

VIŠJA STROKOVNA ŠOLA ACADEMIA

MARIBOR

PRIMERJAVA ALGORITMOV ISKANJA POTI

IN UMETNE INTELIGENCE V NAKLJUČNO

GENERIRANEM LABIRINTU

Kandidat: Žan Žerak

Vrsta študija: študent izrednega študija

Študijski program: Informatika

Mentor predavatelj: mag. Ervin Schaff

Mentor v podjetju: Vitomil Selič, dipl. inž. inf.

Lektorica: Karin Vidmar, prof. slov. in angl.

Maribor, 2025

IZJAVA O AVTORSTVU DIPLOMSKEGA DELA

Podpisani Žan Žerak sem avtor diplomskega dela z naslovom Primerjava algoritmov iskanja

poti in umetne inteligence v naključno generiranemu labirintu, ki sem ga napisal pod

mentorstvom mag. Ervina Schaffa.

S svojim podpisom zagotavljam, da:

• je predloženo delo izključno rezultat mojega dela;

• sem poskrbel, da so dela in mnenja drugih avtorjev, ki jih uporabljam v predloženi

nalogi, navedena oz. citirana skladno s pravili Višje strokovne šole Academia Maribor;

• se zavedam, da je plagiatorstvo – predstavljanje tujih del oz. misli kot mojih lastnih,

kaznivo po Zakonu o avtorskih in sorodnih pravicah (Uradni list RS, št. 16/07 – uradno

prečiščeno besedilo, 68/08, 110/13, 56/15 in 63/16 – ZKUASP); prekršek pa podleže

tudi ukrepom Višje strokovne šole Academia Maribor skladno z njenimi pravili;

• skladno z 32.a členom ZASP dovoljujem Višji strokovni šoli Academia Maribor objavo

diplomskega dela na spletnem portalu šole.

Maribor, oktober 2025 Podpis študenta:

ZAHVALA

Zahvaljujem se mentorju mag. Ervinu Schaffu za mentorstvo pri diplomskem delu.

Zahvaljujem se svoji družini, ki me je podpirala v času študija.

POVZETEK

V diplomskem delu je predstavljena primerjava algoritmov iskanja poti in umetne inteligence

pri reševanju naključno generiranih labirintov. Namen diplomskega dela je ugotovitev

učinkovitosti in hitrosti različnih pristopov k reševanju poti v kompleksnih strukturah.

V teoretičnem delu so obravnavani algoritmi iskanja najkrajše poti, in sicer algoritem A*,

preiskovanje v širino in Dijkstrov algoritem. Predstavljena je tudi teorija grafov in mrež ter

vloga hevristike pri iskanju poti. Posebno poglavje je namenjeno umetni inteligenci in njenemu

pomenu pri reševanju problema iskanja poti.

Za empirično raziskavo je bila razvita aplikacija v programskem jeziku Python z grafičnim

uporabniškim vmesnikom. Aplikacija omogoča generiranje naključnih labirintov različnih

velikosti ter vizualizacijo delovanja posameznih algoritmov. Za simulacijo umetne inteligence

je bil implementiran pristop globokega Q-učenja z uporabo knjižnice PyTorch.

Testiranje je potekalo na tisoč naključno generiranih labirintih za naslednje velikosti, in sicer

11x11, 21x21 in 31x31. Merjeni so bili čas iskanja, število obiskanih vozlišč in uspešno

doseganje cilja. Algoritmi iskanja poti so pokazali 100-% uspešnost pri vseh velikostih

labirintov. Algoritem A* se je izkazal kot najbolj optimiziran z najmanjšim obiskom vozlišč,

medtem ko je Dijkstrov algoritem najhitreje našel končno vozlišče. Umetna inteligenca je

dosegla 60,3-% uspešnost na labirintih velikosti 11x11, vendar se je njena učinkovitost občutno

zmanjšala pri večjih labirintih, in sicer 8,1-% uspešnost na labirintih velikosti 21x21 in 2,8-%

uspešnost na labirintih velikosti 31x31.

Rezultati nakazujejo, da so tradicionalni algoritmi iskanja poti bolj zanesljivi in učinkoviti za

praktične aplikacije, kjer je potrebna 100-% učinkovitost in uspešnost. Umetna inteligenca

ponuja potencialno boljše rezultate, vendar zahteva obsežnejše učenje na raznolikih podatkih

za doseganje primerljivih rezultatov z algoritmi iskanja poti. Diplomsko delo prispeva k

boljšemu razumevanju prednosti in omejitev različnih pristopov iskanja poti v kompleksnih

strukturah. V prihodnosti bi bilo smiselno raziskati še druge metode umetne inteligence ter

optimizirati procese učenja, da bi se dosegla večja uspešnost pri reševanju zahtevnejših

labirintov.

Ključne besede: umetna inteligenca, strojno učenje, mreže, grafi, algoritmi iskanja poti.

ABSTRACT

COMPARISON OF PATH FINDING ALGORITHMS AND ARTIFICIAL

INTELLIGENCE IN A RANDOMLY GENERATED MAZE

This thesis presents a comparison of pathfinding algorithms and artificial intelligence in solving

randomly generated mazes. The purpose of the thesis is to determine the effectiveness and speed

of different approaches to solving paths in complex structures.

The theoretical part deals with algorithms for finding the shortest path, namely the A*

algorithm, breadth-first search, and Dijkstra's algorithm. Graph and network theory and the role

of heuristics in pathfinding are also presented. A special chapter is devoted to artificial

intelligence and its importance in solving the pathfinding problem.

For empirical research, an application was developed in the Python programming language with

a graphical user interface. The application enables the generation of random mazes of various

sizes and the visualization of the operation of individual algorithms. To simulate artificial

intelligence, a deep Q-learning approach was implemented using the PyTorch library.

The testing was conducted on a thousand randomly generated mazes of the following sizes:

11x11, 21x21, and 31x31. The search time, number of visited nodes, and successful goal

achievement were measured. The pathfinding algorithms showed 100% success for all maze

sizes. The A* algorithm proved to be the most optimized with the fewest node visits, while

Dijkstra's algorithm found the final node the fastest. Artificial intelligence achieved 60.3%

success on 11x11 mazes, but its efficiency decreased significantly in larger mazes, with 8.1%

success in 21x21 mazes and 2.8% success in 31x31 mazes.

The results indicate that traditional pathfinding algorithms are more reliable and effective for

practical applications where 100% efficiency and success are required. Artificial intelligence

offers potentially better results but requires more extensive learning on diverse data to achieve

comparable results with pathfinding algorithms. This thesis contributes to a better

understanding of the advantages and limitations of different approaches to pathfinding in

complex structures.

Keywords: artificial intelligence, machine learning, networks, graphs, pathfinding algorithms

