242
Dijkstra 31 1000 1000 0 100.0 0.22 266
Ul 31 1000 28 297 2.8 288.94 105
Vir: Lasten
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9.2 Analiza hitrosti algoritmov iskanja najkrajsSe poti

Rezultati diplomskega dela so pokazali na razlike med algoritmi iskanja poti in umetno
inteligenco. Algoritmi iskanja poti izkazujejo hitro delovanje v vseh testnih primerih, medtem
ko umetna inteligenca zahteva ve¢ Casa za morebitno doseganje cilja. Umetna inteligenca je
bila u€ena na labirintu velikosti 11x11, kar tudi odraza njen najboljsi rezultat izmed vseh testnih

primerov.

Pri labirintih velikosti 11x11 je povprecni Cas iskanja 0,02 ms, pri labirintih 21x21 pa med 0,07
in 0,10 ms. Pri labirintih velikosti 31x31 je najhitrejs$i Dijkstrov algoritem, in sicer 0,024 ms.
Hitrost Ul upada z vecCanjem Stevila vozlis¢ in velikosti labirinta. Iz tega lahko sklepamo, da je

ucinkovitost algoritmov odvisna od velikosti labirinta in §tevila vozIis¢.

Kljub podobnim ¢asom iskanja je algoritem A* obiskal najmanjSe Stevilo vozliSC za dosego
cilja, kar nakazuje na bolj optimizirano delovanje algoritma v primerjavi z BFS, Dijkstro in

umetno inteligenco.

Najhitrejsi algoritem je Dijkstrov algoritem. Zabelezil je najkrajsi €as iskanja, vendar je treba
poudariti, da je obiskal najve¢ vozlis¢. To nakazuje na potencialno poslabsanje optimalnosti
algoritma na vecjih labirintih, kjer je Stevilo vozliS¢ vecje. Rezultati hitrosti in obiskanih vozliS¢

algoritmov in Ul so razvidni v spodnjih grafih.
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Grafikon 1. Prikaz casa iskanja koncnega vozlisca algoritmov in Ul v labirintu
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Grafikon 2. Prikaz Stevila obiskanih vozlis¢ algoritmov in Ul v labirintu
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9.3 Analiza zmogljivosti umetne inteligence pri reSevanju najkrajse poti

Umetna inteligenca je bila v primerjavi z drugimi algoritmi najpocasnejs$a in neucinkovita.
Rezultati nakazujejo na slabSe rezultate v labirintih, kjer velikost ni 11x11. To je bilo
pricakovano, saj je umetna inteligenca bila ucena izklju¢no na labirintih velikosti 11x11.
Stopnja uspesnosti Ul se zmanjSuje z naraS¢ajoCo kompleksnostjo problema. Pri majhnih
labirintih velikosti 11x11 dosega 60,3-% uspesnost s 603 uspesnimi reSitvami od 1000 testov.
Ta uspesSnost se zmanjSa pri srednjih labirintih velikosti 21x21 na 8,1-% z 81 uspe$nimi
reSitvami. Pri najvecjih labirintih velikosti 31x31 Ul dosega le 2,8-% uspesnost z zgolj 28
uspesnimi resitvami od 1000 testov, kar pomeni, da ne uspe resiti preko 97,2 % testnih primerov.

Uspesnost Ul in algoritmov je razvidna v spodnjem grafu.

Grafikon 3 : Prikaz uspesnosti iskanja algoritmov in Ul v labirintu
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10 POTRDITEV ALI ZAVRNITEV HIPOTEZ

10.1 H1: A* je najpopularnejsi algoritem

V diplomskem delu smo pregledali znanstveno literaturo na podroc¢ju algoritmov iskanja poti.
Pregled literature nakazuje na vsesplosno razsirjenost algoritma A* v raziskovalni skupnosti.
Foed idr. (2021) so navedli, da je algoritem A* zaradi svoje priljubljenosti in razsirjenosti
standard za raziskovalce, ki raziskujejo in reSujejo problem iskanja poti. Trditev, da je algoritem
A* najpopularnejsi, zasledimo tudi v raziskavi, ki so jo opravili Iskandar, U. A. S. idr. (2020),

kjer navedejo, da je algoritem A* najpogosteje uporabljen algoritem iskanja poti v videoigrah.

