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POVZETEK 

V diplomskem delu je predstavljena primerjava algoritmov iskanja poti in umetne inteligence 

pri reševanju naključno generiranih labirintov. Namen diplomskega dela je ugotovitev 

učinkovitosti in hitrosti različnih pristopov k reševanju poti v kompleksnih strukturah. 

V teoretičnem delu so obravnavani algoritmi iskanja najkrajše poti, in sicer algoritem A*, 

preiskovanje v širino in Dijkstrov algoritem. Predstavljena je tudi teorija grafov in mrež ter 

vloga hevristike pri iskanju poti. Posebno poglavje je namenjeno umetni inteligenci in njenemu 

pomenu pri reševanju problema iskanja poti. 

Za empirično raziskavo je bila razvita aplikacija v programskem jeziku Python z grafičnim 

uporabniškim vmesnikom. Aplikacija omogoča generiranje naključnih labirintov različnih 

velikosti ter vizualizacijo delovanja posameznih algoritmov. Za simulacijo umetne inteligence 

je bil implementiran pristop globokega Q-učenja z uporabo knjižnice PyTorch. 

Testiranje je potekalo na tisoč naključno generiranih labirintih za naslednje velikosti, in sicer 

11x11, 21x21 in 31x31. Merjeni so bili čas iskanja, število obiskanih vozlišč in uspešno 

doseganje cilja. Algoritmi iskanja poti so pokazali 100-% uspešnost pri vseh velikostih 

labirintov. Algoritem A* se je izkazal kot najbolj optimiziran z najmanjšim obiskom vozlišč, 

medtem ko je Dijkstrov algoritem najhitreje našel končno vozlišče. Umetna inteligenca je 

dosegla 60,3-% uspešnost na labirintih velikosti 11x11, vendar se je njena učinkovitost občutno 

zmanjšala pri večjih labirintih, in sicer 8,1-% uspešnost na labirintih velikosti 21x21 in 2,8-% 

uspešnost na labirintih velikosti 31x31.  

Rezultati nakazujejo, da so tradicionalni algoritmi iskanja poti bolj zanesljivi in učinkoviti za 

praktične aplikacije, kjer je potrebna 100-% učinkovitost in uspešnost. Umetna inteligenca 

ponuja potencialno boljše rezultate, vendar zahteva obsežnejše učenje na raznolikih podatkih 

za doseganje primerljivih rezultatov z algoritmi iskanja poti. Diplomsko delo prispeva k 

boljšemu razumevanju prednosti in omejitev različnih pristopov iskanja poti v kompleksnih 

strukturah. V prihodnosti bi bilo smiselno raziskati še druge metode umetne inteligence ter 

optimizirati procese učenja, da bi se dosegla večja uspešnost pri reševanju zahtevnejših 

labirintov. 

Ključne besede: umetna inteligenca, strojno učenje, mreže, grafi, algoritmi iskanja poti. 

  



  

ABSTRACT  

COMPARISON OF PATH FINDING ALGORITHMS AND ARTIFICIAL 

INTELLIGENCE IN A RANDOMLY GENERATED MAZE 

This thesis presents a comparison of pathfinding algorithms and artificial intelligence in solving 

randomly generated mazes. The purpose of the thesis is to determine the effectiveness and speed 

of different approaches to solving paths in complex structures. 

 

The theoretical part deals with algorithms for finding the shortest path, namely the A* 

algorithm, breadth-first search, and Dijkstra's algorithm. Graph and network theory and the role 

of heuristics in pathfinding are also presented. A special chapter is devoted to artificial 

intelligence and its importance in solving the pathfinding problem. 

 

For empirical research, an application was developed in the Python programming language with 

a graphical user interface. The application enables the generation of random mazes of various 

sizes and the visualization of the operation of individual algorithms. To simulate artificial 

intelligence, a deep Q-learning approach was implemented using the PyTorch library. 

 

The testing was conducted on a thousand randomly generated mazes of the following sizes: 

11x11, 21x21, and 31x31. The search time, number of visited nodes, and successful goal 

achievement were measured. The pathfinding algorithms showed 100% success for all maze 

sizes. The A* algorithm proved to be the most optimized with the fewest node visits, while 

Dijkstra's algorithm found the final node the fastest. Artificial intelligence achieved 60.3% 

success on 11x11 mazes, but its efficiency decreased significantly in larger mazes, with 8.1% 

success in 21x21 mazes and 2.8% success in 31x31 mazes. 

 

The results indicate that traditional pathfinding algorithms are more reliable and effective for 

practical applications where 100% efficiency and success are required. Artificial intelligence 

offers potentially better results but requires more extensive learning on diverse data to achieve 

comparable results with pathfinding algorithms. This thesis contributes to a better 

understanding of the advantages and limitations of different approaches to pathfinding in 

complex structures.  

 

Keywords: artificial intelligence, machine learning, networks, graphs, pathfinding algorithms 
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1 UVOD 

V dobi napredne računalniške tehnologije in umetne inteligence je iskanje optimalnih poti v 

kompleksnih strukturah postalo ključno za reševanje številnih problemov. Od navigacijskih 

sistemov, robotike in videoiger se algoritmi iskanja poti nenehno razvijajo in izpopolnjujejo. 

Labirint kot abstraktna struktura predstavlja idealno okolje za primerjavo različnih pristopov, 

saj omogoča kontrolirano analizo učinkovitosti algoritmov iskanja poti in umetne inteligence. 

Naključno generirani labirinti zagotavljajo nepristranske pogoje za ovrednotenje delovanja 

algoritmov v nepredvidljivih okoljih. 

1.1 Opis področja in opredelitev problema 

Cormen idr. (2022) definirajo algoritem kot računalniški postopek, ki vzame poljubno vrednost 

ali niz vrednosti kot vhod in ustvari izhod ali niz vrednosti v določenem času. Torej gre za 

zaporedje računalniških postopkov, ki pretvorijo vhod v izhod. 

Algoritem je orodje, ki opisuje postopek reševanja računalniških problemov. Določa želeno 

razmerje med vhodi in izhodi. Definiran je kot računalniški program, ki vsebuje postopek za 

proceduro (Cormen, Leiserson, Rivest in Clifford, 2022). 

Algoritem je pravilen, če za vsak problem, ki ga dobimo kot vhodni podatek, ustvari in konča 

računanje v končnem času in poda pravilen odgovor. Pravilen algoritem reši trenutni problem. 

Nepravilen algoritem lahko poteka neskončno ali poda nepravilen rezultat (Cormen, Leiserson, 

Rivest, in Clifford, 2022). 

Računalniški viri so zaradi številnih dejavnikov omejeni. Učinkovitost algoritmov merimo z 

uporabo računalniških virov. Učinkovit algoritem optimalno uporabi časovne in prostorske vire. 

Prostorska učinkovitost se na primer uporablja za merjenje količine pomnilnika, ki je potrebna 

za izvajanje algoritma. Hitreje kot algoritem konvergira, večja je natančnost algoritma in 

manjše je število iteracij. Na učinkovitost algoritma vplivajo tudi pomnilniške zahteve 

programa. S povečevanjem števila iteracij lahko poraba pomnilnika poslabša učinkovitost 

sistema (Choudhury, Ghose, Islam in Yogita, 2024). 

Za učinkovite algoritme so potrebne podatkovne strukture. Te nam omogočajo shranjevanje 

podatkov za lažji dostop in spreminjanje le-teh. Podatkovna struktura ne deluje dobro za vse 
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namene, zato je njihova ustrezna izbira ključna za optimalno delovanje algoritmov (Cormen, 

Leiserson, Rivest in Clifford, 2022). 

Internet omogoča ljudem po vsem svetu hiter dostop in iskanje velike količine informacij. S 

pomočjo algoritmov spletna mesta upravljajo velike količine podatkov. Primer uporabe 

algoritmov lahko najdemo v iskalnikih, kot je iskalnik Google (angl. Google search engine), in 

v iskanju najkrajše poti do cilja (Cormen, Leiserson, Rivest in Clifford , 2022). 

V številnih primerih želimo primerjati dva algoritma. Na splošno lahko učinkovitost algoritma 

ocenimo glede na čas izvajanja kot funkcijo velikosti vhodnih podatkov. Ko govorimo o 

učinkovitosti algoritma vedno upoštevamo najslabši možni rezultat. Za učinkovitost algoritmov 

uporabljamo notacijo Big O. 

Zapis Big O je matematični zapis, ki opisuje mejno obnašanje funkcije, ko argument teži k 

določeni vrednosti ali neskončnosti. V računalništvu se zapis velikega O uporablja za 

razvrščanje algoritmov glede na to, kako se njihov čas izvajanja ali prostorske zahteve 

povečujejo z rastjo velikosti vhoda (Cormen, Leiserson, Rivest in Clifford, 2022). 

V računalništvu se zapis vrstnega reda uporablja predvsem za primerjavo učinkovitosti 

algoritmov. Pri analizi učinkovitosti algoritmov je še posebej uporaben zapis Big O. V tem 

primeru je n velikost vhoda, f (n) pa je čas delovanja algoritma glede na velikost vhoda. 

V diplomskem delu se bomo osredotočili na primerjavo algoritmov iskanja poti in umetne 

inteligence v naključno generiranem labirintu. Cilj diplomskega dela je primerjava algoritmov 

in umetne inteligence ter ugotovitev, kateri pristop k reševanju problema je najhitrejši in 

optimalen. 

Rezultati diplomskega dela bodo pomagali razvijalcem programske opreme pri izbiri primernih 

algoritmov iskanja poti za njihove aplikacije. Diplomsko delo bo prispevalo k boljšemu 

razumevanju prednosti in omejitev algoritmov iskanja poti in umetne inteligence pri reševanju 

problemov navigacije in iskanja poti v kompleksnih strukturah. 

1.2 Namen, cilji in osnovne trditve 

Namen diplomskega dela je pregled obstoječe literature na področju algoritmov iskanja poti in 

primerjava učinkovitosti iskanja poti algoritmov A star, Dijkstrovega algoritma, algoritma 

preiskovanja v širino in umetne inteligence v naključno generiranem labirintu. Primerjava bo 



 

 11 

temeljila na več kriterijih, vključno s časom in uspešnostjo reševanja ter številom obiskanih 

vozlišč. 

 

Cilji diplomskega dela so naslednji, in sicer: 

- Ugotoviti, ali je algoritem A star najpopularnejši algoritem za iskanje poti. 

- Primerjati algoritme iskanja poti in umetne inteligence v naključno generiranem labirintu. 

- Ugotoviti, ali obstaja umetna inteligenca za iskanje najkrajše poti v naključno generiranem 

labirintu. 

- Ugotoviti, ali je umetna inteligenca najučinkovitejša pri iskanju poti v naključno 

generiranem labirintu v primerjavi z algoritmi A*, Dijkstrovim algoritmom in algoritmom 

BFS. 

 

Hipoteze, ki jih bo diplomsko delo preverilo, so naslednje, in sicer: 

 

Hipoteza 1: A* je najpopularnejši algoritem. 