KAZALO VSEBINE

1 UVOD .. 9

1.1 OPIS PODROČJA IN OPREDELITEV PROBLEMA ... 9

1.2 NAMEN, CILJI IN OSNOVNE TRDITVE .. 10

1.3 PREDPOSTAVKE IN OMEJITVE ... 11

1.4 UPORABLJENE RAZISKOVALNE METODE ... 12

2 ALGORITMI ISKANJA NAJKRAJŠE POTI .. 13

3 GRAFI IN MREŽE .. 15

3.1 GRAF ... 15

3.2 MREŽE ... 17

3.3 HEVRISTIKA ... 20

4 ALGORITEM A* ... 22

4.1 PREDNOSTI ALGORITMA A* ... 22

4.2 SLABOSTI ALGORITMA A* ... 23

4.3 PSEVDOKODA IN NAČRT IMPLEMENTACIJE ALGORITMA A* .. 24

5 ALGORITEM BREADTH-FIRST SEARCH ... 26

5.1 PREDNOSTI ALGORITMA BFS ... 26

5.2 SLABOSTI ALGORITMA BFS ... 27

5.3 PSEVDOKODA IN NAČRT IMPLEMENTACIJE ALGORITMA BFS .. 28

6 DIJKSTROV ALGORITEM ... 30

6.1 PREDNOST DIJKSTROVEGA ALGORITMA ... 31

6.2 SLABOST DIJKSTROVEGA ALGORITMA ... 31

6.3 PSEVDOKODA IN NAČRT IMPLEMENTACIJE DIJKSTROVEGA ALGORITMA 32

7 UMETNA INTELIGENCA ... 34

7.1 UMETNA INTELIGENCA IN RAZUMEVANJE... 35

7.2 UMETNA INTELIGENCA IN STROJNO UČENJE ... 35

7.3 UMETNA INTELIGENCA IN ISKANJE ... 36

7.4 UMETNA INTELIGENCA IN ISKANJE NAJKRAJŠE POTI ... 37

7.5 STROŠKI RAZVOJA IN IMPLEMENTACIJE UMETNE INTELIGENCE 38

8 PRIPRAVA OKOLJA ... 40

8.1 STRUKTURA IZVORNE KODE ... 40

8.2 UPORABNIŠKI VMESNIK APLIKACIJE ... 42

8.3 IZVORNA KODA LABIRINTA .. 49

8.4 IZVORNA KODA ALGORITMA BFS ... 51

8.5 IZVORNA KODA ALGORITMA A* ... 53

8.6 IZVORNA KODA ALGORITMA DIJKSTRA .. 54

8.7 IZVORNA KODA STROJNEGA UČENJA .. 55

9 PRIMERJAVA ALGORITMOV IN UMETNE INTELIGENCE V NAKLJUČNO

GENERIRANEM LABIRINTU .. 69

9.1 REZULTATI ALGORITMOV ISKANJA POTI IN UMETNE INTELIGENCE V NAKLJUČNO

GENERIRANEM LABIRINTU ... 69

9.2 ANALIZA HITROSTI ALGORITMOV ISKANJA NAJKRAJŠE POTI ... 71

9.3 ANALIZA ZMOGLJIVOSTI UMETNE INTELIGENCE PRI REŠEVANJU NAJKRAJŠE POTI 73

10 POTRDITEV ALI ZAVRNITEV HIPOTEZ ... 74

10.1 H1: A* JE NAJPOPULARNEJŠI ALGORITEM .. 74

10.2 H2: OBSTAJA UMETNA INTELIGENCA, KI NAJDE NAJKRAJŠO POT TUDI IZ TAKEGA

ALGORITMA, PRI KATEREM IMAJO OSTALI ALGORITMI OMEJITVE .. 74

10.3 H3: A* ALGORITEM BO NAJHITREJŠI ALGORITEM IN BOLJ UČINKOVIT PRI ISKANJU

NAJKRAJŠE POTI V NAKLJUČNO GENERIRANIH LABIRINTIH V PRIMERJAVI Z DRUGIMI ALGORITMI

 74

10.4 H4: UMETNA INTELIGENCA BO NAJUČINKOVITEJŠA PRI ISKANJU NAJKRAJŠE POTI V

NAKLJUČNO GENERIRANEM LABIRINTU V PRIMERJAVI Z ALGORITMI A*, DIJKSTROVIM

ALGORITMOM IN BFS .. 75

11 SKLEP ... 76

12 VIRI IN LITERATURA .. 78

KAZALO SLIK

SLIKA 1 USMERJEN GRAF ... 16

SLIKA 2 USMERJEN GRAF ... 16

SLIKA 3 OBTEŽEN GRAF ... 17

SLIKA 4 PRIKAZ MREŽE.. 18

SLIKA 5 PRIKAZ ŠESTEROKOTNE MREŽE .. 19

SLIKA 6 PRIKAZ PREPROSTE MREŽE ... 20

SLIKA 7 PSEUDO KODA ALGORITMA A STAR ... 25

SLIKA 8 PSEUDO KODA ALGORITMA BFS ... 29

SLIKA 9 PSEUDO KODA ALGORITMA DIJKSTRA ... 33

SLIKA 10 STRUKTURA IZVORNE KODE ... 41

SLIKA 11 UPORABNIŠKI VMESNIK APLIKACIJE ... 42

SLIKA 12 PRIKAZ ISKANJA ALGORTIMA V APLIKACIJI ... 43

SLIKA 13 IZVORNA KODA RAZREDA APP.PY ... 43

SLIKA 14 IZVORNA KODA RAZREDA APP.PY ... 44

SLIKA 15 IZVORNA KODA METODE START() RAZREDA APP.PY .. 44

SLIKA 16 IZVORNA KODA METODE UPDATE_TABLE() RAZREDA APP.PY...................................... 44

SLIKA 17 IZVORNA KODA DRAW_CELL() RAZREDA APP.PY .. 45

SLIKA 18 IZVORNA KODA METODE CREATE_WIDGETS() RAZREDA APP.PY 45

SLIKA 19 IZVORNA KODA METODE RUN_MAZE() RAZREDA APP.PY .. 46

SLIKA 20 IZVORNA KODA OBJEKTA ALGORITHMS ... 47

SLIKA 21 IZVORNA KODA METODE DRAW_MAZE() RAZREDA APP.PY ... 48

SLIKA 22 IZVORNA KODA RAZREDA APP.PY ... 48

SLIKA 23 IZVORNA KODA RAZREDA MAZE.PY .. 50

SLIKA 24 IZVORNA KODA ALGORITMA BFS.. 52

SLIKA 25 IZVORNA KODA ALGORITMA A STAR ... 53

SLIKA 26 IZVORNA KODA ALGORITMA DIJKSTRA .. 55

SLIKA 27 IZVORNA KODA ZA STROJNO UČENJE ... 56

SLIKA 28 IZVORNA KODA RAZREDA DQN .. 56

SLIKA 29 IZVORNA KODA RAZREDA MAZEENV .. 57

SLIKA 30 IZVORNA KODA RAZREDA MAZEENV .. 58

SLIKA 31 KONSTRUKTOR RAZREDA SOLVINGMAZEENV .. 59

SLIKA 32 IZVORNA KODA METODE _GET_STATE() .. 59

SLIKA 33 IZVORNA KODA METODE RESET() .. 60

SLIKA 34 IZVORNA KODA METODE STEP() .. 60

SLIKA 35 IZVORNA KODA METODE SOLVE_WITH_DQN() .. 61

SLIKA 36 IZVRONA KODA METODE SOLVE_WITH_DQN() .. 61

SLIKA 37 IZVRONA KODA METODE SOLVE_WITH_DQN() .. 62

SLIKA 38 IZVRONA KODA METODE SOLVE_WITH_DQN() .. 62

SLIKA 39 IZVRONA KODA METODE SOLVE_WITH_DQN() .. 63

SLIKA 40 IZVORNA KODA METODE TRAIN_DQN() ... 64

SLIKA 41 IZVORNA KODA METODE TRAIN_DQN() ... 65

SLIKA 42 IZVORNA KODA METODE TRAIN_DQN() ... 65

SLIKA 43 IZVORNA KODA METODE TRAIN_DQN() ... 66

SLIKA 44 IZVORNA KODA METODE TRAIN_DQN() ... 66

SLIKA 45 IZVORNA KODA METODE TRAIN_DQN() ... 67

SLIKA 46 IZVORNA KODA METODE TRAIN_DQN() ... 67

SLIKA 47 IZVORNA KODA METODE TRAIN_DQN() ... 68

KAZALO TABEL

TABELA 1 REZULTATI ALGORITMOV ISKANJA POTI IN UI V LABIRINTU VELIKOSTI 11X11 69

TABELA 2 REZULTATI ALGORITMOV ISKANJA POTI IN UI V LABIRINTU VELIKOSTI 21X21 70

TABELA 3 REZULTATI ALGORITMOV ISKANJA POTI IN UI V LABIRINTU VELIKOSTI 31X31 70

KAZALO GRAFIKONOV

GRAFIKON 1 PRIKAZ ČASA ISKANJA KONČNEGA VOZLIŠČA ALGORITMOV IN UI V LABIRINTU 72

GRAFIKON 2 PRIKAZ ŠTEVILA OBISKANIH VOZLIŠČ ALGORITMOV IN UI V LABIRINTU 72

GRAFIKON 3 PRIKAZ USPEŠNOSTI ISKANJA ALGORITMOV IN UI V LABIRINTU 73

 9

1 UVOD

V dobi napredne računalniške tehnologije in umetne inteligence je iskanje optimalnih poti v

kompleksnih strukturah postalo ključno za reševanje številnih problemov. Od navigacijskih

sistemov, robotike in videoiger se algoritmi iskanja poti nenehno razvijajo in izpopolnjujejo.

Labirint kot abstraktna struktura predstavlja idealno okolje za primerjavo različnih pristopov,

saj omogoča kontrolirano analizo učinkovitosti algoritmov iskanja poti in umetne inteligence.

Naključno generirani labirinti zagotavljajo nepristranske pogoje za ovrednotenje delovanja

algoritmov v nepredvidljivih okoljih.

1.1 Opis področja in opredelitev problema

Cormen idr. (2022) definirajo algoritem kot računalniški postopek, ki vzame poljubno vrednost

ali niz vrednosti kot vhod in ustvari izhod ali niz vrednosti v določenem času. Torej gre za

zaporedje računalniških postopkov, ki pretvorijo vhod v izhod.

Algoritem je orodje, ki opisuje postopek reševanja računalniških problemov. Določa želeno

razmerje med vhodi in izhodi. Definiran je kot računalniški program, ki vsebuje postopek za

proceduro (Cormen, Leiserson, Rivest in Clifford, 2022).

Algoritem je pravilen, če za vsak problem, ki ga dobimo kot vhodni podatek, ustvari in konča

računanje v končnem času in poda pravilen odgovor. Pravilen algoritem reši trenutni problem.

Nepravilen algoritem lahko poteka neskončno ali poda nepravilen rezultat (Cormen, Leiserson,

Rivest, in Clifford, 2022).

Računalniški viri so zaradi številnih dejavnikov omejeni. Učinkovitost algoritmov merimo z

uporabo računalniških virov. Učinkovit algoritem optimalno uporabi časovne in prostorske vire.

Prostorska učinkovitost se na primer uporablja za merjenje količine pomnilnika, ki je potrebna

za izvajanje algoritma. Hitreje kot algoritem konvergira, večja je natančnost algoritma in

manjše je število iteracij. Na učinkovitost algoritma vplivajo tudi pomnilniške zahteve

programa. S povečevanjem števila iteracij lahko poraba pomnilnika poslabša učinkovitost

sistema (Choudhury, Ghose, Islam in Yogita, 2024).

Za učinkovite algoritme so potrebne podatkovne strukture. Te nam omogočajo shranjevanje

podatkov za lažji dostop in spreminjanje le-teh. Podatkovna struktura ne deluje dobro za vse

 10

namene, zato je njihova ustrezna izbira ključna za optimalno delovanje algoritmov (Cormen,

Leiserson, Rivest in Clifford, 2022).

Internet omogoča ljudem po vsem svetu hiter dostop in iskanje velike količine informacij. S

pomočjo algoritmov spletna mesta upravljajo velike količine podatkov. Primer uporabe

algoritmov lahko najdemo v iskalnikih, kot je iskalnik Google (angl. Google search engine), in

v iskanju najkrajše poti do cilja (Cormen, Leiserson, Rivest in Clifford , 2022).

V številnih primerih želimo primerjati dva algoritma. Na splošno lahko učinkovitost algoritma

ocenimo glede na čas izvajanja kot funkcijo velikosti vhodnih podatkov. Ko govorimo o

učinkovitosti algoritma vedno upoštevamo najslabši možni rezultat. Za učinkovitost algoritmov

uporabljamo notacijo Big O.

Zapis Big O je matematični zapis, ki opisuje mejno obnašanje funkcije, ko argument teži k

določeni vrednosti ali neskončnosti. V računalništvu se zapis velikega O uporablja za

razvrščanje algoritmov glede na to, kako se njihov čas izvajanja ali prostorske zahteve

povečujejo z rastjo velikosti vhoda (Cormen, Leiserson, Rivest in Clifford, 2022).

V računalništvu se zapis vrstnega reda uporablja predvsem za primerjavo učinkovitosti

algoritmov. Pri analizi učinkovitosti algoritmov je še posebej uporaben zapis Big O. V tem

primeru je n velikost vhoda, f (n) pa je čas delovanja algoritma glede na velikost vhoda.

V diplomskem delu se bomo osredotočili na primerjavo algoritmov iskanja poti in umetne

inteligence v naključno generiranem labirintu. Cilj diplomskega dela je primerjava algoritmov

in umetne inteligence ter ugotovitev, kateri pristop k reševanju problema je najhitrejši in

optimalen.

Rezultati diplomskega dela bodo pomagali razvijalcem programske opreme pri izbiri primernih

algoritmov iskanja poti za njihove aplikacije. Diplomsko delo bo prispevalo k boljšemu

razumevanju prednosti in omejitev algoritmov iskanja poti in umetne inteligence pri reševanju

problemov navigacije in iskanja poti v kompleksnih strukturah.

1.2 Namen, cilji in osnovne trditve

Namen diplomskega dela je pregled obstoječe literature na področju algoritmov iskanja poti in

primerjava učinkovitosti iskanja poti algoritmov A star, Dijkstrovega algoritma, algoritma

preiskovanja v širino in umetne inteligence v naključno generiranem labirintu. Primerjava bo

 11

temeljila na več kriterijih, vključno s časom in uspešnostjo reševanja ter številom obiskanih

vozlišč.

Cilji diplomskega dela so naslednji, in sicer:

- Ugotoviti, ali je algoritem A star najpopularnejši algoritem za iskanje poti.

- Primerjati algoritme iskanja poti in umetne inteligence v naključno generiranem labirintu.

- Ugotoviti, ali obstaja umetna inteligenca za iskanje najkrajše poti v naključno generiranem

labirintu.

- Ugotoviti, ali je umetna inteligenca najučinkovitejša pri iskanju poti v naključno

generiranem labirintu v primerjavi z algoritmi A*, Dijkstrovim algoritmom in algoritmom

BFS.

Hipoteze, ki jih bo diplomsko delo preverilo, so naslednje, in sicer:

Hipoteza 1: A* je najpopularnejši algoritem.

Hipoteza 2: Obstaja umetna inteligenca, ki najde najkrajšo pot tudi iz takega labirinta, pri

katerem imajo ostali algoritmi omejitve.

Hipoteza 3: A* algoritem bo hitrejši in bolj učinkovit pri iskanju najkrajše poti v naključno

generiranih labirintih v primerjavi z drugimi algoritmi.

Hipoteza 4: Umetna inteligenca bo najučinkovitejša pri iskanju najkrajše poti v naključno

generiranem labirintu v primerjavi z algoritmi A*, Dijkstrovim algoritmom in BFS.

1.3 Predpostavke in omejitve

V diplomskem delu se soočamo s predpostavkami in omejitvami, ki vplivajo na rezultate.

Predpostavke:

- Predpostavljamo, da so vse meritve algoritmov in umetne inteligence izvedene na naključno

generiranih labirintih velikosti 11x11, 21x21 in 31x31. To omogoča, da so testi nepristranski

in objektivni pri analizi hitrosti ter učinkovitosti algoritmov in umetne inteligence.

- Predpostavljamo, da so vse informacije pridobljene iz akreditiranih virov informacij in so

relevantne za to področje raziskave.

 12

Omejitve:

- V diplomskem delu bomo uporabili strojno učenje za simulacijo umetne inteligence. Učenje

bo izvedeno na labirintu velikosti 11x11, kar bo vplivalo na rezultate umetne inteligence.

- Rezultati analize so odvisni od specifičnih testov in meritev, ki se izvajajo. Drugačne

metode analize bi lahko privedle do drugačnih rezultatov.

- Algoritem A* je odvisen od hevristike, boljša kot je ta, boljši so rezultati. V diplomskem

delu ne bomo obravnavali različnih možnosti vpliva hevristike na algoritem A*.

1.4 Uporabljene raziskovalne metode

V diplomskem delu smo uporabili več raziskovalnih metod, ki so pomagale pri pridobitvi

podatkov ter primerjavi algoritmov iskanja poti in umetne inteligence. Te metode so:

- Pregled literature: Izvedli smo pregled trenutno znane znanstvene literature z namenom

pridobitve verodostojnih in preverjenih informacij. Pregled literature je pomagal razumeti

in primerjati algoritme iskanja poti in umetno inteligenco.

- Eksperimentalno testiranje: V okviru diplomskega dela smo razvili aplikacijo v

programskem jeziku Python. Aplikacija nam je omogočala primerjavo in analizo algoritmov

iskanja poti in umetne inteligence v naključno generiranem labirintu. To nam je omogočalo

izvesti analizo učinkovitosti in hitrosti algoritmov in umetne inteligence na labirintih

različnih velikosti. Večanje labirinta nam je omogočalo simulacijo kompleksnejših

problemov, in s tem ugotoviti, kako se obnašajo algoritmi in umetna inteligenca pri

reševanju le-teh.

- Analiza: S pomočjo trenutno znane znanstvene raziskave in rezultatov eksperimentalnega

testiranja smo lahko odgovorili na zastavljena vprašanja v okviru diplomske naloge.

 13

2 ALGORITMI ISKANJA NAJKRAJŠE POTI

Ljudje uporabljajo zemljevide za veliko stvari, na primer za iskanje krajev, restavracij,

bencinskih črpalk ali iskanje poti do želenega cilja. Ko zahtevamo pot od začetne točke do

končnega cilja, vedno dobimo najkrajšo pot. Problem najkrajše poti se preučuje že vrsto let.

Problem najkrajše poti je problem, ki najde najmanjšo razdaljo ali pot med vozlišči ali vrhovi

v grafu. Graf je abstraktni matematični objekt, ki vsebuje množice vrhov in robov (Kairanbay

in Jani, 2013), (Rachmawati in Gustin, 2020).

Algoritmi za iskanje poti se uporabljajo za reševanje problema najkrajše in optimalne poti.

Običajno se uporabljata algoritma A* in Dijkstra kot metoda rešitve za iskanje najkrajše poti.

Iskanje poti je izrisovanje vozlišč. Cilj algoritma je iskanje najkrajše poti med dvema točkama

od začetka do cilja. Iskanje poti je glavna sestavina številnih pomembnih aplikacij na področjih

videoiger, robotike (Hunkeler, Schär, Dornberger in Hanne, 2016), simulacije množic (Wolsey,

1998) in GPS (Carr, 2014) (Rafiq, Tuty Asmawaty in Ihsan, Pathfinding Algorithms in Game

Development, 2020).

Iskalni algoritmi so že dolgo časa v središču zanimanja na področju računalništva. Iskanja

morajo biti hitra, natančna in učinkovita, vsako odstopanje od teh lastnosti pa se šteje za veliko

napako. Iskanje lahko delimo na informirano in neinformirano. Najpogostejše iskanje je

informirano. Pri informiranem iskanju se uporablja hevristično funkcijo, ki meri oddaljenost od

cilja za sprejemanje boljših odločitev (Foead , Ghifari, Kusuma, Hanafiah in Gunawan , 2021).