10.2 H2: Obstaja umetna inteligenca, ki najde najkrajSo pot tudi iz takega
algoritma, pri katerem imajo ostali algoritmi omejitve

Rezultati diplomskega dela so pokazali, da Ul najde najkrajSo pot v labirintu kljub

predpostavljenim omejitvam. Literatura nakazuje, da je razvoj UI pri problemu iskanja

najkraj$e poti pomemben dejavnik. V raziskavi, ki so jo opravili Iskandar, U. A. S. idr. (2020),

ugotovimo, da je Ul prisotna pri iskanju poti v videoigrah. V raziskavi so zabelezili, da agenti

najdejo pot do igralca, vendar je ucinkovitost algoritmov slabsa.

10.3 H3: A* algoritem bo najhitrejsi algoritem in bolj ucinkovit pri iskanju
najkrajse poti v nakljucno generiranih labirintih v primerjavi 7 drugimi
algoritmi

V poglavju Primerjava algoritmov in umetne inteligence v naklju¢no generiranem labirintu smo

ugotovili, da je algoritem A* najucinkovitejsi algoritem z obiskom najmanjSega Stevila vozlis¢

za dosego cilja. Rezultati diplomskega dela nakazujejo, da je algoritem A* najucinkovitejsi

algoritem v primerjavi z ostalimi testnimi algoritmi in umetno inteligenco.

Rezultati diplomskega dela so pokazali, da algoritem A* kljub svoji u€inkovitosti ni najhitrejsi

algoritem izmed testiranih algoritmov in umetne inteligence.
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10.4 H4: Umetna inteligenca bo najucinkovitejsa pri iskanju najkrajse poti v
nakljucéno generiranem labirintu v primerjavi 7 algoritmi A*, DijkStrovim

algoritmom in BFS

Rezultati diplomskega dela so pokazali, da umetna inteligenca ni najucinkovitejSa v nakljucno
generiranem labirintu. Hitrost reSevanja problema je bila znatno vi§ja v pram algoritmov iskanja
poti. Stevilo obiskanih vozli§¢ je bilo v povpregju vije od algoritmov iskanja poti. Pomemben
podatek je, da Ul ni bila vedno uspes$na pri reSevanju problema, kar nakazuje na splosno slabo
uc¢inkovitost UI. Kljub rezultatom je pomembno povedati, da je v okviru diplomskega dela Ul
bila ucena na manjsi koli¢ini podatkov, in sicer pet tiso¢ naklju¢no generiranih labirintov

velikosti 11x11.
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11 SKLEP

V okviru diplomskega dela smo primerjali algoritme iskanja poti BFS, A*, Dijkstrov algoritem
in umetno inteligenco pri reSevanju naklju¢no generiranega labirinta. Cilj diplomskega dela je
analiza literature in analiticna primerjava uspesnosti algoritmov pri reSevanju nakljuc¢no
generiranega labirinta. Analiza algoritmov in umetne inteligence je zajemala Cas reSevanja
labirinta, Stevilo obiskanih vozliS¢ in sposobnost algoritma, da najde konc¢no vozlisce.
Algoritme smo primerjali na razli¢nih velikostih labirintov, in sicer 11x11, 21x21 in 31x31, z

namenom simulacije razli¢nih kompleksnosti problemov.