 

Hipoteza 2: Obstaja umetna inteligenca, ki najde najkrajšo pot tudi iz takega labirinta, pri 

katerem imajo ostali algoritmi omejitve. 

 

Hipoteza 3: A* algoritem bo hitrejši in bolj učinkovit pri iskanju najkrajše poti v naključno 

generiranih labirintih v primerjavi z drugimi algoritmi. 

 

Hipoteza 4: Umetna inteligenca bo najučinkovitejša pri iskanju najkrajše poti v naključno 

generiranem labirintu v primerjavi z algoritmi A*, Dijkstrovim algoritmom in BFS. 

1.3 Predpostavke in omejitve 

V diplomskem delu se soočamo s predpostavkami in omejitvami, ki vplivajo na rezultate. 

Predpostavke: 

- Predpostavljamo, da so vse meritve algoritmov in umetne inteligence izvedene na naključno 

generiranih labirintih velikosti 11x11, 21x21 in 31x31. To omogoča, da so testi nepristranski 

in objektivni pri analizi hitrosti ter učinkovitosti algoritmov in umetne inteligence. 

- Predpostavljamo, da so vse informacije pridobljene iz akreditiranih virov informacij in so 

relevantne za to področje raziskave. 



 

 12 

Omejitve: 

- V diplomskem delu bomo uporabili strojno učenje za simulacijo umetne inteligence. Učenje 

bo izvedeno na labirintu velikosti 11x11, kar bo vplivalo na rezultate umetne inteligence. 

- Rezultati analize so odvisni od specifičnih testov in meritev, ki se izvajajo. Drugačne 

metode analize bi lahko privedle do drugačnih rezultatov. 

- Algoritem A* je odvisen od hevristike, boljša kot je ta, boljši so rezultati. V diplomskem 

delu ne bomo obravnavali različnih možnosti vpliva hevristike na algoritem A*. 

1.4 Uporabljene raziskovalne metode 

V diplomskem delu smo uporabili več raziskovalnih metod, ki so pomagale pri pridobitvi 

podatkov ter primerjavi algoritmov iskanja poti in umetne inteligence. Te metode so:             

- Pregled literature: Izvedli smo pregled trenutno znane znanstvene literature z namenom 

pridobitve verodostojnih in preverjenih informacij. Pregled literature je pomagal razumeti 

in primerjati algoritme iskanja poti in umetno inteligenco. 

- Eksperimentalno testiranje: V okviru diplomskega dela smo razvili aplikacijo v 

programskem jeziku Python. Aplikacija nam je omogočala primerjavo in analizo algoritmov 

iskanja poti in umetne inteligence v naključno generiranem labirintu. To nam je omogočalo 

izvesti analizo učinkovitosti in hitrosti algoritmov in umetne inteligence na labirintih 

različnih velikosti. Večanje labirinta nam je omogočalo simulacijo kompleksnejših 

problemov, in s tem ugotoviti, kako se obnašajo algoritmi in umetna inteligenca pri 

reševanju le-teh. 

- Analiza: S pomočjo trenutno znane znanstvene raziskave in rezultatov eksperimentalnega 

testiranja smo lahko odgovorili na zastavljena vprašanja v okviru diplomske naloge.   
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2 ALGORITMI ISKANJA NAJKRAJŠE POTI 

Ljudje uporabljajo zemljevide za veliko stvari, na primer za iskanje krajev, restavracij, 

bencinskih črpalk ali iskanje poti do želenega cilja. Ko zahtevamo pot od začetne točke do 

končnega cilja, vedno dobimo najkrajšo pot. Problem najkrajše poti se preučuje že vrsto let. 

Problem najkrajše poti je problem, ki najde najmanjšo razdaljo ali pot med vozlišči ali vrhovi 

v grafu. Graf je abstraktni matematični objekt, ki vsebuje množice vrhov in robov (Kairanbay 

in Jani, 2013), (Rachmawati in Gustin, 2020). 

 

Algoritmi za iskanje poti se uporabljajo za reševanje problema najkrajše in optimalne poti. 

Običajno se uporabljata algoritma A* in Dijkstra kot metoda rešitve za iskanje najkrajše poti. 

Iskanje poti je izrisovanje vozlišč. Cilj algoritma je iskanje najkrajše poti med dvema točkama 

od začetka do cilja. Iskanje poti je glavna sestavina številnih pomembnih aplikacij na področjih 

videoiger, robotike (Hunkeler, Schär, Dornberger in Hanne, 2016), simulacije množic (Wolsey, 

1998) in GPS (Carr, 2014) (Rafiq, Tuty Asmawaty in Ihsan, Pathfinding Algorithms in Game 

Development, 2020). 

 

Iskalni algoritmi so že dolgo časa v središču zanimanja na področju računalništva. Iskanja 

morajo biti hitra, natančna in učinkovita, vsako odstopanje od teh lastnosti pa se šteje za veliko 

napako. Iskanje lahko delimo na informirano in neinformirano. Najpogostejše iskanje je 

informirano. Pri informiranem iskanju se uporablja hevristično funkcijo, ki meri oddaljenost od 

cilja za sprejemanje boljših odločitev (Foead , Ghifari, Kusuma, Hanafiah in Gunawan , 2021). 

Iskanje optimalne poti je sicer zaželeno, vendar ni vedno nujno, odvisno od končne uporabe. V 

nekaterih primerih, na primer pri sistemih za upravljanje GPS v realnem času, bodo uporabniki 

bolj cenili takojšen in hiter odziv kot vedno optimalno pot (Aria, 2018), (Foead , Ghifari, 

Kusuma, Hanafiah in Gunawan , 2021). 

Informirana iskanja, kot so IDA*, A* in Jump Point Search IDA*, običajno uporabljajo 

nekatere zunanje podatke za povečanje učinkovitosti in temeljijo na zmožnosti pretvorbe ciljev 

v podatke. Hevristične funkcije delujejo izjemno dobro, kadar je iskalno območje dobro znano, 

na primer zemljevid, vendar lahko trpijo, če so podatki netočni ali neznani (Foead , Ghifari, 

Kusuma, Hanafiah in Gunawan , 2021). 
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Nasprotno pa neinformirana iskanja slepo sledijo svojemu algoritmu do zaključka, kar jih 

običajno naredi počasnejša, a manj odvisna od zunanjih dejavnikov. Na primer v igrah se je 

neinformirano iskanje, kot je Dijkstrov algoritem, izkazalo za izjemno neučinkovito v 

primerjavi s HPA*, saj je optimalno pot našlo skoraj trikrat počasneje (Noori in Moradi, 2015), 

(Foead , Ghifari, Kusuma, Hanafiah in Gunawan , 2021). 
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3  GRAFI IN MREŽE 

Algoritmi iskanja so predstavljeni s pomočjo grafov in mrež. V matematiki in računalništvu je 

teorija grafov študija grafov, ki so matematične strukture, uporabljene za modeliranje parnih 

odnosov med objekti.  

3.1 Graf 

Graf je sestavljen iz vrhov, imenovanih tudi vozlišča ali točke, ki so povezani z robovi, 

imenovanimi tudi loki, povezave ali črte. Razlikujemo med neusmerjenimi grafi, kjer robovi 

simetrično povezujejo dva vrhova, in usmerjenimi grafi, kjer robovi asimetrično povezujejo 

dva vrhova. 

 

V enem omejenem, a zelo pogostem pomenu izraza je graf urejen par 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), ki vsebuje:  

• V - množico vozlišč; 

• E - E ⊆ {{x, y} ∣ x, y ∈ V in x ≠ y}, množico povezav, imenovanih tudi robovi ali črte, kjer 

so povezave neurejeni pari vozlišč, torej je povezava določena z dvema različnima 

vozliščema (Bender in Williamson, 2010), (Berge, 1958). 

 

Graf je lahko usmerjen ali neusmerjen. V primeru usmerjene povezave velja, da:  

 

{u, v} ≠ {v, u}. 
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Slika 1: Usmerjen graf 

Vir: Diskretna matematika: teorija grafov. Višja strokovna šola Academia Maribor, 2024. 

 

 

V primeru neusmerjene povezave velja, da: 

 

{𝑢𝑢, 𝑣𝑣} = {𝑣𝑣,𝑢𝑢}. 

 

 
Slika 2: Usmerjen graf 

Vir: Diskretna matematika: teorija grafov. Višja strokovna šola Academia Maribor, 2024. 
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Obtežen graf 𝐺𝐺 je graf, kjer vsaki povezavi dodamo zahtevnost oziroma težo. Zapišemo 𝐺𝐺 =

(𝑉𝑉,𝐸𝐸,𝐶𝐶), kjer je 𝐶𝐶(𝐺𝐺) množica obtežitev povezav grafa. 

 

 
Slika 3: Obtežen graf 

Vir: Diskretna matematika: teorija grafov. Višja strokovna šola Academia Maribor, 2024. 

3.2 Mreže 

Algoritme iskanja optimalne poti najlažje predstavimo na mrežnih površinah. Da lažje 

primerjamo pot in učinkovitost algoritma, je potrebno razumeti mrežne površine. 

 

Iskanje poti je pomemben problem za številne aplikacije, vključno z omrežnim prometom, 

načrtovanjem robotov, vojaškimi simulacijami in računalniškimi igrami. Najpogostejši scenarij 

je uporaba mreže ploščic. Ploščica ima štiri sosednja vozlišča (b = 4). Zato je treba pri iskanju 

poti upoštevati štiri sosednje ploščice, ki jih je treba raziskati. Ker se nikoli ne vrnemo nazaj 

vzdolž optimalne poti, ni treba upoštevati smeri, ki smo jo že obiskali. Zato je število vozlišč, 

ki jih je treba raziskati tri (b = 3) (Yap, 2002). 
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Slika 4: Prikaz mreže 

Vir: Yap, P. Grid-Based Path-Finding: lecture notes in computer science, 2002. 

 

Oglejmo si šesterokotno mrežo, kjer ima vsako vozlišče šest možnih smeri gibanja, in sicer 

sever, severovzhod, jugovzhod, jug, jugozahod in severozahod. Na prvi pogled bi lahko 

sklepali, da ima takšna mreža faktor razvejanosti enak 5, saj na vsakem koraku obstaja pet 

možnih poti naprej, če ne štejemo poti nazaj. Vendar pa lahko to število zmanjšamo z 

upoštevanjem optimalnega iskalnega algoritma. Recimo, da se premaknemo iz ploščice 1 na 

ploščico 2 v smeri sever. Ko razmišljamo o nadaljnjih korakih z nove pozicije, upoštevamo 

samo tista gibanja, ki so smiselna v kontekstu iskanja najkrajše poti. Gibanja nazaj ne štejemo, 

prav tako izločimo smeri SV in SZ, ker bi v primeru optimalne poti te smeri izhajale iz drugih 

odločitev že prej. Tako na vsaki ploščici ostanejo le tri smiselne možnosti za nadaljnje gibanje. 

Zaradi tega je efektivni faktor razvejanosti šesterokotne mreže zmanjšan na tri (b = 3) (Yap, 

2002). 
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Slika 5: Prikaz šesterokotne mreže 

Vir: Yap, P. Grid-Based Path-Finding: lecture notes in computer science, 2002. 