Iskanje optimalne poti je sicer zaželeno, vendar ni vedno nujno, odvisno od končne uporabe. V

nekaterih primerih, na primer pri sistemih za upravljanje GPS v realnem času, bodo uporabniki

bolj cenili takojšen in hiter odziv kot vedno optimalno pot (Aria, 2018), (Foead , Ghifari,

Kusuma, Hanafiah in Gunawan , 2021).

Informirana iskanja, kot so IDA*, A* in Jump Point Search IDA*, običajno uporabljajo

nekatere zunanje podatke za povečanje učinkovitosti in temeljijo na zmožnosti pretvorbe ciljev

v podatke. Hevristične funkcije delujejo izjemno dobro, kadar je iskalno območje dobro znano,

na primer zemljevid, vendar lahko trpijo, če so podatki netočni ali neznani (Foead , Ghifari,

Kusuma, Hanafiah in Gunawan , 2021).

 14

Nasprotno pa neinformirana iskanja slepo sledijo svojemu algoritmu do zaključka, kar jih

običajno naredi počasnejša, a manj odvisna od zunanjih dejavnikov. Na primer v igrah se je

neinformirano iskanje, kot je Dijkstrov algoritem, izkazalo za izjemno neučinkovito v

primerjavi s HPA*, saj je optimalno pot našlo skoraj trikrat počasneje (Noori in Moradi, 2015),

(Foead , Ghifari, Kusuma, Hanafiah in Gunawan , 2021).

 15

3 GRAFI IN MREŽE

Algoritmi iskanja so predstavljeni s pomočjo grafov in mrež. V matematiki in računalništvu je

teorija grafov študija grafov, ki so matematične strukture, uporabljene za modeliranje parnih

odnosov med objekti.

3.1 Graf

Graf je sestavljen iz vrhov, imenovanih tudi vozlišča ali točke, ki so povezani z robovi,

imenovanimi tudi loki, povezave ali črte. Razlikujemo med neusmerjenimi grafi, kjer robovi

simetrično povezujejo dva vrhova, in usmerjenimi grafi, kjer robovi asimetrično povezujejo

dva vrhova.

V enem omejenem, a zelo pogostem pomenu izraza je graf urejen par 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), ki vsebuje:

• V - množico vozlišč;

• E - E ⊆ {{x, y} ∣ x, y ∈ V in x ≠ y}, množico povezav, imenovanih tudi robovi ali črte, kjer

so povezave neurejeni pari vozlišč, torej je povezava določena z dvema različnima

vozliščema (Bender in Williamson, 2010), (Berge, 1958).

Graf je lahko usmerjen ali neusmerjen. V primeru usmerjene povezave velja, da:

{u, v} ≠ {v, u}.

 16

Slika 1: Usmerjen graf

Vir: Diskretna matematika: teorija grafov. Višja strokovna šola Academia Maribor, 2024.

V primeru neusmerjene povezave velja, da:

{𝑢𝑢, 𝑣𝑣} = {𝑣𝑣,𝑢𝑢}.

Slika 2: Usmerjen graf

Vir: Diskretna matematika: teorija grafov. Višja strokovna šola Academia Maribor, 2024.

 17

Obtežen graf 𝐺𝐺 je graf, kjer vsaki povezavi dodamo zahtevnost oziroma težo. Zapišemo 𝐺𝐺 =

(𝑉𝑉,𝐸𝐸,𝐶𝐶), kjer je 𝐶𝐶(𝐺𝐺) množica obtežitev povezav grafa.

Slika 3: Obtežen graf

Vir: Diskretna matematika: teorija grafov. Višja strokovna šola Academia Maribor, 2024.

3.2 Mreže

Algoritme iskanja optimalne poti najlažje predstavimo na mrežnih površinah. Da lažje

primerjamo pot in učinkovitost algoritma, je potrebno razumeti mrežne površine.

Iskanje poti je pomemben problem za številne aplikacije, vključno z omrežnim prometom,

načrtovanjem robotov, vojaškimi simulacijami in računalniškimi igrami. Najpogostejši scenarij

je uporaba mreže ploščic. Ploščica ima štiri sosednja vozlišča (b = 4). Zato je treba pri iskanju

poti upoštevati štiri sosednje ploščice, ki jih je treba raziskati. Ker se nikoli ne vrnemo nazaj

vzdolž optimalne poti, ni treba upoštevati smeri, ki smo jo že obiskali. Zato je število vozlišč,

ki jih je treba raziskati tri (b = 3) (Yap, 2002).

 18

Slika 4: Prikaz mreže

Vir: Yap, P. Grid-Based Path-Finding: lecture notes in computer science, 2002.

Oglejmo si šesterokotno mrežo, kjer ima vsako vozlišče šest možnih smeri gibanja, in sicer

sever, severovzhod, jugovzhod, jug, jugozahod in severozahod. Na prvi pogled bi lahko

sklepali, da ima takšna mreža faktor razvejanosti enak 5, saj na vsakem koraku obstaja pet

možnih poti naprej, če ne štejemo poti nazaj. Vendar pa lahko to število zmanjšamo z

upoštevanjem optimalnega iskalnega algoritma. Recimo, da se premaknemo iz ploščice 1 na

ploščico 2 v smeri sever. Ko razmišljamo o nadaljnjih korakih z nove pozicije, upoštevamo

samo tista gibanja, ki so smiselna v kontekstu iskanja najkrajše poti. Gibanja nazaj ne štejemo,

prav tako izločimo smeri SV in SZ, ker bi v primeru optimalne poti te smeri izhajale iz drugih

odločitev že prej. Tako na vsaki ploščici ostanejo le tri smiselne možnosti za nadaljnje gibanje.

Zaradi tega je efektivni faktor razvejanosti šesterokotne mreže zmanjšan na tri (b = 3) (Yap,

2002).

 19

Slika 5: Prikaz šesterokotne mreže

Vir: Yap, P. Grid-Based Path-Finding: lecture notes in computer science, 2002.

Za diplomsko delo bomo uporabili preprosto mrežo, ki omogoča štirismerno premikanje. Mreža

bo sestavljena iz belih in sivih kvadratov. Siv kvadrat bo predstavljal oviro, ki je algoritem ne

sme prečkati. Vsak kvadrat predstavlja svoje vozlišče.

 20

Slika 6: Prikaz preproste mreže

Vir: Yap, P. Grid-Based Path-Finding: lecture notes in computer science, 2002.

3.3 Hevristika

Običajno se pri iskanju poti uporablja hevristika. Hevristika je nekaj, kar daje grobo oceno,

kako daleč je do cilja. Običajno se neposredno uporablja realna evklidska razdalja do cilja, saj

je ta hitra in običajno daje razmeroma dobre rezultate. Težava je v tem, da v primerih, ki niso

samo odprt prostor z nekaj majhnimi ovirami, raztresenimi naokoli, ta ocena ni preveč dobra.

Posledica tega je, da gre iskanje skozi veliko več vozlišč, kot bi bilo potrebno, če bi bila

hevristika boljša.

Hevristična funkcija h(n) podaja ocenjeni strošek od trenutnega vozlišča do ciljnega vozlišča,

deluje kot informirano ugibanje algoritma o preostali poti.

 21

V mrežnih ali kartografskih problemih se uporablja Manhattanska in Evklidska funkcija za

računanje razdalje od začetnega do končnega vozlišča.

Manhattansko razdaljo lahko izračunamo z naslednjo funkcijo:

ℎ(𝑛𝑛)  =  |𝑥𝑥1 − 𝑥𝑥2| + |𝑦𝑦1 − 𝑦𝑦2|.

Evklidsko razdaljo lahko izračunamo z naslednjo funkcijo:

ℎ(𝑛𝑛)  =  �(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2.

Končno oceno poti lahko naredimo s funkcijo:

𝑓𝑓(𝑛𝑛)  =  𝑔𝑔(𝑛𝑛)  +  ℎ(𝑛𝑛).

Kjer je:

𝑓𝑓(𝑛𝑛)  - ocenjevalna funkcija,

𝑔𝑔(𝑛𝑛)  - razdalja od začetnega vozlišča do trenutnega vozlišča,

ℎ(𝑛𝑛)  - hevristika od vozlišča n.

 22

4 ALGORITEM A*

Algoritem A* je preizkušena metoda, ki se uporablja kot osnova za reševanje problemov iskanja

poti. Običajno se algoritem A* uporablja za splošne in strateške igre, njegova stabilnost in

hitrost pa sta se v zadnjem desetletju dodatno izboljšali (Foead , Ghifari, Kusuma, Hanafiah in

Gunawan, 2021).

Foead idr. (2021) navajajo, da se algoritem že dolgo uporablja v raziskovalni skupnosti za

iskanje poti. Njegova učinkovitost, preprostost in modularnost so pogosto poudarjene kot

prednosti v primerjavi z drugimi algoritmi. Zaradi svoje vsesplošne in razširjene uporabe je A*

postal standard za raziskovalce, ki poskušajo rešiti probleme iskanja poti. Vendar ni zanesljiv,

saj v številnih primerih potrebuje dodaten algoritem ali spremembo svojih osnovnih funkcij, da

lahko opravi te zapletene naloge. Algoritem ni optimalen pri Multi-agent pathfinding

problemih, saj se srečuje s številnimi ovirami, kot so nasprotujoče si poti med agenti (Felner

idr., 2018).

Na splošno je A* običajno dosleden pri reševanju različnih problemov, vendar zahteva

prilagoditev, da doseže najboljše rezultate. Kljub temu je še vedno izjemno učinkovit pri

širokem naboru iskalnih nalog, dokler njegova glavna slabost, odvisnost od hevristične

funkcije, ni bistvena ali ne predstavlja težave (Foead , Ghifari, Kusuma, Hanafiah in Gunawan,

2021).

4.1 Prednosti algoritma A*

Pomemben dejavnik iskanja z algoritmom A* je njegova učinkovitost. Medtem ko lahko večina

dobro zasnovanih algoritmov za iskanje poti najde rešitev, bodo mnogi pri tem porabili več

časa, virov ali obojega v primerjavi z A*. Razlika v splošni učinkovitosti lahko znaša več kot

40 %, v nekaterih primerih pa do 30 % (Barnouti, Al-Dabbagh in Naser, 2016), (Foead , Ghifari,

Kusuma, Hanafiah in Gunawan, 2021).

Algoritem A* lahko najde pot veliko hitreje kot neinformirano iskanje, vendar ne zagotavlja,

da bo rezultat najkrajša pot. Raziskava je pokazala, da bo algoritem A* v nekaterih primerih

strateških zemljevidov in labirintov pokazal le 85 % časa rezultat, pri katerem najde najkrajšo

pot (Barnouti, Al-Dabbagh in Naser, 2016).

 23

Poleg tega je A* izjemno modularen in ga je mogoče prilagoditi širokemu spektru potreb.

Vendar pa niso vse prilagoditve nujno izboljšave, nekatere optimizacije, ki dajejo prednost

hitrosti, lahko vodijo do tega, da ne najdejo najboljše poti. To je pokazal eksperiment z 29

vozlišči in 4 križišči, v katerem so primerjali algoritme HPA*, A*, Dijkstra in IDA*. HPA*

sicer ni našel najhitrejše poti, a je zaključil izračun izjemno hitro, medtem ko so bili drugi

algoritmi počasnejši, vendar so dosegli optimalen rezultat.

Algoritem A* je samostojno še vedno bolje opravil kot Dijkstrov algoritem, saj je optimalno

pot našel dvakrat hitreje. Ta primer jasno prikazuje potencialno povečano učinkovitost

hevristične funkcije (Foead, Ghifari, Kusuma, Hanafiah in Gunawan , 2021).

A* lahko najde optimalne in skoraj optimalne rešitve učinkoviteje, tako da usmeri iskanje k

cilju s pomočjo hevrističnih funkcij, s čimer se bistveno zmanjša njegova časovna zahtevnost

(Soltani, Tawfik, Goulermas in Fernando, 2002).

4.2 Slabosti algoritma A*

Ena glavnih slabosti algoritma A* je njegova slabša zmogljivost pri dvosmernem iskanju. V

eksperimentu o dvosmernem iskanju v grafih so raziskovalci ugotovili, da se je dvosmerni A*

odrezal zelo slabo v primerjavi z dvosmernim BFS. Še posebej se je BFS izkazal pri večjih

mrežah velikosti 16×16, medtem ko je A* včasih imel prednost pri manjših mrežah velikosti

8×8 (Kumar, 2019), (Foead, Ghifari, Kusuma, Hanafiah in Gunawan, 2021).

Na splošno tradicionalni osnovni algoritem A* ne more slediti vse večjim zahtevam iskanja

poti. Vendar pa lahko s pravilnimi prilagoditvami in izboljšavami še vedno konkurira drugim

algoritmom.

Zaradi ogromnega števila različnih situacij pri iskanju poti ni mogoče razviti univerzalne

rešitve, ki bi delovala v vseh primerih. Jasno je, da klasični A* postopoma izgublja

priljubljenost pri reševanju kompleksnih problemov, medtem ko njegove izboljšane različice še

vedno dosegajo visoko hitrost in večjo učinkovitost. Prihodnji razvoj algoritma A* bo moral

vključevati prilagoditve, kot je uporaba zgoščevalnih tabel (angl. hash tables) ali zanašanje na

druge algoritme za natančnejše hevristike, saj te spremembe neposredno odpravljajo njegove

slabosti (Foead, Ghifari, Kusuma, Hanafiah in Gunawan, 2021).