Algoritmi iskanja poti so v vseh testnih primerih pokazali izjemno zanesljivost s 100-%
uspesnostjo pri iskanju cilja. Algoritem A* se je izkazal kot najbolj optimiziran, saj je dosegel
cilj z najmanjSim Stevilom obiskanih vozliS¢, kar nakazuje na uspeSno uporabo hevristi¢ne
funkcije. Dijkstrov algoritem je bil najhitrejsi, vendar je obiskal najve¢ vozlis¢, kar nakazuje na
potencialne tezave pri vecjih in zahtevnejSih problemih. Algoritem BFS je pokazal konsistentno

delovanje z zmernim obiskom vozlIi$¢ in hitrostjo reSevanja problema.

Umetno inteligenco smo implementirali s pomocjo strojnega ucenja na osnovi globokega Q-
ucéenja DQN. Za namen diplomskega dela smo umetno inteligenco ucili na naklju¢no
generiranih labirintih velikosti 11x11. Dosezen uspeh ucenja Ul je 32,4 %, kar moramo
upoSstevati pri konénih rezultatih primerjave algoritmov iskanja poti in umetne inteligence.
Velikost labirinta je moc¢no vplivala na uspeh resevanja problema UI. Najboljsi ¢asovni rezultat
Ul je zabelezen na labirintih velikosti 11x11, na katerih je bila UI u¢ena. Uspe$no doseZen cilj
rezultate na labirintu velikosti 21x21 in 31x31, kar nakazuje na slabSanje u¢inkovitosti Ul na
kompleksnej$ih problemih. Tak$ni rezultati so bili pricakovani, saj je strojno ucenje

najucinkovitejSe na podatkih, na katerih je bilo uceno.

Algoritmi iskanja poti so hitreje reevali problem v pram Ul Cas resevanja problema smo
belezili v milisekundah. Primerjavo algoritmov iskanja poti in UI smo izvedli na tiso¢ primerih
na naklju¢no generiranih labirintih razli¢ne velikosti. Algoritmi iskanja poti so bili bistveno

hitrej$i v primerjavi z U, saj je morala izraCunati Q-vrednost za vsako novo stanje.

Uporaba algoritmov iskanja poti v prakticnem okolju je Se vnaprej zazelena, saj je potrebna

100-% ucinkovitost in hitra odzivnost pri reSevanju problema. Njihova deterministi¢na narava
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in dokazana ucinkovitost jih delata zanesljive za kriticne aplikacije. Vendar pa pristopi umetne
inteligence ponujajo potencial za ucenje iz izkuSenj, kar lahko postane prednost v dinami¢nih

okoljih, kjer se pogoji spreminjajo.

Pomembno je poudariti, da so rezultati umetne inteligence odvisni od kakovosti u¢nega procesa,
koli¢ine u¢nih podatkov in arhitekture nevronske mreze. Z dodatnim ucenjem na raznolikih

labirintih razli¢nih velikosti bi se lahko njena splo$na uspesnost obcutno izboljsala.

Izbira med algoritmi iskanja poti in Ul je odvisna od problema, ki ga zelimo resiti, zahtevane
zanesljivosti, ¢asovnih omejitev in narave problema. Algoritmi iskanja poti so primerni za
aplikacije, ki zahtevajo 100-% uspeSnost in hitro reSevanje. Ul ponuja potencialno prilagajanje
pri reSevanju kompleksnih dinami¢nih problemov, vendar z ve¢jimi racunskimi zahtevami in
manj$im zagotavljanjem uspesnosti. Prednost Ul je neprestano ucenje na vnosnih podatkih, kar

omogoca izboljSanje Casa reSevanja problema in ucinkovitost resitve.

Za nadaljnje raziskovanje Ul priporo¢amo testiranje z drugimi algoritmi strojnega ucenja,
drugacnimi parametri ucenja, ve¢jim stevilom labirintov in razli¢nimi testnimi okolji. Prav tako
je smiselno raziskati hibridne pristope, ki bi kombinirali prednosti deterministi¢nih algoritmov

in prilagodljivosti UL
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