 

Za diplomsko delo bomo uporabili preprosto mrežo, ki omogoča štirismerno premikanje. Mreža 

bo sestavljena iz belih in sivih kvadratov. Siv kvadrat bo predstavljal oviro, ki je algoritem ne 

sme prečkati. Vsak kvadrat predstavlja svoje vozlišče. 
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Slika 6: Prikaz preproste mreže 

Vir: Yap, P. Grid-Based Path-Finding: lecture notes in computer science, 2002. 

3.3 Hevristika 

Običajno se pri iskanju poti uporablja hevristika. Hevristika je nekaj, kar daje grobo oceno, 

kako daleč je do cilja. Običajno se neposredno uporablja realna evklidska razdalja do cilja, saj 

je ta hitra in običajno daje razmeroma dobre rezultate. Težava je v tem, da v primerih, ki niso 

samo odprt prostor z nekaj majhnimi ovirami, raztresenimi naokoli, ta ocena ni preveč dobra. 

Posledica tega je, da gre iskanje skozi veliko več vozlišč, kot bi bilo potrebno, če bi bila 

hevristika boljša. 

Hevristična funkcija h(n) podaja ocenjeni strošek od trenutnega vozlišča do ciljnega vozlišča, 

deluje kot informirano ugibanje algoritma o preostali poti. 
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V mrežnih ali kartografskih problemih se uporablja Manhattanska in Evklidska funkcija za 

računanje razdalje od začetnega do končnega vozlišča. 

Manhattansko razdaljo lahko izračunamo z naslednjo funkcijo: 

ℎ(𝑛𝑛)  =  |𝑥𝑥1 − 𝑥𝑥2| + |𝑦𝑦1 − 𝑦𝑦2|. 

Evklidsko razdaljo lahko izračunamo z naslednjo funkcijo: 

 

ℎ(𝑛𝑛)  =  �(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2. 

 

Končno oceno poti lahko naredimo s funkcijo: 

 

𝑓𝑓(𝑛𝑛)  =  𝑔𝑔(𝑛𝑛)  +  ℎ(𝑛𝑛). 

Kjer je: 

𝑓𝑓(𝑛𝑛)  - ocenjevalna funkcija, 

𝑔𝑔(𝑛𝑛)  - razdalja od začetnega vozlišča do trenutnega vozlišča, 

ℎ(𝑛𝑛)  - hevristika od vozlišča n. 
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4 ALGORITEM A*  

Algoritem A* je preizkušena metoda, ki se uporablja kot osnova za reševanje problemov iskanja 

poti. Običajno se algoritem A* uporablja za splošne in strateške igre, njegova stabilnost in 

hitrost pa sta se v zadnjem desetletju dodatno izboljšali (Foead , Ghifari, Kusuma, Hanafiah in 

Gunawan, 2021). 

Foead idr. (2021) navajajo, da se algoritem že dolgo uporablja v raziskovalni skupnosti za 

iskanje poti. Njegova učinkovitost, preprostost in modularnost so pogosto poudarjene kot 

prednosti v primerjavi z drugimi algoritmi. Zaradi svoje vsesplošne in razširjene uporabe je A* 

postal standard za raziskovalce, ki poskušajo rešiti probleme iskanja poti. Vendar ni zanesljiv, 

saj v številnih primerih potrebuje dodaten algoritem ali spremembo svojih osnovnih funkcij, da 

lahko opravi te zapletene naloge. Algoritem ni optimalen pri Multi-agent pathfinding 

problemih, saj se srečuje s številnimi ovirami, kot so nasprotujoče si poti med agenti (Felner 

idr., 2018). 

Na splošno je A* običajno dosleden pri reševanju različnih problemov, vendar zahteva 

prilagoditev, da doseže najboljše rezultate. Kljub temu je še vedno izjemno učinkovit pri 

širokem naboru iskalnih nalog, dokler njegova glavna slabost, odvisnost od hevristične 

funkcije, ni bistvena ali ne predstavlja težave (Foead , Ghifari, Kusuma, Hanafiah in Gunawan, 

2021). 

4.1 Prednosti algoritma A* 

Pomemben dejavnik iskanja z algoritmom A* je njegova učinkovitost. Medtem ko lahko večina 

dobro zasnovanih algoritmov za iskanje poti najde rešitev, bodo mnogi pri tem porabili več 

časa, virov ali obojega v primerjavi z A*. Razlika v splošni učinkovitosti lahko znaša več kot 

40 %, v nekaterih primerih pa do 30 % (Barnouti, Al-Dabbagh in Naser, 2016), (Foead , Ghifari, 

Kusuma, Hanafiah in Gunawan, 2021). 

Algoritem A* lahko najde pot veliko hitreje kot neinformirano iskanje, vendar ne zagotavlja, 

da bo rezultat najkrajša pot. Raziskava je pokazala, da bo algoritem A* v nekaterih primerih 

strateških zemljevidov in labirintov pokazal le 85 % časa rezultat, pri katerem najde najkrajšo 

pot (Barnouti, Al-Dabbagh in Naser, 2016). 
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Poleg tega je A* izjemno modularen in ga je mogoče prilagoditi širokemu spektru potreb. 

Vendar pa niso vse prilagoditve nujno izboljšave, nekatere optimizacije, ki dajejo prednost 

hitrosti, lahko vodijo do tega, da ne najdejo najboljše poti. To je pokazal eksperiment z 29 

vozlišči in 4 križišči, v katerem so primerjali algoritme HPA*, A*, Dijkstra in IDA*. HPA* 

sicer ni našel najhitrejše poti, a je zaključil izračun izjemno hitro, medtem ko so bili drugi 

algoritmi počasnejši, vendar so dosegli optimalen rezultat. 

Algoritem A* je samostojno še vedno bolje opravil kot Dijkstrov algoritem, saj je optimalno 

pot našel dvakrat hitreje. Ta primer jasno prikazuje potencialno povečano učinkovitost 

hevristične funkcije (Foead, Ghifari, Kusuma, Hanafiah in Gunawan , 2021). 

A* lahko najde optimalne in skoraj optimalne rešitve učinkoviteje, tako da usmeri iskanje k 

cilju s pomočjo hevrističnih funkcij, s čimer se bistveno zmanjša njegova časovna zahtevnost 

(Soltani, Tawfik, Goulermas in Fernando, 2002). 

4.2 Slabosti algoritma A* 

Ena glavnih slabosti algoritma A* je njegova slabša zmogljivost pri dvosmernem iskanju. V 

eksperimentu o dvosmernem iskanju v grafih so raziskovalci ugotovili, da se je dvosmerni A* 

odrezal zelo slabo v primerjavi z dvosmernim BFS. Še posebej se je BFS izkazal pri večjih 

mrežah velikosti 16×16, medtem ko je A* včasih imel prednost pri manjših mrežah velikosti 

8×8 (Kumar, 2019), (Foead, Ghifari, Kusuma, Hanafiah in Gunawan, 2021). 

Na splošno tradicionalni osnovni algoritem A* ne more slediti vse večjim zahtevam iskanja 

poti. Vendar pa lahko s pravilnimi prilagoditvami in izboljšavami še vedno konkurira drugim 

algoritmom.  

Zaradi ogromnega števila različnih situacij pri iskanju poti ni mogoče razviti univerzalne 

rešitve, ki bi delovala v vseh primerih. Jasno je, da klasični A* postopoma izgublja 

priljubljenost pri reševanju kompleksnih problemov, medtem ko njegove izboljšane različice še 

vedno dosegajo visoko hitrost in večjo učinkovitost. Prihodnji razvoj algoritma A* bo moral 

vključevati prilagoditve, kot je uporaba zgoščevalnih tabel (angl. hash tables) ali zanašanje na 

druge algoritme za natančnejše hevristike, saj te spremembe neposredno odpravljajo njegove 

slabosti (Foead, Ghifari, Kusuma, Hanafiah in Gunawan, 2021). 
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Uspešnost in učinkovitost A* iskalnega algoritma je močno odvisna od kakovosti hevristične 

funkcije. Zato postane oblikovanje optimalne hevristične funkcije glavni cilj pri razvoju 

iskalnega algoritma (Yiu, Du in Mahapatra, 2018). 

4.3 Psevdokoda in načrt implementacije algoritma A*  

Algoritem A* uporablja dve funkciji, in sicer funkcijo razdalje g(n) in hevristično funkcijo 

h(n). Ti sta ključni za oceno uspešnosti algoritma.  

 

Končno oceno poti lahko naredimo s funkcijo: 

 

𝑓𝑓(𝑛𝑛)  =  𝑔𝑔(𝑛𝑛)  +  ℎ(𝑛𝑛). 

Kjer je: 

𝑓𝑓(𝑛𝑛) - ocenjevalna funkcija, 

𝑔𝑔(𝑛𝑛) - razdalja od začetnega vozlišča do trenutnega vozlišča, 

ℎ(𝑛𝑛) - hevristika od vozlišča n. 

 

Algoritem implementiramo s pomočjo psevdokode, zapisane v programskem jeziku Python. 
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Slika 7: Psevdokoda algoritma A star 

Vir: https://www.datacamp.com/tutorial/a-star-algorithm, 2025 

https://www.datacamp.com/tutorial/a-star-algorithm
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5 ALGORITEM BREADTH-FIRST SEARCH 

Algoritem preiskovanja v širino (angl. Breadth-First Search) je algoritem za iskanje vozlišča v 

drevesni podatkovni strukturi, ki izpolnjuje določen pogoj. Začne pri korenu drevesa in preišče 

vsa vozlišča na trenutni globini, preden preide na vozlišča na naslednji globinski ravni. Za 

shranjevanje otroških vozlišč, ki so bila odkrita, a še niso raziskana, uporablja dodaten 

pomnilnik, običajno vrsto (angl. queue). Preiskovanje v širino lahko posplošimo na 

neusmerjene in usmerjene grafe z določenim začetnim vozliščem. 

Preiskovanje v širino je pomemben gradnik mnogih algoritmov na grafih. Pogosto se uporablja 

za preverjanje povezanosti ali izračun najkrajših poti z enim virom v neuteženih grafih (Beamer, 

Asanović in Patterson, 2013). 

Algoritmi za grafe (angl. Graph algorithms) postajajo vse pomembnejši. V velikih 

računalniških sistemih se izvajajo algoritmi za analizo ogromnih količin podatkov. Na mobilnih 

aplikacijah so algoritmi za grafe uporabljeni za strojno učenje. Žal so aplikacije pogosto 

omejene s skupnim pomnilnikom (angl. shared-memory systems). Iskanje po širini, ki je 

pomemben gradnik številnih drugih grafnih algoritmov, ima nizko računsko zmogljivost, kar še 

poslabša pomanjkanje lociranosti in posledično nizko skupno zmogljivost. Za pospešitev BFS 

je bilo veliko predhodnega dela, kjer so spreminjali algoritme in podatkovne strukture, v 

nekaterih primerih tudi z dodajanjem dodatnega računalniškega dela, da bi izboljšali lokalnost 

in povečali splošno zmogljivost. Vendar pa nobena od teh metod ni poskušala zmanjšati števila 

pregledanih povezav. Da bi pospešili BFS, je bilo v preteklosti opravljeno veliko dela za 

spremembo algoritma in podatkovnih struktur, v nekaterih primerih z dodatnim računskim 

delom, da bi povečali lokacijo in skupno zmogljivost (Agarwal, Petrini, Pasetto in Bader, 2010), 

(Buluç in Madduri, 2011), (Hong, Ogunteb in Olukotun, 2011), (Yoo in drugi, 2005), (Beamer, 

Asanović in Patterson, 2013). 