 24

Uspešnost in učinkovitost A* iskalnega algoritma je močno odvisna od kakovosti hevristične

funkcije. Zato postane oblikovanje optimalne hevristične funkcije glavni cilj pri razvoju

iskalnega algoritma (Yiu, Du in Mahapatra, 2018).

4.3 Psevdokoda in načrt implementacije algoritma A*

Algoritem A* uporablja dve funkciji, in sicer funkcijo razdalje g(n) in hevristično funkcijo

h(n). Ti sta ključni za oceno uspešnosti algoritma.

Končno oceno poti lahko naredimo s funkcijo:

𝑓𝑓(𝑛𝑛)  =  𝑔𝑔(𝑛𝑛)  +  ℎ(𝑛𝑛).

Kjer je:

𝑓𝑓(𝑛𝑛) - ocenjevalna funkcija,

𝑔𝑔(𝑛𝑛) - razdalja od začetnega vozlišča do trenutnega vozlišča,

ℎ(𝑛𝑛) - hevristika od vozlišča n.

Algoritem implementiramo s pomočjo psevdokode, zapisane v programskem jeziku Python.

 25

Slika 7: Psevdokoda algoritma A star

Vir: https://www.datacamp.com/tutorial/a-star-algorithm, 2025

https://www.datacamp.com/tutorial/a-star-algorithm

 26

5 ALGORITEM BREADTH-FIRST SEARCH

Algoritem preiskovanja v širino (angl. Breadth-First Search) je algoritem za iskanje vozlišča v

drevesni podatkovni strukturi, ki izpolnjuje določen pogoj. Začne pri korenu drevesa in preišče

vsa vozlišča na trenutni globini, preden preide na vozlišča na naslednji globinski ravni. Za

shranjevanje otroških vozlišč, ki so bila odkrita, a še niso raziskana, uporablja dodaten

pomnilnik, običajno vrsto (angl. queue). Preiskovanje v širino lahko posplošimo na

neusmerjene in usmerjene grafe z določenim začetnim vozliščem.

Preiskovanje v širino je pomemben gradnik mnogih algoritmov na grafih. Pogosto se uporablja

za preverjanje povezanosti ali izračun najkrajših poti z enim virom v neuteženih grafih (Beamer,

Asanović in Patterson, 2013).

Algoritmi za grafe (angl. Graph algorithms) postajajo vse pomembnejši. V velikih

računalniških sistemih se izvajajo algoritmi za analizo ogromnih količin podatkov. Na mobilnih

aplikacijah so algoritmi za grafe uporabljeni za strojno učenje. Žal so aplikacije pogosto

omejene s skupnim pomnilnikom (angl. shared-memory systems). Iskanje po širini, ki je

pomemben gradnik številnih drugih grafnih algoritmov, ima nizko računsko zmogljivost, kar še

poslabša pomanjkanje lociranosti in posledično nizko skupno zmogljivost. Za pospešitev BFS

je bilo veliko predhodnega dela, kjer so spreminjali algoritme in podatkovne strukture, v

nekaterih primerih tudi z dodajanjem dodatnega računalniškega dela, da bi izboljšali lokalnost

in povečali splošno zmogljivost. Vendar pa nobena od teh metod ni poskušala zmanjšati števila

pregledanih povezav. Da bi pospešili BFS, je bilo v preteklosti opravljeno veliko dela za

spremembo algoritma in podatkovnih struktur, v nekaterih primerih z dodatnim računskim

delom, da bi povečali lokacijo in skupno zmogljivost (Agarwal, Petrini, Pasetto in Bader, 2010),

(Buluç in Madduri, 2011), (Hong, Ogunteb in Olukotun, 2011), (Yoo in drugi, 2005), (Beamer,

Asanović in Patterson, 2013).

5.1 Prednosti algoritma BFS

Delovanje BFS se začne pri izvorni točki, nato pa se iskalna meja postopoma širi navzven, pri

čemer na vsakem koraku obišče vsa vozlišča na isti globinski ravni, preden preide na globljo

raven (Beamer, Asanović in Patterson, 2013).

 27

Pri klasičnem pristopu od zgoraj navzdol vsako vozlišče preveri vse svoje sosednje točke, da

ugotovi, ali so še neobiskane. Vsaka neobiskovana točka se doda v iskalno mejo in se označi

kot obiskana tako, da se nastavi spremenljivka starša. Ta algoritem ustvari BFS drevo, ki

pokriva povezano komponento z izhodiščnim vozliščem (Beamer, Asanović in Patterson,

2013).

Večina računske obremenitve pri iskanju v širino je preverjanje povezav na sosednji točki, da

se ugotovi, ali je ciljno vozlišče že bilo obiskano. Skupno število preverjanj povezav v

klasičnem algoritmu od zgoraj navzdol (angl. top-down) je enako številu povezav v povezani

komponenti, ki vsebuje izvorno vozlišče, saj se pri vsakem koraku preveri vsaka povezava na

vozlišču (Beamer, Asanović in Patterson, 2013).

Pristop od spodaj navzgor (angl. bottom-up) odpravi potrebo po nekaterih operacijah v paralelni

implementaciji. Pri pristopu od zgoraj navzdol (angl. top-down) bi lahko več niti hkrati pisalo

v istega otroka, zato so potrebne atomske operacije za zagotovitev medsebojne izključitve. Pri

pristopu od spodaj navzgor pa piše otrok sam vase, s čimer se odpravi vsakršno tekmovanje. Ta

prednost, skupaj z morebitnim zmanjšanjem števila pregledanih povezav, pride na račun

serijske obdelave dela za posamezno vozlišče, vendar še vedno obstaja velika mera paralelizma

med deli za različna vozlišča. Pristop od spodaj navzgor je prednosten, ko je velik delež vozlišč

v fronti, vendar povzroči več dela, če je fronta majhna (Beamer, Asanović in Patterson, 2013).

Zato mora učinkovita implementacija iskanja v širino združevati tako pristop od zgoraj navzdol

kot tudi pristop od spodaj navzgor. Če je graf neusmerjen, izvajanje pristopa od spodaj navzgor

ne zahteva nobenih sprememb v podatkovnih strukturah grafa, saj sta že predstavljeni obe smeri

povezav. Če pa je graf usmerjen, bo korak od spodaj navzgor zahteval inverzni graf, kar lahko

skoraj podvoji pomnilniški odtis grafa (Beamer, Asanović in Patterson, 2013).

Algoritem je učinkovit, kadar je cilj blizu začetnega vozlišča, kar je značilno zanj, saj obiskuje

vsa vozlišča na istem vrhu (Elkari idr., 2024).

5.2 Slabosti algoritma BFS

Iskanje po širini, ki zagotavlja najkrajšo pot v natehtanih grafih, ima v navigaciji po labirintu

precejšnje omejitve. Njegova glavna pomanjkljivost je velika poraba pomnilnika, saj shrani vsa

vozlišča na trenutni globini, preden nadaljuje na naslednjo raven. Ta značilnost povzroči

eksponentno rast pomnilnika, zlasti v širokih ali zapletenih labirintih. Poleg tega BFS nima

 28

hevrističnega vodenja, zaradi česar raziskuje številne nepomembne poti in v velikih okoljih

povečuje računski čas (Elkari idr., 2024).

5.3 Psevdokoda in načrt implementacije algoritma BFS

Algoritem BFS raziskuje graf, tako da najprej obišče vsa sosednja vozlišča. Začne na začetni

točki (angl. Root level) in nadaljuje pot na istem nivoju, dokler ne obišče vse točke. To lahko

zapišemo na naslednji način:

𝐵𝐵𝐵𝐵𝐵𝐵(𝑣𝑣) = 1 + ∑ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑢𝑢)𝑢𝑢 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣šč𝑒𝑒(𝑣𝑣) .

Kjer je:

• v - trenutni vrh (angl. Vertex),

• u - sosednje vozlišče,

• BFS(u) - vrstni red obiska vrha (Elkari, in drugi, 2024).

S pomočjo psevdokode lahko implementiramo algoritem BFS.

 29

Slika 8: Psevdokoda algoritma BFS

Vir: https://www.datacamp.com/tutorial/breadth-first-search-in-python, 2025

 30

6 DIJKSTROV ALGORITEM

Dijkstrov algoritem se uporablja za iskanje najkrajše poti na grafu, kjer imamo eno izhodno

točko (Wahyuningsih in Syahreza , 2018), (Rachmawati in Gustin, 2020).

Dijkstrov algoritem najde najkrajšo pot od danega izvornega vozlišča do vsakega vozlišča.

Uporabimo ga lahko za iskanje najkrajše poti do določenega ciljnega vozlišča, tako da po

določitvi najkrajše poti do ciljnega vozlišča algoritem zaključimo. Če na primer vozlišča grafa

predstavljajo mesta, stroški robov pa razdalje med pari mest, ki jih povezuje neposredna cesta,

lahko Dijkstrov algoritem uporabimo za iskanje najkrajše poti med enim mestom in vsemi

drugimi mesti. Pogosta uporaba algoritmov za najkrajše poti so omrežni usmerjevalni protokoli,

predvsem IS-IS (angl. Intermediate System to Intermediate System) in OSPF (angl. Open

Shortest Path First). Uporablja se tudi kot podprogram v algoritmih, kot je Johnsonov algoritem

(Kurt in Sanders, 2008).

Dijkstra (Dijkstra, 1959) je optimizacijski algoritem, ki se predvsem uporablja za določanje

najkrajših poti. Dijkstrov algoritem je neinformiran iskalni algoritem za iskanje najkrajših poti,

ki se zanaša zgolj na lokalne stroške poti in zagotavlja najkrajšo pot od začetnega do ciljnega

vozlišča v grafu (Soltani, Tawfik, Goulermas in Fernando, 2002).

Algoritem uporablja podatkovno strukturo čakalne vrste z najmanjšo prioriteto za izbiro

najkrajših do zdaj znanih poti. Preden so bile odkrite naprednejše strukture prioritetnih čakalnih

vrst, je Dijkstrov izvirni algoritem deloval v 𝜃𝜃(|𝐸𝐸| + |𝑉𝑉| log|𝑉𝑉|) času, kjer |𝑉𝑉| predstavlja

število vozlišč (Schrijver, 2012).

Fredman in Tarjan (1984) sta predlagala prednostno čakalno vrsto s Fibonaccijevo kupo za

optimizacijo časovne zapletenosti delovanja 𝜃𝜃(|𝐸𝐸| + |𝑉𝑉| log|𝑉𝑉|). To je asimptotično najhitrejši

znani algoritem najkrajše poti z enim virom za poljubne usmerjene grafe z neomejenimi

nenegativnimi utežmi. Če je dovoljena predhodna obdelava, so lahko algoritmi, kot so

hierarhije krčenja (angl. contraction hierarchies), bistveno hitrejši.

Dijkstrov algoritem se običajno uporablja na grafih, kjer so uteži robov pozitivna cela ali realna

števila. Lahko ga posplošimo na katerikoli graf, kjer so uteži robov delno urejene, če so

 31

zaporedne oznake monotono napadajoče (angl. monotonically non-decreasing) (Szcześniak,

Jajszczyk in Woźna-Szcześniak, Generic Dijkstra for optical networks, 2019), (Szcześniak in

Woźna-Szcześniak, Generic Dijkstra: correctness and tractability, 2023).

Na številnih področjih, zlasti na področju umetne inteligence, Dijkstrov algoritem ali njegova

različica ponuja iskanje po enotnih stroških in je oblikovan kot primer splošnejše zamisli o

iskanju po načelu najboljši prvi (angl. best-first search) (Felner, Position Paper: Dijkstra's

Algorithm versus Uniform Cost Search or a Case Against Dijkstra's Algorithm, 2011).

6.1 Prednost Dijkstrovega algoritma

Prednost Dijkstrovega algoritma je, da v nasprotju z nekaterimi osnovnimi hevrističnimi

algoritmi zagotavlja najkrajšo pot. Algoritem je precej učinkovit, saj deluje v času O(E log(V)),

kjer E pomeni število robov v grafu, V pa število vrhov v grafu. To učinkovitost je mogoče

nekoliko povečati z uporabo čakalne vrste z najmanjšo prioriteto za shranjevanje vozlišč (Nico,

2020).

V raziskavi, ki sta jo naredila Noto in Sato leta 2000, sta predlagala, da algoritem začne z

iskanjem na začetnem in končnem vozlišču. To zniža območje iskanja vozlišč in s tem zmanjša

računski čas algoritma. Ta sprememba algoritma omogoča, da se število obiskanih vozlišč

zmanjša za polovico. Z zmanjšanjem števila obiskanih vozlišč se je čas iskanja zmanjšal za

petino.

6.2 Slabost Dijkstrovega algoritma

Glavna težava Dijkstrovega algoritma je, da izvaja slepo iskanje, ki je lahko dolgotrajno in

potratno v smislu izračunavanja. Dijkstrov algoritem je pogosto uporabljen za reševanje

problema najkrajše poti. Če je pot kompleksna in velika, kar se običajno zgodi v praktičnem

okolju, algoritem pri iskanju najkrajše poti vzame preveč časa. Večina iskanih vozlišč je

nepomembnih, saj ta ne morejo biti del rešitve. Zato algoritem zapravi veliko računskega časa

(angl. computation time). Čeprav je ta algoritem učinkovit, bo iskanje celotnega grafa s tisoči

vozlišč, da bi našli najkrajšo pot, še vedno trajalo dolgo časa (Liu, idr., 1994).

Pomanjkljivost algoritma je, da če do željenega cilja ni vozlišča, se mora algoritem pred

zaključkom ponovno sprehoditi po celotnem grafu. Algoritem je pohlepen (angl. greedy

 32

alghorithm), kar pomeni, da bo vedno izbral možnost, ki je na prvi pogled vidna kot optimalna.

To lahko vodi v iskanje poti, ki ne obstaja (Nico, 2020).

Dijkstrov algoritem lahko najde optimalne rešitve s sistematičnim ustvarjanjem vozlišč in

njihovim testiranjem glede na cilj, vendar postane neučinkovit za obsežne probleme (Soltani,

Tawfik, Goulermas in Fernando, 2002).

6.3 Psevdokoda in načrt implementacije Dijkstrovega algoritma

Časovna kompleksnost algoritma je odvisna od števila vozlišč, ki jih mora obiskati. Ker

algoritem išče na slepo, je večje število vozlišč omejitveni dejavnik. Omejitve časa delovanja

Dijkstrovega algoritma na grafu z robovi E in vrhovi V je mogoče izraziti kot funkcijo števila

robov, označeno z |𝐸𝐸|, in številom vozlišč|𝑉𝑉|. Časovna kompleksnost je odvisna od podatkovne

strukture, ki se uporablja za predstavitev množice Q.

Zgornje meje lahko poenostavimo, ker |𝐸𝐸| je 𝑂𝑂(|𝑉𝑉|2) za vsak preprost graf. Za katerokoli

podatkovno strukturo za množico vrhov Q je čas delovanja 𝜃𝜃(|𝐸𝐸| ∗ 𝑇𝑇𝑑𝑑𝑑𝑑 + |𝑉𝑉| ∗ 𝑇𝑇𝑒𝑒𝑒𝑒), kjer 𝑇𝑇𝑑𝑑𝑑𝑑

in 𝑇𝑇𝑒𝑒𝑒𝑒 predstavljata kompleksnost operacij algoritmov (Cormen idr., 2022).

S pomočjo psevdokode lahko implementiramo Dijkstrov algoritem.

 33

Slika 9: Psevdokoda algoritma Dijkstra

Vir: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm, 2025

 34

7 UMETNA INTELIGENCA

Umetna inteligenca se nanaša na sposobnost računalniških sistemov, da opravljajo naloge, ki

so običajno povezane s človeško inteligenco, kot so učenje, sklepanje, reševanje problemov,

zaznavanje in odločanje. Je področje v računalništvu, ki razvija in preučuje metode in

programsko opremo, ki strojem omogočajo zaznavanje okolja ter uporabo učenja in inteligence

za ukrepanje, ki povečuje možnosti za doseganje določenih ciljev (Russell in Norvig, 2022).

Različna podpodročja umetne inteligence se osredotočajo na posebne cilje in uporabo posebnih

orodij. Primarni cilji raziskav umetne inteligence vključujejo učenje, sklepanje, predstavitev

znanja, načrtovanje, obdelavo naravnega jezika, zaznavanje in podporo robotiki. Eden izmed

dolgoročnih ciljev področja umetne inteligence je doseči raven splošne umetne inteligence

(angl. general intelligence). Splošna umetna inteligenca je zmožnost opravljanja naloge z enako

zmogljivostjo kot človek (Russell in Norvig, 2022).

Za doseganje teh ciljev so raziskovalci umetne inteligence prilagodili in povezali številne

tehnike, vključno z iskanjem in matematično optimizacijo (angl. search and mathematical

optimization), formalno logiko, umetnimi nevronskimi mrežami in metodami, ki temeljijo na

statistiki, operacijskih raziskavah in ekonomiji. Umetna inteligenca se tudi osredotoča na

psihologijo, jezikoslovje, filozofijo, nevroznanost in druga področja (Russell in Norvig, 2022).

Aplikacije in naprave, opremljene z umetno inteligenco, lahko vidijo in prepoznajo predmete.

Razumejo lahko človeški jezik in se nanj odzivajo. Učijo se lahko na podlagi novih informacij

in izkušenj. Uporabnikom in strokovnjakom lahko pripravijo podrobna priporočila. Delujejo

lahko samostojno in nadomestijo potrebo po človeški inteligenci ali posredovanju, na primer

samovozeči avtomobili.

Neposredno pod umetno inteligenco spada strojno učenje, ki vključuje ustvarjanje modelov z

usposabljanjem algoritma za napovedovanje ali odločanje na podlagi podatkov. Zajema široko

paleto tehnik, ki računalnikom omogočajo učenje in sklepanje na podlagi podatkov, ne da bi

bili izrecno programirani za določene naloge.

 35

7.1 Umetna inteligenca in razumevanje

Russell in Norvig (2019) opisujeta, da predstavljanje in inženiring znanja (angl. knowledge

engineering) omogočata programom umetne inteligence, da inteligentno odgovarjajo na

vprašanja in sklepajo o dejstvih iz resničnega sveta. Formalne predstavitve znanja se

uporabljajo pri indeksiranju in iskanju na podlagi vsebine, interpretaciji prizora, podpori

kliničnim odločitvam in odkrivanju znanja iz velikih podatkovnih baz.

Predstavljanje znanja in inženiring znanja je področje umetne inteligence, ki poskuša posnemati

presojo in vedenje človeka na določenem področju. Inženiring znanja je tehnologija, ki stoji za

ustvarjanjem sistemov za pomoč pri vprašanjih, povezanih z njihovim področjem znanja.

Sistemi vključujejo veliko, razširljivo bazo znanja, integrirano z mehanizmom pravil, ki določa,

kako uporabiti informacije v vsaki posamezni situaciji. Inženirji znanja lahko ustvarijo sistem,

ki vključuje strojno učenje (angl. machine learning), tako da se lahko uči iz izkušenj na enak

način kot ljudje. Strokovni sistemi se uporabljajo na različnih področjih, vključno z zdravstvom,

storitvami za stranke, finančnimi storitvami, proizvodnjo in pravom (Lutkevich, 2022).

Da umetna inteligenca poskuša posnemati človeško vedenje, potrebuje bazo podatkov. Baza

znanja je zbirka znanja, predstavljena v obliki, ki jo lahko uporablja umetna inteligenca.

Ontologija je niz predmetov, odnosov, pojmov in lastnosti, ki se uporabljajo v določeni domeni

znanja. Baze znanja morajo predstavljati stvari, kot so predmeti, lastnosti, kategorije in odnosi

med predmeti, situacije, dogodki, stanja in čas, vzroki in posledice, znanje, privzeto sklepanje,

ter številne druge vidike in domene znanja (Russell in Norvig, 2022).

7.2 Umetna inteligenca in strojno učenje

Strojno učenje je študija programov, ki lahko samodejno izboljšajo svoje delovanje pri določeni

nalogi. Je del umetne inteligence že od samega začetka njenega razvoja (Russell in Norvig,

2022).

Strojno učenje vsebuje ustvarjanje modelov za usposabljanje algoritma za napovedovanje ali

določanje rezultatov na podlagi vnosnih podatkov. Zajema širok nabor tehnik, ki računalnikom

omogočajo učenje in sklepanje na podlagi podatkov, ne da bi bili neposredno razviti za določene

naloge (Stryker in Kavlakoglu, 2024).

 36

Strojno učenje vsebuje veliko vrst tehnik ali algoritmov strojnega učenja, vključno z linearno

regresijo (angl. linear regression), logistično regresijo (angl. logistic regression), drevesi

odločanja (angl. decision trees), naključnim gozdom (angl. random forest), podpornimi

vektorskimi stroji (angl. support vector machines), k-najbližjim sosedom (angl. k-nearest

neighbor) in grozdenjem (angl. clustering) (Stryker in Kavlakoglu, 2024).

Ena izmed najbolj uporabljenih vrst algoritmov za strojno učenje je nevronska mreža.

Nevronske mreže so oblikovane po strukturi in delovanju človeških možganov. Nevronsko

omrežje je sestavljeno iz medsebojno povezanih plasti vozlišč, ki sodelujejo pri obdelavi in

analizi kompleksnih podatkov. Nevronske mreže so primerne za naloge, ki vključujejo

prepoznavanje zapletenih vzorcev in povezav v velikih količinah podatkov (Stryker in

Kavlakoglu, 2024).

Obstaja več vrst strojnega učenja. Nenadzorovano učenje analizira tok podatkov in išče vzorce

ter napoveduje brez drugih navodil. Nadzorovano učenje zahteva označevanje učnih podatkov

s pričakovanimi odgovori in se deli na dve glavni vrsti, in sicer klasifikacijo, kjer se mora

program naučiti napovedati, v katero kategorijo spada vhodni podatek, in regresijo, kjer mora

program na podlagi številčnega vnosa določiti številčno funkcijo (Russell in Norvig, 2022).

7.3 Umetna inteligenca in iskanje

UI lahko reši veliko problemov z inteligentnim iskanjem številnih možnih rešitev. V UI se

uporabljata dve različni vrsti iskanja, in sicer iskanje v prostoru stanj in lokalno iskanje (Russell

in Norvig, 2022).

Iskanje v prostoru išče po drevesu možnih stanj, da bi našlo ciljno stanje. Na primer algoritmi

za načrtovanje iščejo po drevesih ciljev in podciljev, pri čemer poskušajo najti pot do ciljnega

stanja, kar se imenuje analiza sredstev in ciljev (angl. means-ends analysis) (Russell in Norvig,

2022).

Preprosto izčrpno iskanje (angl. simple exhaustive searches) redko zadostuje za večino realnih

problemov, saj iskalni prostor hitro naraste. Rezultat je iskanje, ki je prepočasno ali pa se nikoli

ne konča. Za izboljšanje časa iskanja nam lahko pomaga hevristika (Russell in Norvig, 2022).

 37

Lokalno iskanje uporablja matematično optimizacijo za iskanje rešitve problema. Začne se z

neko obliko ugibanja in ga postopoma izpopolnjuje (Russell in Norvig, 2022).

Gradientno spuščanje je vrsta lokalnega iskanja, ki optimizira niz numeričnih parametrov z

njihovim postopnim prilagajanjem, da se čim bolj zmanjša funkcija izgube. Različice

gradientnega spuščanja se pogosto uporabljajo za usposabljanje nevronskih mrež z algoritmom

povratnega širjenja (angl. backpropagation) (Russell in Norvig, 2022).

Druga vrsta lokalnega iskanja je evolucijsko računanje, katerega cilj je iterativno izboljšati niz

kandidatnih rešitev z njihovo mutacijo in rekombinacijo, pri čemer se v vsaki generaciji izberejo

le najprimernejši, ki preživijo (Russell in Norvig, 2022).

7.4 Umetna inteligenca in iskanje najkrajše poti

UI je ena od ključnih delov videoiger (Ostrowski, 2015). Yannakakih (2018) opisuje, da so

zgodnje raziskave UI v iskanju najkrajše poti vključevale šah in druge družinske namizne igre.

V igrah je opredeljeno, kako se obnaša računalniški nasprotnik do igralca. Obnašanje

računalniškega nasprotnika je segalo od preprostih do kompleksnih vzorcev gibanja s pomočjo

algoritmov iskanja poti. Ena izmed morebitnih implementacij UI v videoigrah je posnemanje

igralca na podlagi njegovih naključnih dejanj in posledično računalniški nasprotnik lahko z

uporabo UI prilagodi svoje gibanje (Iskandar, Diah in Ismail, 2020).

Igralniška industrija še naprej hitro raste zaradi tehnološkega napredka, predvsem na področju

umetne inteligence. UI se v sodobnih videoigrah uporablja za različne igralne like. Primarni cilj

UI je igralcu zagotoviti izziv pri sprejemanju odločitev in povečati stopnjo težavnosti. UI

omogoča prilagajanje raznih igralnih likov znotraj videoigre na igralčeve odločitve (Lawande,

Jasmine, Anbarasi in Izhar, 2022).

Iskanje poti se nanaša na koncept iskanja optimalne poti od izvornega do ciljnega vozlišča v

najkrajšem času. Za iskanje najkrajše poti od izvornega do ciljnega vozlišča je bilo zasnovanih

več algoritmov, ki se poskušajo izogniti vsem oviram na poti. Za iskanje poti lahko uporabljajo

tudi UI (Rafiq in Kadir, Pathfinding Algorithms in Game Development, 2020), (Lawande,

Jasmine, Anbarasi in Izhar, 2022).

 38

Razvoj UI in iskanja poti je dosegel velik napredek, vendar ima še vedno določene probleme.

Eden izmed takšnih problemov je zahteva po visoki zmogljivosti, ki jo morajo ti algoritmi

zagotoviti v videoigrah. Ob visoki zahtevi zmogljivosti morajo pogosto ti algoritmi izračunati

poti za več komponent, in ker so viri, dodeljeni tem algoritmom, omejeni, obstaja

povpraševanje po algoritmih z visoko zmogljivostjo v krajšem času reševanja problema iskanja

poti (Lawande, Jasmine, Anbarasi in Izhar, 2022).

7.5 Stroški razvoja in implementacije umetne inteligence

Pri razvoju in implementaciji umetne inteligence v interne procese podjetja naletijo na

nepričakovano povečane stroške. Hitro naraščajoči stroški računalništva lahko ovirajo nadaljnji

razvoj in inovacije podjetja (Brodsky, 2024).