5.1 Prednosti algoritma BFS 

Delovanje BFS se začne pri izvorni točki, nato pa se iskalna meja postopoma širi navzven, pri 

čemer na vsakem koraku obišče vsa vozlišča na isti globinski ravni, preden preide na globljo 

raven (Beamer, Asanović in Patterson, 2013). 
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Pri klasičnem pristopu od zgoraj navzdol vsako vozlišče preveri vse svoje sosednje točke, da 

ugotovi, ali so še neobiskane. Vsaka neobiskovana točka se doda v iskalno mejo in se označi 

kot obiskana tako, da se nastavi spremenljivka starša. Ta algoritem ustvari BFS drevo, ki 

pokriva povezano komponento z izhodiščnim vozliščem (Beamer, Asanović in Patterson, 

2013). 

Večina računske obremenitve pri iskanju v širino je preverjanje povezav na sosednji točki, da 

se ugotovi, ali je ciljno vozlišče že bilo obiskano. Skupno število preverjanj povezav v 

klasičnem algoritmu od zgoraj navzdol (angl. top-down) je enako številu povezav v povezani 

komponenti, ki vsebuje izvorno vozlišče, saj se pri vsakem koraku preveri vsaka povezava na 

vozlišču (Beamer, Asanović in Patterson, 2013). 

Pristop od spodaj navzgor (angl. bottom-up) odpravi potrebo po nekaterih operacijah v paralelni 

implementaciji. Pri pristopu od zgoraj navzdol (angl. top-down) bi lahko več niti hkrati pisalo 

v istega otroka, zato so potrebne atomske operacije za zagotovitev medsebojne izključitve. Pri 

pristopu od spodaj navzgor pa piše otrok sam vase, s čimer se odpravi vsakršno tekmovanje. Ta 

prednost, skupaj z morebitnim zmanjšanjem števila pregledanih povezav, pride na račun 

serijske obdelave dela za posamezno vozlišče, vendar še vedno obstaja velika mera paralelizma 

med deli za različna vozlišča. Pristop od spodaj navzgor je prednosten, ko je velik delež vozlišč 

v fronti, vendar povzroči več dela, če je fronta majhna (Beamer, Asanović in Patterson, 2013). 

Zato mora učinkovita implementacija iskanja v širino združevati tako pristop od zgoraj navzdol 

kot tudi pristop od spodaj navzgor. Če je graf neusmerjen, izvajanje pristopa od spodaj navzgor 

ne zahteva nobenih sprememb v podatkovnih strukturah grafa, saj sta že predstavljeni obe smeri 

povezav. Če pa je graf usmerjen, bo korak od spodaj navzgor zahteval inverzni graf, kar lahko 

skoraj podvoji pomnilniški odtis grafa (Beamer, Asanović in Patterson, 2013). 

Algoritem je učinkovit, kadar je cilj blizu začetnega vozlišča, kar je značilno zanj, saj obiskuje 

vsa vozlišča na istem vrhu (Elkari idr., 2024). 

5.2 Slabosti algoritma BFS 

Iskanje po širini, ki zagotavlja najkrajšo pot v natehtanih grafih, ima v navigaciji po labirintu 

precejšnje omejitve. Njegova glavna pomanjkljivost je velika poraba pomnilnika, saj shrani vsa 

vozlišča na trenutni globini, preden nadaljuje na naslednjo raven. Ta značilnost povzroči 

eksponentno rast pomnilnika, zlasti v širokih ali zapletenih labirintih. Poleg tega BFS nima 
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hevrističnega vodenja, zaradi česar raziskuje številne nepomembne poti in v velikih okoljih 

povečuje računski čas (Elkari idr., 2024). 

 

5.3 Psevdokoda in načrt implementacije algoritma BFS 

Algoritem BFS raziskuje graf, tako da najprej obišče vsa sosednja vozlišča. Začne na začetni 

točki (angl. Root level) in nadaljuje pot na istem nivoju, dokler ne obišče vse točke. To lahko 

zapišemo na naslednji način: 

 

𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣) = 1 +  ∑ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑢𝑢)𝑢𝑢 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣šč𝑒𝑒(𝑣𝑣) . 

Kjer je: 

• v - trenutni vrh (angl. Vertex), 

• u - sosednje vozlišče, 

• BFS(u) - vrstni red obiska vrha (Elkari, in drugi, 2024). 

 

S pomočjo psevdokode lahko implementiramo algoritem BFS. 
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Slika 8: Psevdokoda algoritma BFS 

Vir: https://www.datacamp.com/tutorial/breadth-first-search-in-python, 2025 
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6 DIJKSTROV ALGORITEM  

Dijkstrov algoritem se uporablja za iskanje najkrajše poti na grafu, kjer imamo eno izhodno 

točko (Wahyuningsih in Syahreza , 2018), (Rachmawati in Gustin, 2020).  

 

Dijkstrov algoritem najde najkrajšo pot od danega izvornega vozlišča do vsakega vozlišča. 

Uporabimo ga lahko za iskanje najkrajše poti do določenega ciljnega vozlišča, tako da po 

določitvi najkrajše poti do ciljnega vozlišča algoritem zaključimo. Če na primer vozlišča grafa 

predstavljajo mesta, stroški robov pa razdalje med pari mest, ki jih povezuje neposredna cesta, 

lahko Dijkstrov algoritem uporabimo za iskanje najkrajše poti med enim mestom in vsemi 

drugimi mesti. Pogosta uporaba algoritmov za najkrajše poti so omrežni usmerjevalni protokoli, 

predvsem IS-IS (angl. Intermediate System to Intermediate System) in OSPF (angl. Open 

Shortest Path First). Uporablja se tudi kot podprogram v algoritmih, kot je Johnsonov algoritem 

(Kurt in Sanders, 2008). 

 

Dijkstra (Dijkstra, 1959) je optimizacijski algoritem, ki se predvsem uporablja za določanje 

najkrajših poti. Dijkstrov algoritem je neinformiran iskalni algoritem za iskanje najkrajših poti, 

ki se zanaša zgolj na lokalne stroške poti in zagotavlja najkrajšo pot od začetnega do ciljnega 

vozlišča v grafu (Soltani, Tawfik, Goulermas in Fernando, 2002). 

 

Algoritem uporablja podatkovno strukturo čakalne vrste z najmanjšo prioriteto za izbiro 

najkrajših do zdaj znanih poti. Preden so bile odkrite naprednejše strukture prioritetnih čakalnih 

vrst, je Dijkstrov izvirni algoritem deloval v 𝜃𝜃(|𝐸𝐸| + |𝑉𝑉| log|𝑉𝑉|) času, kjer |𝑉𝑉| predstavlja 

število vozlišč (Schrijver, 2012). 

 

Fredman in Tarjan (1984) sta predlagala prednostno čakalno vrsto s Fibonaccijevo kupo za 

optimizacijo časovne zapletenosti delovanja 𝜃𝜃(|𝐸𝐸| + |𝑉𝑉| log|𝑉𝑉|). To je asimptotično najhitrejši 

znani algoritem najkrajše poti z enim virom za poljubne usmerjene grafe z neomejenimi 

nenegativnimi utežmi. Če je dovoljena predhodna obdelava, so lahko algoritmi, kot so 

hierarhije krčenja (angl. contraction hierarchies), bistveno hitrejši. 

 

Dijkstrov algoritem se običajno uporablja na grafih, kjer so uteži robov pozitivna cela ali realna 

števila. Lahko ga posplošimo na katerikoli graf, kjer so uteži robov delno urejene, če so 



 

 31 

zaporedne oznake monotono napadajoče (angl. monotonically non-decreasing) (Szcześniak, 

Jajszczyk in Woźna-Szcześniak, Generic Dijkstra for optical networks, 2019), (Szcześniak in 

Woźna-Szcześniak, Generic Dijkstra: correctness and tractability, 2023). 

 

Na številnih področjih, zlasti na področju umetne inteligence, Dijkstrov algoritem ali njegova 

različica ponuja iskanje po enotnih stroških in je oblikovan kot primer splošnejše zamisli o 

iskanju po načelu najboljši prvi (angl. best-first search) (Felner, Position Paper: Dijkstra's 

Algorithm versus Uniform Cost Search or a Case Against Dijkstra's Algorithm, 2011). 

6.1 Prednost Dijkstrovega algoritma 

Prednost Dijkstrovega algoritma je, da v nasprotju z nekaterimi osnovnimi hevrističnimi 

algoritmi zagotavlja najkrajšo pot. Algoritem je precej učinkovit, saj deluje v času O(E log(V)), 

kjer E pomeni število robov v grafu, V pa število vrhov v grafu. To učinkovitost je mogoče 

nekoliko povečati z uporabo čakalne vrste z najmanjšo prioriteto za shranjevanje vozlišč (Nico, 

2020). 

 

V raziskavi, ki sta jo naredila Noto in Sato leta 2000, sta predlagala, da algoritem začne z 

iskanjem na začetnem in končnem vozlišču. To zniža območje iskanja vozlišč in s tem zmanjša 

računski čas algoritma. Ta sprememba algoritma omogoča, da se število obiskanih vozlišč 

zmanjša za polovico. Z zmanjšanjem števila obiskanih vozlišč se je čas iskanja zmanjšal za 

petino. 

6.2 Slabost Dijkstrovega algoritma 

Glavna težava Dijkstrovega algoritma je, da izvaja slepo iskanje, ki je lahko dolgotrajno in 

potratno v smislu izračunavanja. Dijkstrov algoritem je pogosto uporabljen za reševanje 

problema najkrajše poti. Če je pot kompleksna in velika, kar se običajno zgodi v praktičnem 

okolju, algoritem pri iskanju najkrajše poti vzame preveč časa. Večina iskanih vozlišč je 

nepomembnih, saj ta ne morejo biti del rešitve. Zato algoritem zapravi veliko računskega časa 

(angl. computation time). Čeprav je ta algoritem učinkovit, bo iskanje celotnega grafa s tisoči 

vozlišč, da bi našli najkrajšo pot, še vedno trajalo dolgo časa (Liu, idr., 1994). 

 

Pomanjkljivost algoritma je, da če do željenega cilja ni vozlišča, se mora algoritem pred 

zaključkom ponovno sprehoditi po celotnem grafu. Algoritem je pohlepen (angl. greedy 
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alghorithm), kar pomeni, da bo vedno izbral možnost, ki je na prvi pogled vidna kot optimalna. 

To lahko vodi v iskanje poti, ki ne obstaja (Nico, 2020). 