Ekonomski pritisk čutijo tudi vodilni pri razvoju umetne inteligence. Podjetje OpenAI naj bi

zabeležil eksponentno rast prihodkov, saj je v mescu avgustu leta 2024 doseglo 300 milijonov

ameriških dolarjev prihodka. V začetku oktobra je podjetje OpenAI objavilo, da so v novem

krogu financiranja zbrali 6,6 milijarde ameriških dolarjev, s čimer bi pokrili rast podjetja in

stroške razvoja ter implementacije UI (Brodsky, 2024).

Ekonomski vidik UI postaja ključni dejavnik pri določanju njenega poslovnega učinka. Številna

podjetja zaradi naraščajočih stroškov UI prestavljajo svoje interne produkte na hibridno oblačno

arhitekturo (angl. hybrid cloud architectures) (Brodsky, 2024).

Eden glavnih dejavnikov stroškov je vrsta rešitve UI. Vsak sistem UI ni zgrajen z enako

tehnologijo, razlike med njimi so velike. Poznamo več sistemov, in sicer:

• Sistemi, ki temeljijo na pravilih (angl. rule-based systems), so preprosti za razvoj in

implementacijo. Ti sistemi upoštevajo preprosta pravila in zahtevajo minimalno

računalniško moč (Le, 2025).

• Rešitve za strojno učenje, ki jih uporabljajo podjetja, se s časom izboljšujejo. Te potrebujejo

kakovostne podatke in stalno prilagajanje, kar vodi do višjih stroškov razvoja in

implementacije (Le, 2025).

 39

• Modeli globokega učenja so odlični za reševanje zapletenih nalog, kot je prepoznavanje slik

ali glasu. Zahtevajo veliko količino podatkov, napredne algoritme in vrhunsko strojno

opremo, zato je njihov razvoj najdražji (Le, 2025).

Na stroške vplivata tudi obseg in zapletenost projekta. Projekti UI so različni, pri čemer so

število funkcij, točke integracije in zahtevane ravni zmogljivosti zelo pomembne. Enostavno

orodje za analizo povratnih informacij stranke običajno stane med dvajset tisoč in štirideset

tisoč ameriških dolarjev. Srednje zahtevne aplikacije, ki potrebujejo naprednejše algoritme za

analizo vedenja in preferenc uporabnikov, stanejo med petdeset tisoč in sto tisoč ameriških

dolarjev. Napredne aplikacije UI, kot so večjezični modeli, lahko presežejo sto petdeset tisoč

ameriških dolarjev za implementacijo v podjetje. Te aplikacije so zapletene zaradi zahtev po

visoki zmogljivosti večjezičnih modelov (Le, 2025).

Število zaposlenih je pogosto najbolj spremenljiv dejavnik pri določanju stroškov razvoja in

implementacije UI v podjetju. Velikost stroškov je odvisna od števila zaposlenih in lokacije

podjetja. Interni razvoj omogoča popolni nadzor in tesnejše sodelovanje razvijalcev UI. Vendar

to vodi do višjih stroškov razvoja. Najem zunanjih razvijalcev omogoča dostop do

specializiranega kadra, kar vodi do dolgoročno nižjih stroškov dela (Le, 2025).

 40

8 PRIPRAVA OKOLJA

Za testiranje in primerjavo algoritmov iskanja najkrajše poti smo razvili aplikacijo za

vizualizacijo mreže in iskanje poti do končnega vozlišča. Aplikacija je razvita v programskem

jeziku Python. Aplikacija bo vsebovala grafični uporabniški vmesnik (angl. graphical user

interface), kjer bo uporabnik lahko generiral naključno mrežo z ovirami. Na voljo bo možnost

izbire algoritma za iskanje najkrajše poti. Končni rezultat iskanja bo zapisan v tabeli. Časovna

enota merjenja je milisekunda. Za programiranje uporabniškega vmesnika bomo uporabili

knjižnico Tkinter.

Ker v diplomskem delu primerjamo umetno inteligenco in algoritme iskanja najkrajše poti,

bomo za to uporabili knjižnico PyTorch. Knjižnica nam omogoča, da program učimo reševati

problem s pomočjo nevronske mreže.

8.1 Struktura izvorne kode

Struktura izvorne kode je razdeljena v več logičnih enot. To omogoča lažji pregled logike.

Razdelili smo kodo na več manjših delov, ki imajo vsak svojo logiko. Modularna koda omogoča

lažje sledenje logiki, lažje nadgrajevanje in njeno razhroščevanje.

 41

Slika 10: Struktura izvorne kode

Vir: Lasten

 42

8.2 Uporabniški vmesnik aplikacije

Grafični vmesnik vsebuje možnost izbora algoritma, prikaz labirinta in tabelo za zapis

podatkov.

Slika 11: Uporabniški vmesnik aplikacije

Vir: Lasten

Za prikaz uporabniškega vmesnika smo razvili razred App. Razred implementira grafični

uporabniški vmesnik z uporabo knjižnice Tkinter, ki omogoča uporabniku izbiro algoritma,

velikosti labirinta in vizualno spremljanje izvajanja iskanja poti. Ob kliku na gumb Start se

ustvari nov labirint iz razreda Maze, nato se izvede izbrani algoritem iz objekta algorithms,

medtem ko se obiski vozlišč sproti prikazujejo z modro barvo, najdena pot pa z zeleno. Rezultati

se prikažejo v tabeli Treeview. Vizualizacija in logika iskanja sta ločeni z uporabo niti, da GUI

ostane odziven. Canvas prikazuje mrežo, ovire in pot, s čimer aplikacija omogoča interaktivno

primerjavo učinkovitosti različnih algoritmov.

 43

Slika 12: Prikaz iskanja algortima v aplikaciji

Vir: Lasten

Slika 13: Izvorna koda razreda App.py

Vir: Lasten

 44

Slika 14: Izvorna koda razreda App.py

Vir: Lasten

Slika 15: Izvorna koda metode start() razreda App.py

Vir: Lasten

Slika 16: Izvorna koda metode update_table() razreda App.py

Vir: Lasten

 45

Slika 17: Izvorna koda draw_cell() razreda App.py

Vir: Lasten

Slika 18: Izvorna koda metode create_widgets() razreda App.py

 46

Vir: Lasten

Slika 19: Izvorna koda metode run_maze() razreda App.py

Vir: Lasten

 47

Slika 20: Izvorna koda objekta algorithms

Vir: Lasten

 48

Slika 21: Izvorna koda metode draw_maze() razreda App.py

Vir: Lasten

Slika 22: Izvorna koda razreda App.py

Vir: Lasten

 49

8.3 Izvorna koda labirinta

Za prikaz naključno generiranega labirinta smo naredili razred Maze, ki omogoča ustvarjanje

mreže s prehodnimi in neprehodnimi polji. Razred vsebuje metode __init__(self, size) in

generate(self). Razred vsebuje spremenljivke size, grid, start in end. S spremenljivkami

določamo velikost labirinta z začetno in končno točko.

Metoda __init__(self,size) je konstruktor razreda, ki ustvari mrežo poljubne velikosti. Definira

začetno in končno točko razreda.

Metoda generate(self) s pomočjo algoritma ustvari prehodni labirint. S pomočjo stack in visited

spreminjamo vozlišča iz neprehodnih v prehodne. V vsakem koraku zanke se preveri, ali obstaja

še neobiskano sosednje vozlišče, ki ga nato naključno izbere in nadaljuje z ustvarjanjem

labirinta. Rezultat razreda je dvodimenzionalen labirint z začetno in končno točko.

 50

Slika 23: Izvorna koda razreda Maze.py

Vir: Lasten

 51

8.4 Izvorna koda algoritma BFS

Algoritem iskanje po širini smo implementirali z metodo bfs(grid, start, goal,

visit_callback=lambda x, y; None). Na začetku iteracije metoda ustvari prazno množico visited,

vrsto queue ter objekt prev. V vsaki iteraciji se iz vrste vzame trenutno vozlišče in preveri, ali

ustreza cilju. Če je cilj dosežen, se iteracija prekine. Če cilj ni dosežen, se preverijo vsa sosednja

vozlišča. Če je vozlišče neobiskano in je prehodno, se doda v vrsto queue in se označi kot

obiskano. Nato se ta povezava shrani v objekt prev. Ko se iskanje zaključi, se rekonstruira pot

do cilja na podlagi vozlišč v objektu prev. Rezultat metode je seznam vozlišč, ki predstavljajo

najkrajšo pot.

 52

Slika 24: Izvorna koda algoritma BFS

Vir: Lasten

 53

8.5 Izvorna koda algoritma A*

A star algoritem smo implementirali z metodo astar(grid, start={1,1}, goal=None,

visit_callback=None). Funkcija uporablja strošek poti od začetka in oceno razdalje do cilja. Na

začetku se določi cilj in pripravi prioritetno vrsto, kamor vstavi začetno vozlišče. Zanka nato

vedno izbere vozlišče z najmanjšo skupno oceno.

Slika 25: Izvorna koda algoritma A star

Vir: Lasten

 54

8.6 Izvorna koda algoritma Dijkstra

Funkcija Dijkstra išče najkrajšo pot v mreži, pri čemer za vsako vozlišče vodi slovar dist z

doslej poznanimi najnižjimi stroški od začetka in uporablja prioritetno vrsto za izbiro vozlišča

z najmanjšim trenutno znanim stroškom. Začne pri začetku z razdaljo 0, nato v vsaki iteraciji

iz vrste vzame vozlišče z najmanjšim cost, ga označi kot obiskano, in pokliče visit_callback.

Če je cilj dosežen, prekine zanko, sicer pregleda vse sosednje običajne premike, izračuna nov

potencialni strošek (new_cost = cost + 1) in, če je ta manjši od prej znanega za soseda, posodobi

dist, shrani predhodnika v prev in ga vstavi v vrsto. Ko zanka konča, se najdena pot rekonstruira

iz slovarja prev, se obrne in vrne kot seznam koordinat od začetka do cilja.

 55

Slika 26: Izvorna koda algoritma Dijkstra

Vir: Lasten

8.7 Izvorna koda strojnega učenja

Implementacija strojnega učenja simulira umetno inteligenco. Za reševanje naključno

generiranega labirinta smo uporabili DQN pristop (angl. Deep Q-Network). Izvorna koda je

sestavljena iz več razredov, in sicer DQN, MazeEnv, SolvingMazeEnv in samostojne funkcije

train_dqn.

 56

Slika 27: Izvorna koda za strojno učenje

Vir: Lasten

Razred DQN implementira globoko Q-mrežo DQN kot nevronsko mrežo z veliko povezanimi

sloji. Za implementacijo smo uporabili knjižnico PyTorch. Konstruktor razreda vsebuje

parametre self, input_size=13, hidden_size=128, output_size=4. Ti parametri definirajo

arhitekturo mreže. Vhodni sloj sprejme 13-razsežni vektor, dva skrita sloja z ReLU funkcijami

procesirata informacije. Izhodni sloj vrne Q-vrednost štiri možne akcije.

Slika 28: Izvorna koda razreda DQN

Vir: Lasten

Metoda forward(self) definira prehod podatkov skozi mrežo in vrne Q-vrednost za vse možne

akcije v danem stanju.

 57

Slika 29: Izvorna koda razreda MazeEnv

Vir: Lasten

Razred MazeEnv predstavlja okolje za učenje pri reševanju labirintov s strojnim učenjem.

Razred implementira vmesnik za okolje učenja z metodami reset, step in get_state. Konstruktor

razreda vsebuje parametre self, grid, start in goal. To omogoča inicializacijo labirinta za učenje

z začetno in končno točko.

 58

Slika 30: Izvorna koda razreda MazeEnv

Vir: Lasten

Metoda reset(self) poenostavi labirint v začetno stanje. Pozicijo agenta postavi na začetno

točko, število korakov spremeni na število nič in vrne okolje v prvotno stanje.

Metoda _get_state(self) ustvari predstavitev trenutnega stanja okolja, kot 13-razsežni vektor, ki

služi kot vhod za nevronsko mrežo. Metoda določi trenutno pozicijo agenta in definira velikost

lokalnega okna velikosti 3x3. K velikosti okna se doda še eno polje, ki predstavlja neprehodni

rob mreže. Izvlečeni lokalni pogled se nato splošči iz 2D-matrike v 1D-vektor z 9 elementi, kjer

vsak element predstavlja vrednost posameznega polja v okolici agenta. Trenutna pozicija agenta

se normalizira z delitvijo s skupno velikostjo mreže minus ena, kar zagotavlja vrednosti v

intervalu [0, 1]. Ta normalizacija omogoča boljše delovanje nevronske mreže, saj so vsi vhodni

podatki v enotnem merilu.

 59

Slika 31: Konstruktor razreda SolvingMazeEnv

Vir: Lasten

Slika 32: Izvorna koda metode _get_state()

Vir: Lasten

 60

Slika 33: Izvorna koda metode reset()

Vir: Lasten

Slika 34: Izvorna koda metode step()

Vir: Lasten

 61

Metoda step(self, action) izvede premik agenta v okolju glede na podano akcijo. Za razliko od

učnega okolja ta metoda vrača poenostavljeno nagrado 0 in ne izračunava kompleksnih nagrad,

saj se uporablja le za evalvacijo naučenega modela.

Slika 35: Izvorna koda metode solve_with_dqn()

Vir: Lasten

Slika 36: Izvrona koda metode solve_with_dqn()

Vir: Lasten

 62

Slika 37: Izvrona koda metode solve_with_dqn()

Vir: Lasten

Slika 38: Izvrona koda metode solve_with_dqn()

Vir: Lasten

 63

Slika 39: Izvrona koda metode solve_with_dqn()

Vir: Lasten

Funkcija solve_with_dqn(grid, start, goal, visit_callback=None) uporablja predhodno naučen

model DQN za iskanje poti skozi labirint. Funkcija naloži shranjeni model iz datoteke

dqn_model.pth, ga postavi v način evalvacije in izvede do tri poskuse iskanja poti. Med

iskanjem uporablja epsilon-greedy strategijo z dodanim šumom za izboljšanje raziskovanja in

implementira mehanizem zaznavanja, ko se agent zatakne v zanki. Če agent ostane na istem

območju predolgo, funkcija izvede naključne premike za izhod iz zanke.

 64

Slika 40: Izvorna koda metode train_dqn()

Vir: Lasten

 65

Slika 41: Izvorna koda metode train_dqn()

Vir: Lasten

Slika 42: Izvorna koda metode train_dqn()

Vir: Lasten

 66

Slika 43: Izvorna koda metode train_dqn()

Vir: Lasten

Slika 44: Izvorna koda metode train_dqn()

Vir: Lasten

 67

Slika 45: Izvorna koda metode train_dqn()

Vir: Lasten

Slika 46: Izvorna koda metode train_dqn()

Vir: Lasten

 68

Slika 47: Izvorna koda metode train_dqn()

Vir: Lasten

Funkcija train_dqn implementira algoritem globokega Q-učenja za treniranje nevronske mreže.

Funkcija uporablja replay memory za shranjevanje izkušenj, ciljno mrežo za stabilizacijo

učenja in epsilon-greedy strategijo za ravnovesje med raziskovanjem in izkoriščanjem.

Parametri vključujejo število epizod učenja, diskontni faktor gamma, učno hitrost in velikost

batcha. Med učenjem funkcija uporablja Double DQN pristop, kjer glavna mreža izbere akcije,

ciljna mreža pa ocenjuje njihove vrednosti. Funkcija implementira postopno zmanjševanje učne

hitrosti in shrani model z najboljšo uspešnostjo med učenjem.

 69

9 PRIMERJAVA ALGORITMOV IN UMETNE INTELIGENCE

V NAKLJUČNO GENERIRANEM LABIRINTU

Za empirično primerjavo algoritmov iskanja poti smo oblikovali testno okolje s štirimi

naključno generiranimi labirinti različnih velikosti, in sicer 11x11, 21x21 in 31x31. Posamezne

velikosti predstavljajo različne stopnje kompleksnosti in omogočajo sistematično primerjavo

učinkovitosti algoritmov v različnih primerih. Rezultate smo dokumentirali v tabelah za lažjo

interpretacijo. Pri vsakem testu smo spremljali ključne parametre, in sicer čas iskanja, dimenzije

labirinta, število obiskanih vozlišč in uspešno obiskano ciljno vozlišče. Za objektivno

primerjavo algoritmov smo vsak algoritem testirali na tisoč naključno generiranih labirintih za

vsako velikost.

V okviru diplomske naloge smo implementirali pristop globokega Q-učenja DQN (angl. Deep

Q-network) za simulacijo inteligentnega iskanja. Proces učenja je potekal na obsežnem naboru

pet tisoč naključno generiranih labirintov v standardizirani velikosti 11x11. Uspešnost

naučenega agenta dosega 32,4 %, kar je pomemben dejavnik pri interpretaciji in analizi

nadaljnjih rezultatov diplomskega dela. Pričakujemo lahko, da bo umetna inteligenca imela

najboljši rezultat na velikosti labirinta 11x11.

9.1 Rezultati algoritmov iskanja poti in umetne inteligence v naključno

generiranem labirintu

Tabela 1: Rezultati algoritmov iskanja poti in UI v labirintu velikosti 11x11

Algorite

m

Velikos

t

Število

testiran

j

Uspešn

o

najden

cilj

Neuspešn

o najden

cilj

Uspeh

algoritma(%

)

Povpreče

n čas

iskanja

(ms)

Povprečn

o število

obiskanih

vozlišč

BFS 11 1000 1000 0 100.0 0.029 29

A* 11 1000 1000 0 100.0 0.028 26

Dijkstra 11 1000 1000 0 100.0 0.024 29

UI 11 1000 603 397 60.3 13.47 28

 70

Vir: Lasten

Tabela 2: Rezultati algoritmov iskanja poti in UI v labirintu velikosti 21x21

Algorite

m

Velikos

t

Število

testiran

j

Uspešn

o

najden

cilj

Neuspešn

o najden

cilj

Uspeh

algoritma(%

)

Povpreče

n čas

iskanja

(ms)

Povprečn

o število

obiskanih

vozlišč

BFS 21 1000 1000 0 100.0 0.071 115

A* 21 1000 1000 0 100.0 0.107 105

Dijkstra 21 1000 1000 0 100.0 0.089 120

UI 21 1000 81 919 8.1 55.80 84

Vir: Lasten

Tabela 3: Rezultati algoritmov iskanja poti in UI v labirintu velikosti 31x31

Algorite

m

Velikos

t

Število

testiran

j

Uspešn

o

najden

cilj

Neuspešn

o najden

cilj

Uspeh

algoritma(%

)

Povpreče

n čas

iskanja

(ms)

Povprečn

o število

obiskanih

vozlišč

BFS 31 1000 1000 0 100.0 0.16 267

A* 31 1000 1000 0 100.0 0.26 242

Dijkstra 31 1000 1000 0 100.0 0.22 266

UI 31 1000 28 297 2.8 288.94 105

Vir: Lasten

 71

9.2 Analiza hitrosti algoritmov iskanja najkrajše poti

Rezultati diplomskega dela so pokazali na razlike med algoritmi iskanja poti in umetno

inteligenco. Algoritmi iskanja poti izkazujejo hitro delovanje v vseh testnih primerih, medtem

ko umetna inteligenca zahteva več časa za morebitno doseganje cilja. Umetna inteligenca je

bila učena na labirintu velikosti 11x11, kar tudi odraža njen najboljši rezultat izmed vseh testnih

primerov.

Pri labirintih velikosti 11x11 je povprečni čas iskanja 0,02 ms, pri labirintih 21×21 pa med 0,07

in 0,10 ms. Pri labirintih velikosti 31x31 je najhitrejši Dijkstrov algoritem, in sicer 0,024 ms.

Hitrost UI upada z večanjem števila vozlišč in velikosti labirinta. Iz tega lahko sklepamo, da je

učinkovitost algoritmov odvisna od velikosti labirinta in števila vozlišč.

Kljub podobnim časom iskanja je algoritem A* obiskal najmanjše število vozlišč za dosego

cilja, kar nakazuje na bolj optimizirano delovanje algoritma v primerjavi z BFS, Dijkstro in

umetno inteligenco.

Najhitrejši algoritem je Dijkstrov algoritem. Zabeležil je najkrajši čas iskanja, vendar je treba

poudariti, da je obiskal največ vozlišč. To nakazuje na potencialno poslabšanje optimalnosti

algoritma na večjih labirintih, kjer je število vozlišč večje. Rezultati hitrosti in obiskanih vozlišč

algoritmov in UI so razvidni v spodnjih grafih.

 72

Grafikon 1: Prikaz časa iskanja končnega vozlišča algoritmov in UI v labirintu

Vir: Lasten

Grafikon 2: Prikaz števila obiskanih vozlišč algoritmov in UI v labirintu

Vir: Lasten

 73

9.3 Analiza zmogljivosti umetne inteligence pri reševanju najkrajše poti

Umetna inteligenca je bila v primerjavi z drugimi algoritmi najpočasnejša in neučinkovita.

Rezultati nakazujejo na slabše rezultate v labirintih, kjer velikost ni 11x11. To je bilo

pričakovano, saj je umetna inteligenca bila učena izključno na labirintih velikosti 11x11.

Stopnja uspešnosti UI se zmanjšuje z naraščajočo kompleksnostjo problema. Pri majhnih

labirintih velikosti 11x11 dosega 60,3-% uspešnost s 603 uspešnimi rešitvami od 1000 testov.

Ta uspešnost se zmanjša pri srednjih labirintih velikosti 21×21 na 8,1-% z 81 uspešnimi

rešitvami. Pri največjih labirintih velikosti 31×31 UI dosega le 2,8-% uspešnost z zgolj 28

uspešnimi rešitvami od 1000 testov, kar pomeni, da ne uspe rešiti preko 97,2 % testnih primerov.

Uspešnost UI in algoritmov je razvidna v spodnjem grafu.

Grafikon 3 :Prikaz uspešnosti iskanja algoritmov in UI v labirintu

Vir: Lasten

 74

10 POTRDITEV ALI ZAVRNITEV HIPOTEZ

10.1 H1: A* je najpopularnejši algoritem

V diplomskem delu smo pregledali znanstveno literaturo na področju algoritmov iskanja poti.

Pregled literature nakazuje na vsesplošno razširjenost algoritma A* v raziskovalni skupnosti.

Foed idr. (2021) so navedli, da je algoritem A* zaradi svoje priljubljenosti in razširjenosti

standard za raziskovalce, ki raziskujejo in rešujejo problem iskanja poti. Trditev, da je algoritem

A* najpopularnejši, zasledimo tudi v raziskavi, ki so jo opravili Iskandar, U. A. S. idr. (2020),

kjer navedejo, da je algoritem A* najpogosteje uporabljen algoritem iskanja poti v videoigrah.

10.2 H2: Obstaja umetna inteligenca, ki najde najkrajšo pot tudi iz takega

algoritma, pri katerem imajo ostali algoritmi omejitve

Rezultati diplomskega dela so pokazali, da UI najde najkrajšo pot v labirintu kljub

predpostavljenim omejitvam. Literatura nakazuje, da je razvoj UI pri problemu iskanja

najkrajše poti pomemben dejavnik. V raziskavi, ki so jo opravili Iskandar, U. A. S. idr. (2020),

ugotovimo, da je UI prisotna pri iskanju poti v videoigrah. V raziskavi so zabeležili, da agenti

najdejo pot do igralca, vendar je učinkovitost algoritmov slabša.

10.3 H3: A* algoritem bo najhitrejši algoritem in bolj učinkovit pri iskanju

najkrajše poti v naključno generiranih labirintih v primerjavi z drugimi

algoritmi

V poglavju Primerjava algoritmov in umetne inteligence v naključno generiranem labirintu smo

ugotovili, da je algoritem A* najučinkovitejši algoritem z obiskom najmanjšega števila vozlišč

za dosego cilja. Rezultati diplomskega dela nakazujejo, da je algoritem A* najučinkovitejši

algoritem v primerjavi z ostalimi testnimi algoritmi in umetno inteligenco.

Rezultati diplomskega dela so pokazali, da algoritem A* kljub svoji učinkovitosti ni najhitrejši

algoritem izmed testiranih algoritmov in umetne inteligence.

 75

10.4 H4: Umetna inteligenca bo najučinkovitejša pri iskanju najkrajše poti v

naključno generiranem labirintu v primerjavi z algoritmi A*, Dijkstrovim

algoritmom in BFS

Rezultati diplomskega dela so pokazali, da umetna inteligenca ni najučinkovitejša v naključno

generiranem labirintu. Hitrost reševanja problema je bila znatno višja v pram algoritmov iskanja

poti. Število obiskanih vozlišč je bilo v povprečju višje od algoritmov iskanja poti. Pomemben

podatek je, da UI ni bila vedno uspešna pri reševanju problema, kar nakazuje na splošno slabo

učinkovitost UI. Kljub rezultatom je pomembno povedati, da je v okviru diplomskega dela UI

bila učena na manjši količini podatkov, in sicer pet tisoč naključno generiranih labirintov

velikosti 11x11.

 76

11 SKLEP

V okviru diplomskega dela smo primerjali algoritme iskanja poti BFS, A*, Dijkstrov algoritem

in umetno inteligenco pri reševanju naključno generiranega labirinta. Cilj diplomskega dela je

analiza literature in analitična primerjava uspešnosti algoritmov pri reševanju naključno

generiranega labirinta. Analiza algoritmov in umetne inteligence je zajemala čas reševanja

labirinta, število obiskanih vozlišč in sposobnost algoritma, da najde končno vozlišče.

Algoritme smo primerjali na različnih velikostih labirintov, in sicer 11x11, 21x21 in 31x31, z

namenom simulacije različnih kompleksnosti problemov.

Algoritmi iskanja poti so v vseh testnih primerih pokazali izjemno zanesljivost s 100-%

uspešnostjo pri iskanju cilja. Algoritem A* se je izkazal kot najbolj optimiziran, saj je dosegel

cilj z najmanjšim številom obiskanih vozlišč, kar nakazuje na uspešno uporabo hevristične

funkcije. Dijkstrov algoritem je bil najhitrejši, vendar je obiskal največ vozlišč, kar nakazuje na

potencialne težave pri večjih in zahtevnejših problemih. Algoritem BFS je pokazal konsistentno

delovanje z zmernim obiskom vozlišč in hitrostjo reševanja problema.

Umetno inteligenco smo implementirali s pomočjo strojnega učenja na osnovi globokega Q-

učenja DQN. Za namen diplomskega dela smo umetno inteligenco učili na naključno

generiranih labirintih velikosti 11x11. Dosežen uspeh učenja UI je 32,4 %, kar moramo

upoštevati pri končnih rezultatih primerjave algoritmov iskanja poti in umetne inteligence.