 

Dijkstrov algoritem lahko najde optimalne rešitve s sistematičnim ustvarjanjem vozlišč in 

njihovim testiranjem glede na cilj, vendar postane neučinkovit za obsežne probleme (Soltani, 

Tawfik, Goulermas in Fernando, 2002). 

6.3 Psevdokoda in načrt implementacije Dijkstrovega algoritma 

Časovna kompleksnost algoritma je odvisna od števila vozlišč, ki jih mora obiskati. Ker 

algoritem išče na slepo, je večje število vozlišč omejitveni dejavnik. Omejitve časa delovanja 

Dijkstrovega algoritma na grafu z robovi E in vrhovi V je mogoče izraziti kot funkcijo števila 

robov, označeno z |𝐸𝐸|, in številom vozlišč|𝑉𝑉|. Časovna kompleksnost je odvisna od podatkovne 

strukture, ki se uporablja za predstavitev množice Q.  

 

Zgornje meje lahko poenostavimo, ker |𝐸𝐸| je 𝑂𝑂(|𝑉𝑉|2) za vsak preprost graf. Za katerokoli 

podatkovno strukturo za množico vrhov Q je čas delovanja  𝜃𝜃(|𝐸𝐸| ∗  𝑇𝑇𝑑𝑑𝑑𝑑 + |𝑉𝑉| ∗  𝑇𝑇𝑒𝑒𝑒𝑒), kjer 𝑇𝑇𝑑𝑑𝑑𝑑 

in 𝑇𝑇𝑒𝑒𝑒𝑒 predstavljata kompleksnost operacij algoritmov (Cormen idr., 2022). 

S pomočjo psevdokode lahko implementiramo Dijkstrov algoritem. 
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Slika 9: Psevdokoda algoritma Dijkstra 

Vir: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm, 2025 
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7 UMETNA INTELIGENCA 

Umetna inteligenca se nanaša na sposobnost računalniških sistemov, da opravljajo naloge, ki 

so običajno povezane s človeško inteligenco, kot so učenje, sklepanje, reševanje problemov, 

zaznavanje in odločanje. Je področje v računalništvu, ki razvija in preučuje metode in 

programsko opremo, ki strojem omogočajo zaznavanje okolja ter uporabo učenja in inteligence 

za ukrepanje, ki povečuje možnosti za doseganje določenih ciljev (Russell in Norvig, 2022). 

 

Različna podpodročja umetne inteligence se osredotočajo na posebne cilje in uporabo posebnih 

orodij. Primarni cilji raziskav umetne inteligence vključujejo učenje, sklepanje, predstavitev 

znanja, načrtovanje, obdelavo naravnega jezika, zaznavanje in podporo robotiki. Eden izmed 

dolgoročnih ciljev področja umetne inteligence je doseči raven splošne umetne inteligence 

(angl. general intelligence). Splošna umetna inteligenca je zmožnost opravljanja naloge z enako 

zmogljivostjo kot človek (Russell in Norvig, 2022). 

 

Za doseganje teh ciljev so raziskovalci umetne inteligence prilagodili in povezali številne 

tehnike, vključno z iskanjem in matematično optimizacijo (angl. search and mathematical 

optimization), formalno logiko, umetnimi nevronskimi mrežami in metodami, ki temeljijo na 

statistiki, operacijskih raziskavah in ekonomiji. Umetna inteligenca se tudi osredotoča na 

psihologijo, jezikoslovje, filozofijo, nevroznanost in druga področja (Russell in Norvig, 2022). 

 

Aplikacije in naprave, opremljene z umetno inteligenco, lahko vidijo in prepoznajo predmete. 

Razumejo lahko človeški jezik in se nanj odzivajo. Učijo se lahko na podlagi novih informacij 

in izkušenj. Uporabnikom in strokovnjakom lahko pripravijo podrobna priporočila. Delujejo 

lahko samostojno in nadomestijo potrebo po človeški inteligenci ali posredovanju, na primer 

samovozeči avtomobili. 

  

Neposredno pod umetno inteligenco spada strojno učenje, ki vključuje ustvarjanje modelov z 

usposabljanjem algoritma za napovedovanje ali odločanje na podlagi podatkov. Zajema široko 

paleto tehnik, ki računalnikom omogočajo učenje in sklepanje na podlagi podatkov, ne da bi 

bili izrecno programirani za določene naloge. 
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7.1 Umetna inteligenca in razumevanje 

Russell in Norvig (2019) opisujeta, da predstavljanje in inženiring znanja (angl. knowledge 

engineering) omogočata programom umetne inteligence, da inteligentno odgovarjajo na 

vprašanja in sklepajo o dejstvih iz resničnega sveta. Formalne predstavitve znanja se 

uporabljajo pri indeksiranju in iskanju na podlagi vsebine, interpretaciji prizora, podpori 

kliničnim odločitvam in odkrivanju znanja iz velikih podatkovnih baz. 

 

Predstavljanje znanja in inženiring znanja je področje umetne inteligence, ki poskuša posnemati 

presojo in vedenje človeka na določenem področju. Inženiring znanja je tehnologija, ki stoji za 

ustvarjanjem sistemov za pomoč pri vprašanjih, povezanih z njihovim področjem znanja. 

Sistemi vključujejo veliko, razširljivo bazo znanja, integrirano z mehanizmom pravil, ki določa, 

kako uporabiti informacije v vsaki posamezni situaciji. Inženirji znanja lahko ustvarijo sistem, 

ki vključuje strojno učenje (angl. machine learning), tako da se lahko uči iz izkušenj na enak 

način kot ljudje. Strokovni sistemi se uporabljajo na različnih področjih, vključno z zdravstvom, 

storitvami za stranke, finančnimi storitvami, proizvodnjo in pravom (Lutkevich, 2022). 

 

Da umetna inteligenca poskuša posnemati človeško vedenje, potrebuje bazo podatkov. Baza 

znanja je zbirka znanja, predstavljena v obliki, ki jo lahko uporablja umetna inteligenca. 

Ontologija je niz predmetov, odnosov, pojmov in lastnosti, ki se uporabljajo v določeni domeni 

znanja. Baze znanja morajo predstavljati stvari, kot so predmeti, lastnosti, kategorije in odnosi 

med predmeti, situacije, dogodki, stanja in čas, vzroki in posledice, znanje, privzeto sklepanje, 

ter številne druge vidike in domene znanja (Russell in Norvig, 2022). 

7.2 Umetna inteligenca in strojno učenje 

Strojno učenje je študija programov, ki lahko samodejno izboljšajo svoje delovanje pri določeni 

nalogi. Je del umetne inteligence že od samega začetka njenega razvoja (Russell in Norvig, 

2022). 

 

Strojno učenje vsebuje ustvarjanje modelov za usposabljanje algoritma za napovedovanje ali 

določanje rezultatov na podlagi vnosnih podatkov. Zajema širok nabor tehnik, ki računalnikom 

omogočajo učenje in sklepanje na podlagi podatkov, ne da bi bili neposredno razviti za določene 

naloge (Stryker in Kavlakoglu, 2024). 
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Strojno učenje vsebuje veliko vrst tehnik ali algoritmov strojnega učenja, vključno z linearno 

regresijo (angl. linear regression), logistično regresijo (angl. logistic regression), drevesi 

odločanja (angl. decision trees), naključnim gozdom (angl. random forest), podpornimi 

vektorskimi stroji (angl. support vector machines), k-najbližjim sosedom (angl. k-nearest 

neighbor) in grozdenjem (angl. clustering) (Stryker in Kavlakoglu, 2024). 

 

Ena izmed najbolj uporabljenih vrst algoritmov za strojno učenje je nevronska mreža. 

Nevronske mreže so oblikovane po strukturi in delovanju človeških možganov. Nevronsko 

omrežje je sestavljeno iz medsebojno povezanih plasti vozlišč, ki sodelujejo pri obdelavi in 

analizi kompleksnih podatkov. Nevronske mreže so primerne za naloge, ki vključujejo 

prepoznavanje zapletenih vzorcev in povezav v velikih količinah podatkov (Stryker in 

Kavlakoglu, 2024). 

 

Obstaja več vrst strojnega učenja. Nenadzorovano učenje analizira tok podatkov in išče vzorce 

ter napoveduje brez drugih navodil. Nadzorovano učenje zahteva označevanje učnih podatkov 

s pričakovanimi odgovori in se deli na dve glavni vrsti, in sicer klasifikacijo, kjer se mora 

program naučiti napovedati, v katero kategorijo spada vhodni podatek, in regresijo, kjer mora 

program na podlagi številčnega vnosa določiti številčno funkcijo (Russell in Norvig, 2022). 

7.3 Umetna inteligenca in iskanje 

UI lahko reši veliko problemov z inteligentnim iskanjem številnih možnih rešitev. V UI se 

uporabljata dve različni vrsti iskanja, in sicer iskanje v prostoru stanj in lokalno iskanje (Russell 

in Norvig, 2022). 

 

Iskanje v prostoru išče po drevesu možnih stanj, da bi našlo ciljno stanje. Na primer algoritmi 

za načrtovanje iščejo po drevesih ciljev in podciljev, pri čemer poskušajo najti pot do ciljnega 

stanja, kar se imenuje analiza sredstev in ciljev (angl. means-ends analysis) (Russell in Norvig, 

2022). 

Preprosto izčrpno iskanje (angl. simple exhaustive searches) redko zadostuje za večino realnih 

problemov, saj iskalni prostor hitro naraste. Rezultat je iskanje, ki je prepočasno ali pa se nikoli 

ne konča. Za izboljšanje časa iskanja nam lahko pomaga hevristika (Russell in Norvig, 2022). 
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Lokalno iskanje uporablja matematično optimizacijo za iskanje rešitve problema. Začne se z 

neko obliko ugibanja in ga postopoma izpopolnjuje (Russell in Norvig, 2022). 

 

Gradientno spuščanje je vrsta lokalnega iskanja, ki optimizira niz numeričnih parametrov z 

njihovim postopnim prilagajanjem, da se čim bolj zmanjša funkcija izgube. Različice 

gradientnega spuščanja se pogosto uporabljajo za usposabljanje nevronskih mrež z algoritmom 

povratnega širjenja (angl. backpropagation) (Russell in Norvig, 2022). 

 

Druga vrsta lokalnega iskanja je evolucijsko računanje, katerega cilj je iterativno izboljšati niz 

kandidatnih rešitev z njihovo mutacijo in rekombinacijo, pri čemer se v vsaki generaciji izberejo 

le najprimernejši, ki preživijo (Russell in Norvig, 2022). 

7.4 Umetna inteligenca in iskanje najkrajše poti 

UI je ena od ključnih delov videoiger (Ostrowski, 2015). Yannakakih (2018) opisuje, da so 

zgodnje raziskave UI v iskanju najkrajše poti vključevale šah in druge družinske namizne igre. 

V igrah je opredeljeno, kako se obnaša računalniški nasprotnik do igralca. Obnašanje 

računalniškega nasprotnika je segalo od preprostih do kompleksnih vzorcev gibanja s pomočjo 

algoritmov iskanja poti. Ena izmed morebitnih implementacij UI v videoigrah je posnemanje 

igralca na podlagi njegovih naključnih dejanj in posledično računalniški nasprotnik lahko z 

uporabo UI prilagodi svoje gibanje (Iskandar, Diah in Ismail, 2020). 

 

Igralniška industrija še naprej hitro raste zaradi tehnološkega napredka, predvsem na področju 

umetne inteligence. UI se v sodobnih videoigrah uporablja za različne igralne like. Primarni cilj 

UI je igralcu zagotoviti izziv pri sprejemanju odločitev in povečati stopnjo težavnosti. UI 

omogoča prilagajanje raznih igralnih likov znotraj videoigre na igralčeve odločitve (Lawande, 

Jasmine, Anbarasi in Izhar, 2022). 

 

Iskanje poti se nanaša na koncept iskanja optimalne poti od izvornega do ciljnega vozlišča v 

najkrajšem času. Za iskanje najkrajše poti od izvornega do ciljnega vozlišča je bilo zasnovanih 

več algoritmov, ki se poskušajo izogniti vsem oviram na poti. Za iskanje poti lahko uporabljajo 

tudi UI (Rafiq in Kadir, Pathfinding Algorithms in Game Development, 2020), (Lawande, 

Jasmine, Anbarasi in Izhar, 2022). 
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Razvoj UI in iskanja poti je dosegel velik napredek, vendar ima še vedno določene probleme. 

Eden izmed takšnih problemov je zahteva po visoki zmogljivosti, ki jo morajo ti algoritmi 

zagotoviti v videoigrah. Ob visoki zahtevi zmogljivosti morajo pogosto ti algoritmi izračunati 

poti za več komponent, in ker so viri, dodeljeni tem algoritmom, omejeni, obstaja 

povpraševanje po algoritmih z visoko zmogljivostjo v krajšem času reševanja problema iskanja 

poti (Lawande, Jasmine, Anbarasi in Izhar, 2022). 

7.5 Stroški razvoja in implementacije umetne inteligence 

Pri razvoju in implementaciji umetne inteligence v interne procese podjetja naletijo na 

nepričakovano povečane stroške. Hitro naraščajoči stroški računalništva lahko ovirajo nadaljnji 

razvoj in inovacije podjetja (Brodsky, 2024). 

 

Ekonomski pritisk čutijo tudi vodilni pri razvoju umetne inteligence. Podjetje OpenAI naj bi 

zabeležil eksponentno rast prihodkov, saj je v mescu avgustu leta 2024 doseglo 300 milijonov 

ameriških dolarjev prihodka. V začetku oktobra je podjetje OpenAI objavilo, da so v novem 

krogu financiranja zbrali 6,6 milijarde ameriških dolarjev, s čimer bi pokrili rast podjetja in 

stroške razvoja ter implementacije UI (Brodsky, 2024). 

 

Ekonomski vidik UI postaja ključni dejavnik pri določanju njenega poslovnega učinka. Številna 

podjetja zaradi naraščajočih stroškov UI prestavljajo svoje interne produkte na hibridno oblačno 

arhitekturo (angl. hybrid cloud architectures) (Brodsky, 2024). 

 

Eden glavnih dejavnikov stroškov je vrsta rešitve UI. Vsak sistem UI ni zgrajen z enako 

tehnologijo, razlike med njimi so velike. Poznamo več sistemov, in sicer: 

 

• Sistemi, ki temeljijo na pravilih (angl. rule-based systems), so preprosti za razvoj in 

implementacijo. Ti sistemi upoštevajo preprosta pravila in zahtevajo minimalno 

računalniško moč (Le, 2025). 

• Rešitve za strojno učenje, ki jih uporabljajo podjetja, se s časom izboljšujejo. Te potrebujejo 

kakovostne podatke in stalno prilagajanje, kar vodi do višjih stroškov razvoja in 

implementacije (Le, 2025). 
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• Modeli globokega učenja so odlični za reševanje zapletenih nalog, kot je prepoznavanje slik 

ali glasu. Zahtevajo veliko količino podatkov, napredne algoritme in vrhunsko strojno 

opremo, zato je njihov razvoj najdražji (Le, 2025). 

 

Na stroške vplivata tudi obseg in zapletenost projekta. Projekti UI so različni, pri čemer so 

število funkcij, točke integracije in zahtevane ravni zmogljivosti zelo pomembne. Enostavno 

orodje za analizo povratnih informacij stranke običajno stane med dvajset tisoč in štirideset 

tisoč ameriških dolarjev. Srednje zahtevne aplikacije, ki potrebujejo naprednejše algoritme za 

analizo vedenja in preferenc uporabnikov, stanejo med petdeset tisoč in sto tisoč ameriških 

dolarjev. Napredne aplikacije UI, kot so večjezični modeli, lahko presežejo sto petdeset tisoč 

ameriških dolarjev za implementacijo v podjetje. Te aplikacije so zapletene zaradi zahtev po 

visoki zmogljivosti večjezičnih modelov (Le, 2025). 

 

Število zaposlenih je pogosto najbolj spremenljiv dejavnik pri določanju stroškov razvoja in 

implementacije UI v podjetju. Velikost stroškov je odvisna od števila zaposlenih in lokacije 

podjetja. Interni razvoj omogoča popolni nadzor in tesnejše sodelovanje razvijalcev UI. Vendar 

to vodi do višjih stroškov razvoja. Najem zunanjih razvijalcev omogoča dostop do 

specializiranega kadra, kar vodi do dolgoročno nižjih stroškov dela (Le, 2025).  
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8 PRIPRAVA OKOLJA 

Za testiranje in primerjavo algoritmov iskanja najkrajše poti smo razvili aplikacijo za 

vizualizacijo mreže in iskanje poti do končnega vozlišča. Aplikacija je razvita v programskem 

jeziku Python. Aplikacija bo vsebovala grafični uporabniški vmesnik (angl. graphical user 

interface), kjer bo uporabnik lahko generiral naključno mrežo z ovirami. Na voljo bo možnost 

izbire algoritma za iskanje najkrajše poti. Končni rezultat iskanja bo zapisan v tabeli. Časovna 

enota merjenja je milisekunda. Za programiranje uporabniškega vmesnika bomo uporabili 

knjižnico Tkinter.  

 

Ker v diplomskem delu primerjamo umetno inteligenco in algoritme iskanja najkrajše poti, 

bomo za to uporabili knjižnico PyTorch. Knjižnica nam omogoča, da program učimo reševati 

problem s pomočjo nevronske mreže.  

8.1 Struktura izvorne kode 

Struktura izvorne kode je razdeljena v več logičnih enot. To omogoča lažji pregled logike. 

Razdelili smo kodo na več manjših delov, ki imajo vsak svojo logiko. Modularna koda omogoča 

lažje sledenje logiki, lažje nadgrajevanje in njeno razhroščevanje. 
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Slika 10: Struktura izvorne kode 

Vir: Lasten 
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8.2 Uporabniški vmesnik aplikacije 

Grafični vmesnik vsebuje možnost izbora algoritma, prikaz labirinta in tabelo za zapis 

podatkov.  

 

 
Slika 11: Uporabniški vmesnik aplikacije 

Vir: Lasten 

 

Za prikaz uporabniškega vmesnika smo razvili razred App. Razred implementira grafični 

uporabniški vmesnik z uporabo knjižnice Tkinter, ki omogoča uporabniku izbiro algoritma, 

velikosti labirinta in vizualno spremljanje izvajanja iskanja poti. Ob kliku na gumb Start se 

ustvari nov labirint iz razreda Maze, nato se izvede izbrani algoritem iz objekta algorithms, 

medtem ko se obiski vozlišč sproti prikazujejo z modro barvo, najdena pot pa z zeleno. Rezultati 

se prikažejo v tabeli Treeview. Vizualizacija in logika iskanja sta ločeni z uporabo niti, da GUI 

ostane odziven. Canvas prikazuje mrežo, ovire in pot, s čimer aplikacija omogoča interaktivno 

primerjavo učinkovitosti različnih algoritmov. 
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Slika 12: Prikaz iskanja algortima v aplikaciji 

Vir: Lasten 

 

 
Slika 13: Izvorna koda razreda App.py 

Vir: Lasten 
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Slika 14: Izvorna koda razreda App.py 

Vir: Lasten 

 

 
Slika 15: Izvorna koda metode start() razreda App.py 

Vir: Lasten 

 

 
Slika 16: Izvorna koda metode update_table() razreda App.py 

Vir: Lasten 
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Slika 17: Izvorna koda draw_cell() razreda App.py 

Vir: Lasten 

 

 
Slika 18: Izvorna koda metode create_widgets() razreda App.py 
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Vir: Lasten 

 

 

 
Slika 19: Izvorna koda metode run_maze() razreda App.py 

Vir: Lasten 
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Slika 20: Izvorna koda objekta algorithms 

Vir: Lasten 
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Slika 21: Izvorna koda metode draw_maze() razreda App.py 

Vir: Lasten 

 

 
Slika 22: Izvorna koda razreda App.py 

Vir: Lasten 
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8.3 Izvorna koda labirinta 

Za prikaz naključno generiranega labirinta smo naredili razred Maze, ki omogoča ustvarjanje 

mreže s prehodnimi in neprehodnimi polji. Razred vsebuje metode __init__(self, size) in 

generate(self). Razred vsebuje spremenljivke size, grid, start in end. S spremenljivkami 

določamo velikost labirinta z začetno in končno točko. 

 

Metoda __init__(self,size) je konstruktor razreda, ki ustvari mrežo poljubne velikosti. Definira 

začetno in končno točko razreda. 

 

Metoda generate(self) s pomočjo algoritma ustvari prehodni labirint. S pomočjo stack in visited 

spreminjamo vozlišča iz neprehodnih v prehodne. V vsakem koraku zanke se preveri, ali obstaja 

še neobiskano sosednje vozlišče, ki ga nato naključno izbere in nadaljuje z ustvarjanjem 

labirinta. Rezultat razreda je dvodimenzionalen labirint z začetno in končno točko.  
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Slika 23: Izvorna koda razreda Maze.py 

Vir: Lasten 
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8.4 Izvorna koda algoritma BFS 

Algoritem iskanje po širini smo implementirali z metodo bfs(grid, start, goal, 

visit_callback=lambda x, y; None). Na začetku iteracije metoda ustvari prazno množico visited, 

vrsto queue ter objekt prev. V vsaki iteraciji se iz vrste vzame trenutno vozlišče in preveri, ali 

ustreza cilju. Če je cilj dosežen, se iteracija prekine. Če cilj ni dosežen, se preverijo vsa sosednja 

vozlišča. Če je vozlišče neobiskano in je prehodno, se doda v vrsto queue in se označi kot 

obiskano. Nato se ta povezava shrani v objekt prev. Ko se iskanje zaključi, se rekonstruira pot 

do cilja na podlagi vozlišč v objektu prev. Rezultat metode je seznam vozlišč, ki predstavljajo 

najkrajšo pot. 
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Slika 24: Izvorna koda algoritma BFS 

Vir: Lasten 
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8.5 Izvorna koda algoritma A* 

A star algoritem smo implementirali z metodo astar(grid, start={1,1}, goal=None, 

visit_callback=None). Funkcija uporablja strošek poti od začetka in oceno razdalje do cilja. Na 

začetku se določi cilj in pripravi prioritetno vrsto, kamor vstavi začetno vozlišče. Zanka nato 

vedno izbere vozlišče z najmanjšo skupno oceno. 