Velikost labirinta je močno vplivala na uspeh reševanja problema UI. Najboljši časovni rezultat

UI je zabeležen na labirintih velikosti 11x11, na katerih je bila UI učena. Uspešno dosežen cilj

UI je bil najvišji na velikosti 11x11, kjer je število vozlišč minimalno. UI je imela znatno slabše

rezultate na labirintu velikosti 21x21 in 31x31, kar nakazuje na slabšanje učinkovitosti UI na

kompleksnejših problemih. Takšni rezultati so bili pričakovani, saj je strojno učenje

najučinkovitejše na podatkih, na katerih je bilo učeno.

Algoritmi iskanja poti so hitreje reševali problem v pram UI. Čas reševanja problema smo

beležili v milisekundah. Primerjavo algoritmov iskanja poti in UI smo izvedli na tisoč primerih

na naključno generiranih labirintih različne velikosti. Algoritmi iskanja poti so bili bistveno

hitrejši v primerjavi z UI, saj je morala izračunati Q-vrednost za vsako novo stanje.

Uporaba algoritmov iskanja poti v praktičnem okolju je še vnaprej zaželena, saj je potrebna

100-% učinkovitost in hitra odzivnost pri reševanju problema. Njihova deterministična narava

 77

in dokazana učinkovitost jih delata zanesljive za kritične aplikacije. Vendar pa pristopi umetne

inteligence ponujajo potencial za učenje iz izkušenj, kar lahko postane prednost v dinamičnih

okoljih, kjer se pogoji spreminjajo.

Pomembno je poudariti, da so rezultati umetne inteligence odvisni od kakovosti učnega procesa,

količine učnih podatkov in arhitekture nevronske mreže. Z dodatnim učenjem na raznolikih

labirintih različnih velikosti bi se lahko njena splošna uspešnost občutno izboljšala.

Izbira med algoritmi iskanja poti in UI je odvisna od problema, ki ga želimo rešiti, zahtevane

zanesljivosti, časovnih omejitev in narave problema. Algoritmi iskanja poti so primerni za

aplikacije, ki zahtevajo 100-% uspešnost in hitro reševanje. UI ponuja potencialno prilagajanje

pri reševanju kompleksnih dinamičnih problemov, vendar z večjimi računskimi zahtevami in

manjšim zagotavljanjem uspešnosti. Prednost UI je neprestano učenje na vnosnih podatkih, kar

omogoča izboljšanje časa reševanja problema in učinkovitost rešitve.

Za nadaljnje raziskovanje UI priporočamo testiranje z drugimi algoritmi strojnega učenja,

drugačnimi parametri učenja, večjim številom labirintov in različnimi testnimi okolji. Prav tako

je smiselno raziskati hibridne pristope, ki bi kombinirali prednosti determinističnih algoritmov

in prilagodljivosti UI.

 78

12 VIRI IN LITERATURA

Agarwal, V., Petrini, F., Pasetto, D., &in Bader, D. (2010). Scalable Graph Exploration on

Multicore Processors. SC '10: Proceedings of the 2010 ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and Analysis.

Aria, M. (2018). New algorithm for digital way-finding map. IOP Conference Series Materials

Science and Engineering.

Barnouti, N., Al-Dabbagh, S., &in Naser, M. (2016). Pathfinding in Strategy Games and Maze

Solving Using A* Search Algorithm. Journal of Computer and Communications.

Beamer, S., Asanović, K., &in Patterson, D. (2013). Direction-Optimizing Breadth-First

Search. Scientific Programming.

Bender, E., &in Williamson, S. (2010). Lists, Decisions and Graphs With an Introduction to

Probability.

Berge, C. (1958). Sculptor of Graph Theory. Trends in Mathematics.

Brodsky, S. (14. Oktober 2024). The hidden costs of AI: How generative models are reshaping

corporate budgets. Pridobljeno iz IBM: https://www.ibm.com/think/insights/ai-

economics-compute-cost

Buluç, A., &in Madduri, K. (2011). Parallel breadth-first search on distributed memory systems.

SC '11: Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis.

Carr, J. (2014). An Introduction to Genetic Algorithms. Journal of Computer and

Communications.

Chassignol, M., Khoroshavin , A., Klimova, A., &in Bilyatdinova , A. (2018). Artificial

Intelligence trends in education: a narrative overview. Procedia Computer Science.

Choudhury, A., Ghose, M., Islam, A., in& Yogita. (2024). Machine learning-based computation

offloading in multi-access edge computing: A survey. Journal of Systems Architecture.

Cormen, T. H., Leiserson, C. E., Rivest, L. R., in& Clifford , S. (2022). Introduction to

Algorithms. MIT Press.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

Mathematik .

Elkari, B., Ourabah, L., Sekkat, H., Hsaine, A., Essaiouad, C., Bouargane, Y., &in El

Moutaouakil, K. (2024). Exploring Maze Navigation: A Comparative Study of DFS,

BFS, and A* Search Algorithms. Statistics, Optimization &in Information Computing .

 79

Felner, A. (2011). Position Paper: Dijkstra's Algorithm versus Uniform Cost Search or a Case

Against Dijkstra's Algorithm. Proceedings of the International Symposium on

Combinatorial Search.

Felner, A., Li, J., Boyarski, E., Ma, H., Cohen, L., Kumar, T., &in Koenig, S. (2018). Adding

Heuristics to Conflict-Based Search for Multi-Agent Path Finding. PKP Publishing

Services Network.

Foead , D., Ghifari, A., Kusuma, M. B., Hanafiah, N., &in Gunawan , E. (2021). A Systematic

Literature Review of A* Pathfinding. Procedia Computer Science.

Fredman, M., &in Tarjan, R. (1984). Fibonacci Heaps And Their Uses In Improved Network

Optimization Algorithms. 25th Annual Symposium onFoundations of Computer

Science, 1984.

Harabor, D., &in Grastien, A. (2011). Online Graph Pruning for Pathfinding on Grid Maps.

NICTA and The Australian National University.

Hong, S., Ogunteb, T., &in Olukotun, K. (2011). Efficient Parallel Graph Exploration on Multi-

Core CPU and GPU. Parallel Architectures and Compilation Techniques(PACT).

Hunkeler, I., Schär, F., Dornberger, R., &in Hanne, T. (2016). fairGhosts — Ant colony

controlled ghosts for Ms. Pac-Man. IEEE.

Iskandar, U., Diah, N., &in Ismail, M. (2020). Identifying Artificial Intelligence Pathfinding

Algorithms for Platformer Games. 2020 IEEE International Conference on Automatic

Control and Intelligent Systems (I2CACIS).

Kairanbay , M., &in Jani, H. (2013). A Review and Evaluations of Shortest Path Algorithms.

International Journal of Scientific &in Technology Research.

Kumar, N. (2019). Bidirectional Graph Search Techniques for Finding Shortest Path in Image

Based Maze Problem. Guru Nanak Dev University .

Kurt, M., &in Sanders, P. (2008). Algorithms and Data Structures.

Lawande, S., Jasmine, G., Anbarasi, J., &in Izhar, L. (2022). A Systematic Review and Analysis

of Intelligence-Based Pathfinding Algorithms in the Field of Video Games. Applications

of Evolutionary Computation to Machine Learning and Data Mining.

Le, H. (27. April 2025). How Much Does AI Cost in 2025? A Complete Breakdown for

Businesses. Pridobljeno iz ekotek: https://ekotek.vn/how-much-does-ai-cost

Liu, B., Choo, S.-H., Lok, S.-L., Leong, S.-M., Lee, S.-C., &in Poon, F.-P. (1994). Integrating

case-based reasoning, knowledge-based approach and Dijkstra algorithm for route

finding. Proceedings of the Tenth Conference on Artificial Intelligence for Applications.

 80

Lutkevich, B. (12. Maj 2022). knowledge engineering. Pridobljeno iz techtarget:

https://www.techtarget.com/searchenterpriseai/definition/knowledge-engineering

Nico. (29. October 2020). An Analysis of Dijkstra’s Algorithm. Pridobljeno iz medium:

https://medium.com/@nico_72892/an-analysis-of-dijkstras-algorithm-fcd64fc827c7

Noori, A., &in Moradi, F. (2015). Simulation and Comparison of Efficency in Pathfinding

algorithms in Games. Pproceedings of the 8th international conference on engineering,

technology, and industrial applications 2021 (8th icetia 2021).

Noto, M., &in Sato, H. (2000). A method for the shortest path search by extended Dijkstra

algorithm. Smc 2000 conference proceedings. 2000 ieee international conference on

systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations,

and their complex interactions' (cat. no.0.

Rachmawati , D., &in Gustin, L. (2020). Analysis of Dijkstra’s Algorithm and A* Algorithm in

Shortest Path Problem. IOP Publishing Ltd.

Rafiq , A., &in Kadir, T. (2020). Pathfinding Algorithms in Game Development. IOP

Conference Series Materials Science and Engineering.

Rafiq, A., Tuty Asmawaty, K. A., in& Ihsan, S. N. (2020). Pathfinding Algorithms in Game

Development. IOP Publishing Ltd.

Russell , S., &in Norvig, P. (2022). Artificial Intelligence A Modern Approach 4th edition.

Pearson Education Limited.

Schrijver, A. (2012). On the history of the shortest path problem. EMS Press eBooks.

Soltani, A., Tawfik, H., Goulermas, J., &in Fernando, T. (2002). Path planning in construction

sites: performance evaluation of the Dijkstra, A∗, and GA search algorithms. Advanced

Engineering Informatics.

Stryker, C., &in Kavlakoglu, E. (9. Avgust 2024). What is artificial intelligence (AI)?

Pridobljeno iz IBM: https://www.ibm.com/think/topics/artificial-intelligence

Szcześniak, I., &in Woźna-Szcześniak, B. (2023). Generic Dijkstra: correctness and tractability.

NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium.

Szcześniak, I., Jajszczyk, A., &in Woźna-Szcześniak, B. (2019). Generic Dijkstra for optical

networks. Journal of Optical Communications and Networking.

Wahyuningsih, D., &in Syahreza , E. (2018). Shortest Path Search Futsal Field Location With

Dijkstra Algorithm. IJCCS (Indonesian Journal of Computing and Cybernetics

Systems).

Wolsey, L. A. (1998). Integer Program. A Willey-Interscience Publication.

 81

Yap, P. (2002). Grid-Based Path-Finding. Department of Computing Science, University of

Alberta.

Yiu, Y., Du, J., &in Mahapatra, R. (2018). Evolutionary Heuristic A* Search: Heuristic Function

Optimization via Genetic Algorithm. IEEE.

Yoo, A., Chow, E., Henderson, K., McLendon, W., Hendrickson, B., &in Umit , C. (2005). A

Scalable Distributed Parallel Breadth-First Search Algorithm on BlueGene/L.

Association for Computing Machinery.

	1 UVOD
	1.1 Opis področja in opredelitev problema
	1.2 Namen, cilji in osnovne trditve
	1.3 Predpostavke in omejitve
	1.4 Uporabljene raziskovalne metode

	2 Algoritmi iskanja najkrajše poti
	3 Grafi in mreže
	3.1 Graf
	3.2 Mreže
	3.3 Hevristika

	4 Algoritem A*
	4.1 Prednosti algoritma A*
	4.2 Slabosti algoritma A*
	4.3 Psevdokoda in načrt implementacije algoritma A*

	5 algoritem Breadth-First Search
	5.1 Prednosti algoritma BFS
	5.2 Slabosti algoritma BFS
	5.3 Psevdokoda in načrt implementacije algoritma BFS

	6 Dijkstrov algoritem
	6.1 Prednost Dijkstrovega algoritma
	6.2 Slabost Dijkstrovega algoritma
	6.3 Psevdokoda in načrt implementacije Dijkstrovega algoritma

	7 umetna inteligenca
	7.1 Umetna inteligenca in razumevanje
	7.2 Umetna inteligenca in strojno učenje
	7.3 Umetna inteligenca in iskanje
	7.4 Umetna inteligenca in iskanje najkrajše poti
	7.5 Stroški razvoja in implementacije umetne inteligence

	8 Priprava okolja
	8.1 Struktura izvorne kode
	8.2 Uporabniški vmesnik aplikacije
	8.3 Izvorna koda labirinta
	8.4 Izvorna koda algoritma BFS
	8.5 Izvorna koda algoritma A*
	8.6 Izvorna koda algoritma Dijkstra
	8.7 Izvorna koda strojnega učenja

	9 Primerjava algoritmov in umetne inteligence v Naključno generiranem labirintu
	9.1 Rezultati algoritmov iskanja poti in umetne inteligence v naključno generiranem labirintu
	9.2 Analiza hitrosti algoritmov iskanja najkrajše poti
	9.3 Analiza zmogljivosti umetne inteligence pri reševanju najkrajše poti

	10 Potrditev ali zavrnitev hipotez
	10.1 H1: A* je najpopularnejši algoritem
	10.2 H2: Obstaja umetna inteligenca, ki najde najkrajšo pot tudi iz takega algoritma, pri katerem imajo ostali algoritmi omejitve
	10.3 H3: A* algoritem bo najhitrejši algoritem in bolj učinkovit pri iskanju najkrajše poti v naključno generiranih labirintih v primerjavi z drugimi algoritmi
	10.4 H4: Umetna inteligenca bo najučinkovitejša pri iskanju najkrajše poti v naključno generiranem labirintu v primerjavi z algoritmi A*, Dijkstrovim algoritmom in BFS

	11 Sklep
	12 VIri in literatura