 

 
Slika 25: Izvorna koda algoritma A star 

Vir: Lasten 
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8.6 Izvorna koda algoritma Dijkstra 

Funkcija Dijkstra išče najkrajšo pot v mreži, pri čemer za vsako vozlišče vodi slovar dist z 

doslej poznanimi najnižjimi stroški od začetka in uporablja prioritetno vrsto za izbiro vozlišča 

z najmanjšim trenutno znanim stroškom. Začne pri začetku z razdaljo 0, nato v vsaki iteraciji 

iz vrste vzame vozlišče z najmanjšim cost, ga označi kot obiskano, in pokliče visit_callback. 

Če je cilj dosežen, prekine zanko, sicer pregleda vse sosednje običajne premike, izračuna nov 

potencialni strošek (new_cost = cost + 1) in, če je ta manjši od prej znanega za soseda, posodobi 

dist, shrani predhodnika v prev in ga vstavi v vrsto. Ko zanka konča, se najdena pot rekonstruira 

iz slovarja prev, se obrne in vrne kot seznam koordinat od začetka do cilja. 
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Slika 26: Izvorna koda algoritma Dijkstra 

Vir: Lasten 

 

8.7 Izvorna koda strojnega učenja 

Implementacija strojnega učenja simulira umetno inteligenco. Za reševanje naključno 

generiranega labirinta smo uporabili DQN pristop (angl. Deep Q-Network). Izvorna koda je 

sestavljena iz več razredov, in sicer DQN, MazeEnv, SolvingMazeEnv in samostojne funkcije 

train_dqn. 
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Slika 27: Izvorna koda za strojno učenje 

Vir: Lasten  

 

Razred DQN implementira globoko Q-mrežo DQN kot nevronsko mrežo z veliko povezanimi 

sloji. Za implementacijo smo uporabili knjižnico PyTorch. Konstruktor razreda vsebuje 

parametre self, input_size=13, hidden_size=128, output_size=4. Ti parametri definirajo 

arhitekturo mreže. Vhodni sloj sprejme 13-razsežni vektor, dva skrita sloja z ReLU funkcijami 

procesirata informacije. Izhodni sloj vrne Q-vrednost štiri možne akcije.  

 

 
Slika 28: Izvorna koda razreda DQN 

Vir: Lasten 

 

Metoda forward(self) definira prehod podatkov skozi mrežo in vrne Q-vrednost za vse možne 

akcije v danem stanju.  

 



 

 57 

 
Slika 29: Izvorna koda razreda MazeEnv 

Vir: Lasten 

 

Razred MazeEnv predstavlja okolje za učenje pri reševanju labirintov s strojnim učenjem. 

Razred implementira vmesnik za okolje učenja z metodami reset, step in get_state. Konstruktor 

razreda vsebuje parametre self, grid, start in goal. To omogoča inicializacijo labirinta za učenje 

z začetno in končno točko. 
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Slika 30: Izvorna koda razreda MazeEnv 

Vir: Lasten 

 

Metoda reset(self) poenostavi labirint v začetno stanje. Pozicijo agenta postavi na začetno 

točko, število korakov spremeni na število nič in vrne okolje v prvotno stanje. 

 

Metoda _get_state(self) ustvari predstavitev trenutnega stanja okolja, kot 13-razsežni vektor, ki 

služi kot vhod za nevronsko mrežo. Metoda določi trenutno pozicijo agenta in definira velikost 

lokalnega okna velikosti 3x3. K velikosti okna se doda še eno polje, ki predstavlja neprehodni 

rob mreže. Izvlečeni lokalni pogled se nato splošči iz 2D-matrike v 1D-vektor z 9 elementi, kjer 

vsak element predstavlja vrednost posameznega polja v okolici agenta. Trenutna pozicija agenta 

se normalizira z delitvijo s skupno velikostjo mreže minus ena, kar zagotavlja vrednosti v 

intervalu [0, 1]. Ta normalizacija omogoča boljše delovanje nevronske mreže, saj so vsi vhodni 

podatki v enotnem merilu. 
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Slika 31: Konstruktor razreda SolvingMazeEnv 

Vir: Lasten 

 

 
Slika 32: Izvorna koda metode _get_state() 

Vir: Lasten 
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Slika 33: Izvorna koda metode reset() 

Vir: Lasten 

 
Slika 34: Izvorna koda metode step() 

Vir: Lasten 
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Metoda step(self, action) izvede premik agenta v okolju glede na podano akcijo. Za razliko od 

učnega okolja ta metoda vrača poenostavljeno nagrado 0 in ne izračunava kompleksnih nagrad, 

saj se uporablja le za evalvacijo naučenega modela. 

 

 
Slika 35: Izvorna koda metode solve_with_dqn() 

Vir: Lasten 

 
Slika 36: Izvrona koda metode solve_with_dqn() 

Vir: Lasten 
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Slika 37: Izvrona koda metode solve_with_dqn() 

Vir: Lasten 

 
Slika 38: Izvrona koda metode solve_with_dqn() 

Vir: Lasten 
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Slika 39: Izvrona koda metode solve_with_dqn() 

Vir: Lasten 

 

Funkcija solve_with_dqn(grid, start, goal, visit_callback=None) uporablja predhodno naučen 

model DQN za iskanje poti skozi labirint. Funkcija naloži shranjeni model iz datoteke 

dqn_model.pth, ga postavi v način evalvacije in izvede do tri poskuse iskanja poti. Med 

iskanjem uporablja epsilon-greedy strategijo z dodanim šumom za izboljšanje raziskovanja in 

implementira mehanizem zaznavanja, ko se agent zatakne v zanki. Če agent ostane na istem 

območju predolgo, funkcija izvede naključne premike za izhod iz zanke. 
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Slika 40: Izvorna koda metode train_dqn() 

Vir: Lasten 
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Slika 41: Izvorna koda metode train_dqn() 

Vir: Lasten 

 
Slika 42: Izvorna koda metode train_dqn() 

Vir: Lasten 
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Slika 43: Izvorna koda metode train_dqn() 

Vir: Lasten 

 
Slika 44: Izvorna koda metode train_dqn() 

Vir: Lasten 
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Slika 45: Izvorna koda metode train_dqn() 

Vir: Lasten 

 
Slika 46: Izvorna koda metode train_dqn() 

Vir: Lasten 
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Slika 47: Izvorna koda metode train_dqn() 

Vir: Lasten 

 

Funkcija train_dqn implementira algoritem globokega Q-učenja za treniranje nevronske mreže. 

Funkcija uporablja replay memory za shranjevanje izkušenj, ciljno mrežo za stabilizacijo 

učenja in epsilon-greedy strategijo za ravnovesje med raziskovanjem in izkoriščanjem. 

Parametri vključujejo število epizod učenja, diskontni faktor gamma, učno hitrost in velikost 

batcha. Med učenjem funkcija uporablja Double DQN pristop, kjer glavna mreža izbere akcije, 

ciljna mreža pa ocenjuje njihove vrednosti. Funkcija implementira postopno zmanjševanje učne 

hitrosti in shrani model z najboljšo uspešnostjo med učenjem. 
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9 PRIMERJAVA ALGORITMOV IN UMETNE INTELIGENCE 

V NAKLJUČNO GENERIRANEM LABIRINTU 

Za empirično primerjavo algoritmov iskanja poti smo oblikovali testno okolje s štirimi 

naključno generiranimi labirinti različnih velikosti, in sicer 11x11, 21x21 in 31x31. Posamezne 

velikosti predstavljajo različne stopnje kompleksnosti in omogočajo sistematično primerjavo 

učinkovitosti algoritmov v različnih primerih. Rezultate smo dokumentirali v tabelah za lažjo 

interpretacijo. Pri vsakem testu smo spremljali ključne parametre, in sicer čas iskanja, dimenzije 

labirinta, število obiskanih vozlišč in uspešno obiskano ciljno vozlišče. Za objektivno 

primerjavo algoritmov smo vsak algoritem testirali na tisoč naključno generiranih labirintih za 

vsako velikost. 

V okviru diplomske naloge smo implementirali pristop globokega Q-učenja DQN (angl. Deep 

Q-network) za simulacijo inteligentnega iskanja. Proces učenja je potekal na obsežnem naboru 

pet tisoč naključno generiranih labirintov v standardizirani velikosti 11x11. Uspešnost 

naučenega agenta dosega 32,4 %, kar je pomemben dejavnik pri interpretaciji in analizi 

nadaljnjih rezultatov diplomskega dela. Pričakujemo lahko, da bo umetna inteligenca imela 

najboljši rezultat na velikosti labirinta 11x11. 

9.1 Rezultati algoritmov iskanja poti in umetne inteligence v naključno 

generiranem labirintu 

 

Tabela 1: Rezultati algoritmov iskanja poti in UI v labirintu velikosti 11x11 

Algorite

m 

Velikos

t 

Število 

testiran

j 

Uspešn

o 

najden 

cilj 

Neuspešn

o najden 

cilj 

Uspeh 

algoritma(%

) 

Povpreče

n čas 

iskanja 

(ms) 

Povprečn

o število 

obiskanih 

vozlišč 

BFS 11 1000 1000 0 100.0 0.029 29 

A* 11 1000 1000 0 100.0 0.028 26 

Dijkstra 11 1000 1000 0 100.0 0.024 29 

UI 11 1000 603 397 60.3 13.47 28 
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Vir: Lasten 

 

 

Tabela 2: Rezultati algoritmov iskanja poti in UI v labirintu velikosti 21x21 

Algorite

m 

Velikos

t 

Število 

testiran

j 

Uspešn

o 

najden 

cilj 

Neuspešn

o najden 

cilj 

Uspeh 

algoritma(%

) 

Povpreče

n čas 

iskanja 

(ms) 

Povprečn

o število 

obiskanih 

vozlišč 

BFS 21 1000 1000 0 100.0 0.071 115 

A* 21 1000 1000 0 100.0 0.107 105 

Dijkstra 21 1000 1000 0 100.0 0.089 120 

UI 21 1000 81 919 8.1 55.80 84 

Vir: Lasten 

 

Tabela 3: Rezultati algoritmov iskanja poti in UI v labirintu velikosti 31x31 

Algorite

m 

Velikos

t 

Število 

testiran

j 

Uspešn

o 

najden 

cilj 

Neuspešn

o najden 

cilj 

Uspeh 

algoritma(%

) 

Povpreče

n čas 

iskanja 

(ms) 

Povprečn

o število 

obiskanih 

vozlišč 

BFS 31 1000 1000 0 100.0 0.16 267 

A* 31 1000 1000 0 100.0 0.26 242 

Dijkstra 31 1000 1000 0 100.0 0.22 266 

UI 31 1000 28 297 2.8 288.94 105 

Vir: Lasten 
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9.2 Analiza hitrosti algoritmov iskanja najkrajše poti 

Rezultati diplomskega dela so pokazali na razlike med algoritmi iskanja poti in umetno 

inteligenco. Algoritmi iskanja poti izkazujejo hitro delovanje v vseh testnih primerih, medtem 

ko umetna inteligenca zahteva več časa za morebitno doseganje cilja. Umetna inteligenca je 

bila učena na labirintu velikosti 11x11, kar tudi odraža njen najboljši rezultat izmed vseh testnih 

primerov. 

Pri labirintih velikosti 11x11 je povprečni čas iskanja 0,02 ms, pri labirintih 21×21 pa med 0,07 

in 0,10 ms. Pri labirintih velikosti 31x31 je najhitrejši Dijkstrov algoritem, in sicer   0,024 ms. 

Hitrost UI upada z večanjem števila vozlišč in velikosti labirinta. Iz tega lahko sklepamo, da je 

učinkovitost algoritmov odvisna od velikosti labirinta in števila vozlišč. 

Kljub podobnim časom iskanja je algoritem A* obiskal najmanjše število vozlišč za dosego 

cilja, kar nakazuje na bolj optimizirano delovanje algoritma v primerjavi z BFS, Dijkstro in 

umetno inteligenco. 

Najhitrejši algoritem je Dijkstrov algoritem. Zabeležil je najkrajši čas iskanja, vendar je treba 

poudariti, da je obiskal največ vozlišč. To nakazuje na potencialno poslabšanje optimalnosti 

algoritma na večjih labirintih, kjer je število vozlišč večje. Rezultati hitrosti in obiskanih vozlišč 

algoritmov in UI so razvidni v spodnjih grafih. 
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Grafikon 1: Prikaz časa iskanja končnega vozlišča algoritmov in UI v labirintu 

 

Vir: Lasten 

 

Grafikon 2: Prikaz števila obiskanih vozlišč algoritmov in UI v labirintu 

 

Vir: Lasten 
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9.3 Analiza zmogljivosti umetne inteligence pri reševanju najkrajše poti 

Umetna inteligenca je bila v primerjavi z drugimi algoritmi najpočasnejša in neučinkovita. 

Rezultati nakazujejo na slabše rezultate v labirintih, kjer velikost ni 11x11. To je bilo 

pričakovano, saj je umetna inteligenca bila učena izključno na labirintih velikosti 11x11. 

Stopnja uspešnosti UI se zmanjšuje z naraščajočo kompleksnostjo problema. Pri majhnih 

labirintih velikosti 11x11 dosega 60,3-% uspešnost s 603 uspešnimi rešitvami od 1000 testov. 

Ta uspešnost se zmanjša pri srednjih labirintih velikosti 21×21 na 8,1-% z 81 uspešnimi 

rešitvami. Pri največjih labirintih velikosti 31×31 UI dosega le 2,8-% uspešnost z zgolj 28 

uspešnimi rešitvami od 1000 testov, kar pomeni, da ne uspe rešiti preko 97,2 % testnih primerov. 

Uspešnost UI in algoritmov je razvidna v spodnjem grafu. 

Grafikon 3 :Prikaz uspešnosti iskanja algoritmov in UI v labirintu 

 

Vir: Lasten 
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10 POTRDITEV ALI ZAVRNITEV HIPOTEZ 

10.1 H1: A* je najpopularnejši algoritem 

V diplomskem delu smo pregledali znanstveno literaturo na področju algoritmov iskanja poti. 

Pregled literature nakazuje na vsesplošno razširjenost algoritma A* v raziskovalni skupnosti. 

Foed idr. (2021) so navedli, da je algoritem A* zaradi svoje priljubljenosti in razširjenosti 

standard za raziskovalce, ki raziskujejo in rešujejo problem iskanja poti. Trditev, da je algoritem 

A* najpopularnejši, zasledimo tudi v raziskavi, ki so jo opravili Iskandar, U. A. S. idr. (2020), 

kjer navedejo, da je algoritem A* najpogosteje uporabljen algoritem iskanja poti v videoigrah. 

10.2 H2: Obstaja umetna inteligenca, ki najde najkrajšo pot tudi iz takega 

algoritma, pri katerem imajo ostali algoritmi omejitve 

Rezultati diplomskega dela so pokazali, da UI najde najkrajšo pot v labirintu kljub 

predpostavljenim omejitvam. Literatura nakazuje, da je razvoj UI pri problemu iskanja 

najkrajše poti pomemben dejavnik. V raziskavi, ki so jo opravili Iskandar, U. A. S. idr. (2020), 

ugotovimo, da je UI prisotna pri iskanju poti v videoigrah. V raziskavi so zabeležili, da agenti 

najdejo pot do igralca, vendar je učinkovitost algoritmov slabša. 

10.3 H3: A* algoritem bo najhitrejši algoritem in bolj učinkovit pri iskanju 

najkrajše poti v naključno generiranih labirintih v primerjavi z drugimi 

algoritmi 

V poglavju Primerjava algoritmov in umetne inteligence v naključno generiranem labirintu smo 

ugotovili, da je algoritem A* najučinkovitejši algoritem z obiskom najmanjšega števila vozlišč 

za dosego cilja. Rezultati diplomskega dela nakazujejo, da je algoritem A* najučinkovitejši 

algoritem v primerjavi z ostalimi testnimi algoritmi in umetno inteligenco. 

 

Rezultati diplomskega dela so pokazali, da algoritem A* kljub svoji učinkovitosti ni najhitrejši 

algoritem izmed testiranih algoritmov in umetne inteligence. 
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10.4 H4: Umetna inteligenca bo najučinkovitejša pri iskanju najkrajše poti v 

naključno generiranem labirintu v primerjavi z algoritmi A*, Dijkstrovim 

algoritmom in BFS 

Rezultati diplomskega dela so pokazali, da umetna inteligenca ni najučinkovitejša v naključno 

generiranem labirintu. Hitrost reševanja problema je bila znatno višja v pram algoritmov iskanja 

poti. Število obiskanih vozlišč je bilo v povprečju višje od algoritmov iskanja poti. Pomemben 

podatek je, da UI ni bila vedno uspešna pri reševanju problema, kar nakazuje na splošno slabo 

učinkovitost UI. Kljub rezultatom je pomembno povedati, da je v okviru diplomskega dela UI 

bila učena na manjši količini podatkov, in sicer pet tisoč naključno generiranih labirintov 

velikosti 11x11.  
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11 SKLEP 

V okviru diplomskega dela smo primerjali algoritme iskanja poti BFS, A*, Dijkstrov algoritem 

in umetno inteligenco pri reševanju naključno generiranega labirinta. Cilj diplomskega dela je 

analiza literature in analitična primerjava uspešnosti algoritmov pri reševanju naključno 

generiranega labirinta. Analiza algoritmov in umetne inteligence je zajemala čas reševanja 

labirinta, število obiskanih vozlišč in sposobnost algoritma, da najde končno vozlišče. 

Algoritme smo primerjali na različnih velikostih labirintov, in sicer 11x11, 21x21 in 31x31, z 

namenom simulacije različnih kompleksnosti problemov. 

Algoritmi iskanja poti so v vseh testnih primerih pokazali izjemno zanesljivost s 100-% 

uspešnostjo pri iskanju cilja. Algoritem A* se je izkazal kot najbolj optimiziran, saj je dosegel 

cilj z najmanjšim številom obiskanih vozlišč, kar nakazuje na uspešno uporabo hevristične 

funkcije. Dijkstrov algoritem je bil najhitrejši, vendar je obiskal največ vozlišč, kar nakazuje na 

potencialne težave pri večjih in zahtevnejših problemih. Algoritem BFS je pokazal konsistentno 

delovanje z zmernim obiskom vozlišč in hitrostjo reševanja problema. 

Umetno inteligenco smo implementirali s pomočjo strojnega učenja na osnovi globokega Q-

učenja DQN. Za namen diplomskega dela smo umetno inteligenco učili na naključno 

generiranih labirintih velikosti 11x11. Dosežen uspeh učenja UI je 32,4 %, kar moramo 

upoštevati pri končnih rezultatih primerjave algoritmov iskanja poti in umetne inteligence. 

Velikost labirinta je močno vplivala na uspeh reševanja problema UI. Najboljši časovni rezultat 

UI je zabeležen na labirintih velikosti 11x11, na katerih je bila UI učena. Uspešno dosežen cilj 

UI je bil najvišji na velikosti 11x11, kjer je število vozlišč minimalno. UI je imela znatno slabše 

rezultate na labirintu velikosti 21x21 in 31x31, kar nakazuje na slabšanje učinkovitosti UI na 

kompleksnejših problemih. Takšni rezultati so bili pričakovani, saj je strojno učenje 

najučinkovitejše na podatkih, na katerih je bilo učeno. 

Algoritmi iskanja poti so hitreje reševali problem v pram UI. Čas reševanja problema smo 

beležili v milisekundah. Primerjavo algoritmov iskanja poti in UI smo izvedli na tisoč primerih 

na naključno generiranih labirintih različne velikosti. Algoritmi iskanja poti so bili bistveno 

hitrejši v primerjavi z UI, saj je morala izračunati Q-vrednost za vsako novo stanje.  

Uporaba algoritmov iskanja poti v praktičnem okolju je še vnaprej zaželena, saj je potrebna 

100-% učinkovitost in hitra odzivnost pri reševanju problema. Njihova deterministična narava 
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in dokazana učinkovitost jih delata zanesljive za kritične aplikacije. Vendar pa pristopi umetne 

inteligence ponujajo potencial za učenje iz izkušenj, kar lahko postane prednost v dinamičnih 

okoljih, kjer se pogoji spreminjajo. 

Pomembno je poudariti, da so rezultati umetne inteligence odvisni od kakovosti učnega procesa, 

količine učnih podatkov in arhitekture nevronske mreže. Z dodatnim učenjem na raznolikih 

labirintih različnih velikosti bi se lahko njena splošna uspešnost občutno izboljšala. 

Izbira med algoritmi iskanja poti in UI je odvisna od problema, ki ga želimo rešiti, zahtevane 

zanesljivosti, časovnih omejitev in narave problema. Algoritmi iskanja poti so primerni za 

aplikacije, ki zahtevajo 100-% uspešnost in hitro reševanje. UI ponuja potencialno prilagajanje 

pri reševanju kompleksnih dinamičnih problemov, vendar z večjimi računskimi zahtevami in 

manjšim zagotavljanjem uspešnosti. Prednost UI je neprestano učenje na vnosnih podatkih, kar 

omogoča izboljšanje časa reševanja problema in učinkovitost rešitve.  

Za nadaljnje raziskovanje UI priporočamo testiranje z drugimi algoritmi strojnega učenja, 

drugačnimi parametri učenja, večjim številom labirintov in različnimi testnimi okolji. Prav tako 

je smiselno raziskati hibridne pristope, ki bi kombinirali prednosti determinističnih algoritmov 

in prilagodljivosti UI. 
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